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Nonequilibrium structure factor for conserved spin dynamics: Abrupt temperature increase

James H. Luscombe
Department of Physics, Naval Postgraduate School, Monterey, California 93943

Marshall Luban
Ames Laboratory and Department of Physics and Astronomy, lowa State University, Ames, lowa 50011
(Received 1 December 1995

We consider the nonequilibrium, elastic-scattering structure f&tprt) (q denotes the wave vectdrthe
time), for the Kawasaki spin-conserving kinetic Ising model of a one-dimensional system with nearest-
neighbor interactions, initially in equilibrium at temperatdre that is suddenly placed in contact with a heat
bath at temperatur€g , with Te>T, . We present detailed results for the caseél pt=c, for which we have
succeeded in calculating the exact formS§f,t). For finite T, we present an approximation scheme for the
higher-order nonequilibrium correlation functions that leads to closure of the hierarchy of equations of motion.
The merits of this approximation are th@t S(q,t) is guaranteed to satisfy an exact sum rule over the Brillouin
zone(BZ) of wave vectorgy, and(ii) S(q,t) evolves to the correct value in the long-time limit. For antifer-
romagnetic coupling, the structure factor, initially dominated by the Bragg peak associater] aitthe edge
of the BZ, decays exponentially with time; Y7« while approximately preserving its shapedrspace, since
the lifetime 7, is nearly independent af. Except near the center of the BZ, after the Bragg peak has decayed
sufficiently, the dependence 8fq,t) on g can be characterized as though the spins rapidly quasiequilibrate to
the equilibrium structure factor associated with, x(q,Tg), in thatS(q,t)/x(q,Tg) is independent of}, but
is time dependent, slowly approaching unitytad? for larget. Forg~0 the initial form ofS remains in effect
until the value oft is of orderq™2 For ferromagnetic coupling, the initial Bragg peak fpe0 does not
preserve its shape while decaying exponentially, since the lifetipgtrongly depends on the wave-vectpr
diverging asq~? for q—0, and, in particular, it is as though the spins fpr0 remain “frozen” at T, .
Analogous to the behavior for antiferromagnetic interactions, away from the center of the BZ, we find that
S(q,t)/x(q,Tg) is independent of and is a function ot/t,,, very slowly approaching unity. The character-
istic “waiting time” t,, is anomalously long, proportional &5, where¢ is the equilibrium correlation length
at temperatureT,. This behavior oft, can be related to the random walk of domain boundaries.
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[. INTRODUCTION dissipation theorem, the response of a system to first order in
the external driving force is related to equilibrium-averaged
The response of condensed-matter systems to rapitime-correlation functions. Nonequilibrium, however, also
changes in external parameté&smperature, for examplés  refers to systemstronglyout of equilibrium[1-4,7 where a
a challenging problem in nonequilibrium statistical mechandarge external perturbation is suddenly applied, thereby driv-
ics [1-4]. A well-studied exampl¢l-5] is the spinodal de- ing the system to a new configuration that is far removed
composition of a two-phase thermodynamic system subfrom its initial equilibrium state. Relatively little is known
jected to a quench from a temperatdre(above an ordering about the subsequent time evolution of such systems toward
temperaturél ) to a temperaturd (belowT¢). As aresult  eventual equilibrium, precisely because thermodynamic sys-
of the change in temperature, the initial system is no longetems subject to strong perturbations do not fall within the
thermodynamically stable and subsequently evolves into ddinear-response regime. This article is concerned with one
mains of ordered phases as the system equilibrates at tlspecialized model system driven strongly out of equilibrium
lower temperature. The interest in such nonequilibrium sysfor which an analysis of its time evolution can be performed.
tems arises from the fact that, in analogy with critical phe- A basic experimental probe of strongly nonequilibrium
nomena, the kinetics of domain formation for widely differ- systems is the nonequilibrium elastic-scattering structure fac-
ent systems can be classified according to a few universabr S(q,t) wheret is the time[1-5]. This quantity[see Eq.
growth laws, which depend only on conservation laws and?2.8)] is the Fourier transform of the two-point, equal-time,
on such factors as the number of ordered phases that camder-parameter correlation function, just as for the familiar
exist[4]. We note that, as a prefatory remark for the presenequilibrium structure factory(q,T), but evaluated in aon-
work, the word “nonequilibrium” has two distinct connota- equilibrium ensemble. Thuss(q,t) monitors the instanta-
tions in the statistical physics literature. Nonequilibrium of- neous internal structure of the system as it evolves in time
ten refers to systemslightly removed from equilibrium by from thermal equilibrium afT, to that atT.. During the
infinitesimal external influences; this is the well-known growth of domains, for example, it is found th&(q,t)
linear-response regimgs] where, through the fluctuation- obeys a time-dependent scaling relati8(g,t)<F[qL(t)]
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where F is a scaling function and wherk(t) is a time-  arbitrary T the equation of motion fo6(q,t) in the one-
dependent length characterizing the average domain sizimensional Kawasaki model includes an infinite number of
[1-4]. The latter quantity is generally found to have a power_higher-ordgr nonequjlibrium .corre'lation function;, besides
law time dependende(t) ~t” for sufficiently larget, and the  the two-spin correlation functions in terms of whi€q,t)
exponentr can be used to define universality classes. is defined. By contrast, for the one-dimensional Glauber

The nonequilibrium structure fact&(q,t) therefore sum- Model the equation of motion fc(q,t) contains only two-
marizes a wide range of interesting physical phenomen spin correlation functions for all'=. Therefore to obtain
%, qg,t) for the Kawasaki model, one would in principle have

and, accordingly, there has been considerable effort devoteg gqjve an infinite hierarchy of coupled kinetic equations for
to calculating this fundamental quantity for various models.the various correlation functions. Whai =2, however, it
We note that such problems have been addressed througfappens that the hierarchy is explicitly truncated at the two-
direct numerical simulationfs8], with renormalization group  spin correlation function level, and, as it turns out, the result-
methods[9], and in model calculations designed to empha-ing equation of motion forS(q,t) can be solved without
size either the short- or the long-time regini&6]. However  approximation. To the best of our knowledge, there is no
there appear to be very few model systems for wi8tq,t) other example in the literature of an exact solution$(q, t)
can be evaluate@xactly for all t. One model system for in which the total number of particles in the system is con-
which the exact form o5(q,t) has been derivefll1] is the  served.
one-dimensional Glaubgf2] spin-flip kinetic Ising model. In the context of the Kawasaki model wifhz=, the
We note that Ising sping;==*1, in spite of their simplicity, dynamics that drives the system to its final state corresponds,
provide an adequate description of the equilibrium propertiesn the equivalent lattice-gas picture, to nearest-neighbor ran-
and phase diagrams of many systems, including systems dbm hopping with double site occupancy excluded. Such dy-
adsorbed particles. It is highly desirable, therefore, to denamical problems have received considerable attention in
velop kinetic Ising models 08(q,t) to treat the strong non- their own right[15,16. We note that while we explicitly
equilibrium behavior of Ising-like systems. consider an initial state corresponding to thermal equilibrium
In this article, we provide a second kinetic Ising model for at temperaturd, , our method of solution is not restricted to
which an exact expression f@&(q,t) can be derived. We this case and could be applied to the evolutiorsd,t) for
calculate S(qg,t) for the one-dimensiona(1D) Kawasaki the disordering of an arbitrarily prepared initial state subject
spin-exchange kinetic Ising model3,14] for a system with  to random hopping dynamics. Specifically, given an arbitrary
nearest-neighbor interactions, initially in equilibrium at tem- initial-state structure factog(q,0), the subsequent evolution
peratureT,, that is suddenly placed in contact with a heatof S(q,t) by nearest-neighbor hopping can be calculated ex-
bath at temperatur€g, with T->T, . In this model the total actly if Tp=c.
number of particles in the system is conserved, and hence it For the case of generdl-, we present an approximation
can be used, in its higher-dimensional versions, to provide acheme in Sec. lll for the higher-order correlation functions
description of, for example, the growth of ordered domainghat leads to closure of the hierarchy of equations of motion.
in binary alloys or in systems of adsorbed atoms. We showWe remark that the occurrence of infinite hierarchies of
among other results, that in the limit-—o° one can derive coupled equations is widespread in many body theory and
the complete analytic expression 8(q,t) without invoking  that the associated issue of how to optimally terminate them
any approximations. We also develop an approximate treais a delicate and subtle problem. In particular, the qualitative
ment for finite T. Before we discuss these results further,behavior ofS(q,t) can be very sensitive to the details of the
however, it will be useful to contrast the Kawasaki andtruncation procedure. We note, then, that our truncation
Glauber models, which are the two most widely studied ki-method preserves the following two important featur@s:
netic Ising models. In the Glauber model, the allowed dy-S(q,t) evolves to the correct value in the long-time limit and
namical transitions of the system are restricted to single spifii) S(q,t) obeys an exact sum rule over the wave vectprs
flips. As a result, the Glauber model cannot describe hydroef the Brillouin zone(BZ). Our major findings when we use
dynamic transport phenomena caused by long-range spatialir truncation method are as follows. For the caseamf-
inhomogeneities, e.g., diffusion, since the total spin, orferromagneticcoupling, if the spins are initially in equilib-
equivalently, the total number of particles in the system, igium at a sufficiently low temperature so tti(tg,t) exhibits
not a conserved quantity. The Kawasaki model, on the othea strong Bragg peak fog~ *+ w/a, wherea is the lattice
hand, only allows for the simultaneous flip of two oppositespacing, we find that the Bragg peilitially decays propor-
nearest-neighbor spins, so that they “exchange” values. Thisional to exp(-t/7,) while approximately preserving its
mechanism does conserve the total spin and hence can bBbapein q space. We also obtain an explicit expression for
used to model transport phenomena. As we will see, the sehe lifetime, ; it is virtually independent off for g~ = n/a.
vere constraint imposed by this conservation law renders ®/e note that evidence for initial exponential decay of the
theoretical treatment d(q,t) nontrivial, even for the case Bragg peak, with approximate shape preservation, has been
of a one-dimensional array of spins wiffx set equal to observed in experimel7-19. This is discussed further in
infinity. Sec. V. We also show that #(q)t=4, whereQ(q) is a
Whereas Mazenko and Widofd1] were able to obtain wave-vector-dependent relaxation rate definedh$0), the
S(q,t) exactly for the one-dimensional Glauber model for dependence 0$(qg,t) on q can be characterized as though
arbitrary T, we are able to provide an exact solution for thethe spins have essentially equilibrated to the equilibrium
Kawasaki model only for the special vallig=c. This is  structure factor at the final temperaturg,q,Tg). Specifi-
due to the fundamentally different character of the dynamicgally, when this inequality applies, the ra§q,t)/x(q,Tg)
of these two systems discussed above. As we will show, fois independent of], but is time dependent and slowly ap-
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proaches unity from above, with the correction term decaytities of physical interest are expressible in terms of the dis-
ing with time ast V2. For very smally, becausd)(q) van-  persion integraF(w, 7).
ishes likeg?, this regime applies only for ultralong times.

For ferromagneticcoupling between the spins, the Bragg Il. FORMULATION OF MODEL
peak for q~0 persists for an enormous time period. The
initial value, x(q,T,), although decaying as for antiferromag-
netic interactions in an exponential manrmer'7, the life- We consider a one-dimensional lattice Mflsing spins
time 7;1:29(q) diverges ag| 2 asq—0. This divergence o;==*1. The equilibrium thermodynamic properties of this
is a direct consequence of the spin-conserving dynamics faiystem are well known, and we briefly review some of the
the present model along with the sum rule obeye®fy;t). most salient results that will be used in later sections. Equi-
In contrast to the result we obtain for antiferromagnetic in-librium averages are constructed with the probability distri-
teractions, because of the stroggdependence of,, the  bution function,
Bragg peak forg~0 doesnot preserve its shape iq space -1
while decaying exponentially. Away from the center of the Plo]=2""expHLo]), @1

BZ, we find that(q,t)/x(q, T¢) is independent off and is  \yhere7 is the partition function, and whet¢[o] is the Ising

a function oft/t,,, which rises very slowly to unity. The pearest-neighbor Hamiltonian multiplied byg=—1/kgT,
characteristic “waiting time”t,, is anomalously long, pro-

portional to&?, where¢ is the equilibrium correlation length N
at temperaturd, . As shown in Sec. IV B 1, this behavior of Hlo]= KZ 0igi+1 (ON+1=07) (2.2
t,, can be related to the random walk of domain boundaries. =1

It will be noted that for the problem considered here, the . _ ; ; ;
. . o th K=pJ denoting the nearest-neighbor coupling con-
usual order ofT; and Tg considered in quench problems is " A "9 g LAY

. : - i X stant, wherel is the exchange interaction strength. Note that

_re_v_ersed,_l_.e._, we are mtereste_d in the_ time evolution of a'@antherromagnetic spin couplings are implied KiK<0)

initial equilibrium system after it is subject to a sudder >0 |t will be convenient to assume an infinite lattice

creasein temperature. We are motivated by experiments onN _.cc), for which the system has a critical point at zero

the disordering kinetics of initially ordered surface structuregemperature. For the nonequilibrium problem, to be dis-

in Si(100) [18,19, where observations of the decay of the cussed below, the final state of the system is associated with

“satellite peak” in $(q,t), corresponding to a loss of surface a coupling constar ¢, and we will study the evolution that

order, suggests a one-dimensional disordering process. fesults from the sudden change in coupling constant,

preliminary listing of some of the results presented in SecK=K,—Kg, starting from an initial valueK,, with

IV for the special case of r=x have been reported in Ref. |K,|>|Kg].

[18] without derivation. In the following, we will require the two-spin equilibrium
The outline of this article is as follows. In Sec. Il, we correlation functior{ 20]:

briefly review the equilibrium properties of Ising spins that o o

will be of use, in particular, the equilibrium structure factor (oyo;)y=[tankK)]II=ull~1l, 2.3

x(q,T) and the sum rule it satisfies. We then define the non-

equilibrium structure facto®(q,t) and derive its exact equa- Where the brackets denote an average with respeP{ad

tion of motion in the context of the Kawasaki spin-exchangeand where we have introduced the symbettanh(K). We

model. The quantity(q,t) also satisfies a sum rule that will see from(2.3) that the correlation length governing the ex-

be of fundamental significance in our analysis. In Sec. Ill wePonential decay of the two-spin correlation function is given

present a truncation procedure that enables us to calculaly & *=In[coth(K]|)]. We will also require the Fourier spin

S(q,t) for any finite final temperature. In the context of this transformo(q) which can serve as a general order param-

procedure it is shown that the time evolution $fq,t) is  €ter,

governed by the time dependence of the nonequilibrium,

neargst-neig_hpor two_—spin correlati_on functi@(t). This _ a(q)zN‘l’ZE exgligna)a,,, (2.4)

function satisfies an integral equation that we solve using n

Laplace transform technigues. In Sec. IV, we focus on the

case where the spins are placed in contact with a heat resexhere q is restricted to the one-dimensional BZ=(y|

voir at infinite temperature. For this case we can obtain the<n/a, and wherea is the lattice spacing(Henceforth we

exact form ofS(q,t) without invoking the truncation proce- choosea=1.) Note that the ferromagnetic order parameter is

dure that we employ for finitd - . We provide detailed nu- recovered by considering the lingt—0, while the antiferro-

merical results for the evolution d§(q,t) and give its as- magnetic order parameter is obtained in the ligpit 7. This

ymptotic properties. Finally, in Sec. V we summarize ourcan readily be seen from the equilibrium elastic-scattering

results and discuss issues for further study. Appendix A istructure factory(q,T), which measures the spectrum of

devoted to establishing the properties of the dispersion intefluctuations in equilibrium at temperatufie

gral F(w, 7) that plays a major role in the analysis®(fq,t).

In Appendix B we show that the methods developed in this x(a,T)=(a(—0q)o(q)). (2.5

article can readily be adapted to provide the exact form of

S(q,t) for the Glauber kinetic Ising model which does not Evaluation of x(g,T) using (2.3 and (2.4) is straightfor-

possess a conserved variable. Once again the primary quaward, and in the limitN—occ one obtains

A. Equilibrium properties
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V1—+?2 C(q,t,T)=(a(-0q,00(q,1))
x(q,T)= ﬁ, (2.6) 7 ’ .

=Cy(t,T)+2 C,(t,T)cogng), (2.1
where y=tanh(X) = 2u/(1+u?). For K>0, we havey—1 oft.T) nzl ot T)eosna), (219

in the low-temperature limit ang diverges forg—0, i.e., the ] . )
system is dominated by long-wavelength fluctuations. ByWhereCy(t,T)=(oo(0)o (1)) is the correlation of a spin at
contrast, fork <0, y——1 for low temperatures, ang di- lattice site 0 at timet=0 with a spin at siten at time t
verges forq—, i.e., antiferromagnetic ordering develops in evaluated in arequilibrium ensemble. In the following, we
this limit. We see from(2.6) that y is invariant under the Will simplify our notation and suppress the variafiiei.e.,
transformatiorK — —K andq— m—q. Forq=0 andq==, We write C(g,t) and C,(t). We ywll calqulgte and .dlscuss.
then, the peak value of is given by e?*!, whereas the C(a.t) in Sec. II D because of its heuristic value in antici-

The quantityy(q,T) defined by(2.5) and given in(2.6) The first task we face, in order to derii&q,t), is to
satisfies a temperature-independent sum rule, establish the form of the nonequilibrium probability distribu-
tion functionP[ o,t]. In kinetic Ising models this quantity is
™ taken to satisfy a Markovian master equati@d], which, in
J_ dq x(q,T)=2m7. (2.7 operator form, we denote by
This result is a direct consequence of the requirement that a?t- Plo,t]= >, D[o|o']P[¢’,t]=D,P[o.t], (2.1)
each lattice siten, the Ising fixed-length spin condition (o'}

o2=1 is satisfied. Henceforth, we will use the abbreviated

notationy(q) to denote the equilibrium structure fact@.6). Wher.e. the operatob,, contains the ‘Yp'c"’?' gain and loss
transition rates of a master equation, in this case assumed to

arise from the interactions between the spin system and a
heat reservoir. Onc® , is specified,P[o,t] is formally
The dynamical response to a rapid change in temperatuigiven by[22]
from T, to Tr can be characterized by the nonequilibrium
structure factoiS(q,t;T,, T¢) which is defined as Plo,t]=expD,t)P|[o], (212

B. Nonequilibrium structure factor

where we have chosen the initial condition
S(Q.4T,Te) =2 o(—q)a(q)P[o,t]=(a(—q)a(a)), Plo,t=0]=P,[ o], with P,[¢] the equilibrium distribution
to} characterized by the initial-state coupling constint The
quantityD , is a matrix operator in the"2dimensional space
=1+22 (oog)codnq), (2.8)  of spin configurations, and is constructed so as to exhibit the
n=1 specified spin dynamics, in our case a nearest-neighbor spin
exchange, as well as to satisfy the requirement Bfat,t]
evolves to the correct long-time limit, the equilibrium distri-
6)_ution Prlo] characterized by the final-state coupling con-
StantKg . The latter requirement is fulfilled by constructing
D, so that it satisfies detailed balance about the final-state
equilibrium, i.e.,D[o|d']Pg[c’]=D[o’|a]Pg[ o], which
: : . . _is sufficient to show thatPg remains stationary, i.e.,
transform of the equal-time, two-spin correlation funcnoanUPF[U] ~0. Note that in the most straightforward imple-

evaluated in a nonequilibrium ensemble. This quantity ca entation of detailed balance.. is a function only ofKk
be measured in real-time elastic-scattering experiments aftdpentat o ' only F
and is independent d{, . In the next subsection we derive

a rapid change in external parameters, typically by monitor- .y . ;
ing the evolution of a Bragg ped&—4]. An important con- an explicit analytic representation db, for the one-

; L dimensional Kawasaki kinetic Ising model.
straint on our analysis is that a sum rule analogou€td) . ) .
holds forS(q,t:T, ,T¢), i.e., Combining(2.8) and(2.12), we obtain a formal equation

of motion for S(q,t),

oo

where P[o,t] is a time-dependent probability distribution
that depends oil; and T, and is specified below, and where
the subscript on the angular brackets denotes a nonequili
rium ensemble average with respectRpo,t] [21]. Note
that (2.8) is simply the nonequilibrium generalization of the
static structure factor defined Kg.5), i.e., it is the Fourier

" dq Sq.tT, T =2 2.9 J
fﬁw q Sq,t;T,,Tg) =27 (2.9 &_ts(q't):{E} o(—q)o(q)D,P[o,t]
This too is a consequence of the Ising fixed-length spin con- =(D [o(—q)o(q)]), (2.13

dition. Note that(2.9) holds for all times. Henceforth, we _
will generally abbreviate our notation and denote the nonwhere D, is the adjoint of D, with matrix elements
equilibrium structure factor b$(q,t). D[o|o']=D[o’'|a]. The quantityD , is the effective time-
We remark thaiS(q,t) should not be confused with the derivative operator for observablés., spin functions[23],
dynamic structure factor, which is treguilibriumraveraged, wheread , operates on distribution functions. The complete
inelasticscattering structure factor, which we denote byexpression fof2.13 is fairly involved and is derived in the
C(q,t,T). That structure factor is the Fourier transform of next subsection. In Sec. lll we discuss the solutiof2td 3,
the two-spin time-correlation function, subject to the constrairi2.9).
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C. Equation of motion

D[UIU’]=—%Z leim(o')a[;;;f”]

In this subsection we review those elements of the theory
of kinetic Ising models that are necessary to derive the equa-
tion of motion for S(q,t), Eq. (2.13. The reader uninter- X (o= 0o, (0 —ai,,), (219
ested in the details should proceed(2028).

As mentioned above, kinetic Ising models are defined bywhere the sum om is over nearest neighbors. This expres-
assuming thaP[o,t] satisfies a Markov master equation. sion corrects that given in Ref26], which differs by an
Master equations have the general “gain-loss” fqrad] overall factor of two. An essential requirement for any mas-

PLot] ter equation is that the normalization of the probability dis-
ot / r 7 ' tribution be conserved in time; frof2.14) this is satisfied if
at _{;} (WLolo'PLe’ ] =Wlo"[o]PLo]) Y D[o|a’']1=0. This basic requirement is readily seen to be

{sa}ltisfied by(2.19.
=2 (Wolo']1-6,, 2 Wo"|e']|P[a 1] We have yet to specify the transition probability function
{o’} {o"} W. The simplest form oW for nearest-neighbor spin ex-
change in one dimension is that due to Zwerjgaf]
=Y D[o|o']P[¢’,t]=D, P[0, t], (2.14
{o'} 1
Wiit(0)=a| 1= 5 ve(0i-,0i+ 0it 014 2)) |, (2.20
where the quantitiesV[o]o’] give the probability per unit
time for a transition from the state of the systéai} to the ) .
state{c}. In the Markov approximation, the transition prob- Where y==tanh(Xg), and« is an overall frequency setting
abilities are functions only of the current configuration of thethe spin-exchange rate for uncoupled spins and is taken as a
spins, and not the history of the system. For the Kawasakphenomenological parameter of the model. In Sec. II D, it is
spin-exchange moddl14], the allowed transitions are re- Shown thata can be identified as the spin-diffusion coeffi-
stricted to the simultaneous fligexchange”) of two spins ~ Cient in the high-temperature limit. Equatiéd.20 is a suf- -
of opposite values. This ensures that the total spin is corficiént, but not necessary, condition to guarantee that detailed
served during transitions. We can therefore write the basi®alance is satisfied in the final-state equilibrium. Detailed
form of the master equation operaf@5,26| as balance does not uniquely determine the formVfand
hence there is some freedom in choosing this function: It can
be multiplied by any spin function that is independentopf
Dlolo’ =%, &;'E,Diyi[gw'], (2.15 ando;,, and still satisfy detailed balance. Therefore, de-
[T pending on the precise form o, classes of generalized
kinetic I1sing models can be defined that are consistent with
where the sum is over pairs of sping, and the quantity the basic constraint of detailed balan@s]. As shown by
Mazenko and Ogui29], the Zwerger form(2.20 results in
N 1 the least complicated nonlinearities in the single-spin equa-
é{g"jr],= H = (1+oyoy) (2.16  tion of motion, which is our reason for adopting this form.
7 2 Note, however, that results f&(q,t) derived forK =0 do
not depend on the functional form &¥. In this limit, W
ensures that all spinexceptthose at sites andj remain  reduces to a constant transition ratelependenof the local
unchanged. The operatbr, therefore describes the stochas- spin configurations, which, we note, corresponds to unbiased
tic exchange of all pairs of spitisandj while the rest of the random hopping in the associated lattice-gas picture.

spins remain momentarily fixed. From the form(@f14), we To evaluate the equation of motion f8¢q,t) (2.13 one
can write the operator describing the exchange of sparsl  must first have the basic dynamical equations obeyed by
j as Ising spins for spin-exchange kinetics. Usif®y19, and the
definition of the adjoint operatoD[o|c’']=D[c’|o] [see
Dol 1=W, (0" ) (8. o' O, ot — S ! 501 o) discussion aroun¢?.13], the equation of motion for a single

(BRI B

'(2 17 spin can be derived,

where the first set ob functions ensures the spin-exchange D,oi=— E Wi it () (o= ait,). (2.20)
mechanismo|{ —o; and o{ — o, andW; ;(¢”) is the prob- v==1
ability per unit time for the exchange. Using the spin repre-
sentation of the Kronecker functiof), .= 1+ o oj) we  The interpretation of2.21) as the time rate of change for a
obtain the explicit expression, ! single spin is transparent: Spin exchange is blocked when
nearest-neighbor spins are in the same state; when exchange
i 1 , ., can occur, it does so with a probability determined through
D[olo’]=—2Wi (o) (oi=0))(0{ =0f). (218  Hetailed balance by the difference in energy environments
that would result from the exchange. Note that by summing
Restricting ourselves now to nearest-neighbor spin exchang€&?.21) over all lattice sites, the total spin is manifestly con-
the form of the master equation operator is given by served for all temperatures.
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Besides the single-spin equation of motid@,21), we D,o(—q)a(q)=20(—q)D,0o(q)
will also require the equation of motion for the product of

two spins. Using2.19, the following can be derived: 2 .
pins. Using2.19 0 #5531 explian) W, ()

DO.(TiO'jZO'iDU.(Tj+0'jDO.O'i

X(l_o-io-i+v)! (227)
+2V:2¢1 (31 84 n) Wi 0) (1= 0i014). which is what is required ii2.13. We remark that the form

of the spin-exchange operat@®.19 is general and describes

the Kawasaki spin dynamics on an arbitrary dimensional lat-

tice, for any choice of the transition probability functigh.

Equations2.21), (2.22), and(2.27), which are derived using

(2.19, are therefore also general equations of motion for the

conserved quantity under the exchange process: The proddé"&?arest—nelghbor Kawasaki kinetic Ising model, irrespective

of two nearest-neighbor spins should remain invariant to in-O u:hoeng-lgqir?]r:esrzgir:)?:g)l/r?\gég? ?;Urr?girﬁlgg ztge;:(;r&‘g?) 'ig_r
ternal permutation. Thé, ;, , term insures that the product ' j :

of nearest-neighbor spins evolves only through exchang ether with the Zwerger transition probabilitg.20, we ob-

with the “outside” neighbors. We note that these seemingly ain the desired equation of motion,

innocuous terms play an extremely important role in the S(q.t)

theory. If either or both of these terms were absent from the o S(q.t)—4 ir2(a/2 —q)\V
equation of motion(2.22, S(q,t) would not evolve to the at (9)S(a,1) ~ 4ayesim(a/2){o(=qV(a)).
correct steady-state solution, namely, the equilibrium struc-

ture factor evaluated at the final temperaty(e, T¢).

(2.22
The last group of terms ii2.22 serve the following pur-

poses. Ifj=i, the result should be zero sine¢=1; this is
guaranteed by thé; ; term. Theg, ;. , term reflects a locally

+8a SIN(a/2)[ 1= (1+ yp) @1 (t) + yePo(1)],

We can now derive the equation of motion %§(q,t). By (2.289
substituting(2.20 in (2.21), the explicit single-spin equation
of motion is given by where @ (1) =(oq0,); for m=1,2 are the nonequilibrium

nearest-neighbor and next-nearest-neighbor correlation func-
tions, respectively.

We see from(2.28 that the equation of motion f&(q,t)
generates a complicated four-spin nonequilibrium correlation
function{o(—q)V(q)); . We stress that this term represents
an infinite sum of four-spin correlations, as can be seen from
the identity,

Dan:—a[ZUi_Ui—l_UHﬁE Ye(Oi_2=0i_1= 041

+0’i+2)+§ Ye(20i 1070 1= 020 _10;

_O'io'i+10'i+2)]v (2.23

(o(= V(D)) =P(1) +2 X, (0_100010,),c0LNQ).

which we note contains nonlinear, three-spin terms in addi- n=1
tion to single-spin terms. Upon Fourier transformif®g23), (2.29
we have

In principle, therefore, to solvé2.28 one would have to
I~ __ _ ; obtain an equation of motion for general four-spin products,
D,o(a) =~ w(@)o(a) ~ 2ayesin(a/2)V(a), 2.29 which, in turn, would couple to six-spin terms. In general,
ne would have to solve amfinite hierarchyof coupled
inetic equations for the various nonequilibrium correlation
functions. We note that this is in contrast to the equation of
motion obeyed by5(q,t) for Glauber dynamic¢see Appen-
dix B) which involvesonly two-spin correlation functions.
To make progress, then, some means of truncating the hier-
archy must be found. A specific proposal is presented and
implemented in Sec. IIl.

For the special case of infinite final temperatifre=0 an
V(Q)=N"Y2 expliqn)o, joq0n.,.  (2.26  exactsolution forS(q,t) becomes possible since the hierar-
n chy is explicitly terminated, i.e.(2.28 will involve only

two-spin terms. The form 08(q,t) in this special case is
We note that if we had employed a transition probabilitydiscussed in Sec. IV. Note that in this limiKz=0), the
function other than(2.20, additional nonlinear termf29]  single-spin equation of motiof2.23 reduces to the usual
besidesv(qg) would occur in(2.24). Note that the right-hand equation of motion for random hopping dynamjds,16.
side of (2.24) decreases continuously to zerogs:0, inde- Returning to the general cai€¢#0), it will be useful to
pendent of the temperature. This is a direct manifestation ofewrite the equation of motiof2.28 in a form in which it
the conservation law. Now, upon Fourier transformiBg2 can be explicitly seen tha$(q,t) approaches the correct
we obtain, long-time limit, and in addition, formally satisfies the sum

where o(q) is a temperature- and wave—vector-dependenE
frequency,

o(Q)=2a sif(q/2)[2(1— yecos)) — ¥¢], (2.29

and whereV(q) is the Fourier transform of the three-spin
term,
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rule (2.9). We first introduce a new characteristic frequency Finally, we note that by writingw(q)
4a0)(q) where the dimensionless quanti®fq) is defined as

Q(g)=(1— ygcox)sirn(qg/2), (2.30

so thatw(q) =4aQ(q) —2aysirk(g/2) in (2.25. Then, uti-
lizing (2.8) and(2.29, together with(2.30, and the follow-
ing result that holds in equilibrium:

({0, Tr) = SIP(0/2)| 1+ 5= (1+ 76) (=)

YF
"‘7 Dy()

) (2.3)

where® («)=Uup, it is easy to show fron{2.28 that the
equation of motion is given by

3(q,t _
S(&? L sirf(a/2)[(1— yecos){S(q,t) — x(q,Te)}
+yeW(q,t) +G(1)]. (2.32
The quantitiesN(q,t) andG(t) are defined as
W(q,t)EnZ2 [(o-1000100)1—(00on)]cogna),  (2.33
and
GO=(1+ ¥ [ P2 —Ue]— o [P -] (234

We first see from(2.32 that S(q,t) will evolve to the
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=4a0(q)
—2ay sirf(q/2) in (2.28 we can group together the terms in
the equation of motion in a way that reveals some important
features that would not have been readily transparent other-
wise. The quantityw(q) cannot properly be interpreted as a
relaxation rate, since, as seen fr¢tn25), it becomes nega-
tive for various combinations of temperature and wave vec-
tor, namely, whenever(2— vy cosq)<+yg . This seeming oc-
currence of an instability is specious, however, and
underscores that the single-spin functiofiq) is not an
eigenmode of the dynamics, as can be seen f(@rg4).
Moreover, the higher-order spin correlation functions play an
important role in providing overall stability, since it is
known[31] that if the operatoD , satisfies detailed balance,
its eigenvalues are all real and negat{ee nonpositive and
hence the evolution 08(q,t) is bounded for all times. On
the other hand, the quantity(q) defined by(2.30 is posi-

tive for all temperatures and wave vectors, and thus it prop-
erly serves as a relaxation rate.

Equations(2.32—(2.34 provide the exact equation of
motion for S(q,t) in the Kawasaki-Zwerger model. These
equations serve as the starting point for the truncation pro-
posal we present in Sec. lll. Before proceeding to that pro-
posal, however, we devote the following subsection to a heu-
ristic discussion of the expected long-time behavior of
S(q,t) using the asymptotic properties of the equilibrium
time-correlation functions.

D. Asymptotic analysis of time-correlation functions

To have a better understanding of the results given in
Secs. Il and IV for the nonequilibrium structure factor

correct long-time limit only if the quantityV(q,t) vanishes S(d.t) it will be useful to examine at an arbitrary tempera-
in equilibrium W(g,)=0. This does indeed occur becauseture the asymptotic properties of the time-correlation func-
of a special property of equilibrium correlation functions for tions of equilibrium  fluctuations produced by the spin-
the one-dimensional Ising model with nearest-neighbor interexchange dynamics. This is because, for the nonequilibrium

actions and zero magnetic figld0], system, in_ _the asymptotic approach_ to equilibrium, one
would intuitively expect a close relationship between the

(2.35 long-time form of nonequilibrium ensemble averages and the
time-correlation functions of spontaneous fluctuations about
Thus the terms i§2.33 all vanish in the long-time limit, i.e., equilibrium. Indeed, this is the qualitative content of the On-
W(q,»)=0. We note therefore that any proposed approxi-sager regression hypothe§&32]. We therefore expect that
mation for the four-spinnonequilibrium correlation func- the long-time form of the strongly nonequilibrium response
tions, e.g., for truncating the hierarchy discussed above, mustill coincide with theasymptoticime dependence predicted
preserve this property, i.e., that the differencesby linear-response theory, i.e., by the dynamics of equilib-
(o0_109010,)i—{0o0,); vanish in the long-time limit, in  rium fluctuations. Information about the dynamics of equi-
order for the approximat&(q,t) to evolve to the correct librium fluctuations can be extracted from the dynamic struc-
long-time value. ture factorC(q,t) given in(2.10, and we will examine this
We also see that the infinite series(th33 starts with the quantity in this subsection. We remark, however, that the
termn=2, because thea=1 term vanishes identically. This properties of the equilibrium time-correlation functions can
has an important consequence. By integrating over all wavesnly yield insight into the asymptotic form of the nonequi-
vectorsq in the BZ, it is easy to check that the sum r(@9) librium response; an analysis of the dynamics of equilibrium
is formally obeyed by(2.32, as well as by(2.28. The ad- fluctuations clearly cannot serve as a substitute for solving
vantage of(2.32), however, is that the sum rule will be sat- the nonequilibrium problem. For example, the results of this
isfied independenof the values of the terms iW(q,t); this  subsection cannot yield information about the time required
is true only becaus®/(q,t) excludes then=1 term. This is  after the sudden change in the heat bath for the onset of the
an important theoretical result. It guarantees that, no matteasymptotic approach to equilibrium.
what approximation we devise for the four-spin correlation The asymptotic decay of the equilibrium time-correlation
functions, the ensuing approximate result 8§g,t) will sat-  functionsC(t) in (2.10 can be established if we know the
isfy the same sum rul€.9) as does the exact solution. form of C(q,t), since, using2.10, we have

(o_109010,)=(0p0y)  (|n|=1).
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1 (= presses the fact that in the high-temperature limit there is no
Co()=5— j dgexp—ing)C(q,t). (236  permanent structure to the system at any length scale. Dy-

T namically, howeverC(q,t) measures the temporal correla-

Now C(q,t) can be most easily obtained by considering thetion of spatially_ ;epa}rated fluctuations. As we .Wi|| see, t_hat
Laplace transform f[herg isa r_10ntr|V|gl tlme_d_ependence_ to the spin correlat_lons

in this noninteracting limit is a reflection of the conservation

- % law, which in essence enforcesdynamiccorrelation be-
C(q,S)Zf dt exp(—st)C(q,t)=LC(q,t)]. tween spatially separated spins. This dynamic coupling ef-
0 (2.37) fect can clearly be seen from the correlation functiénét)
' which we examine first in the hydrodynamic approximation.

In the memory function representatidé], the transform It is convenient to introduce a local time variable, appro-
C(q,s) is written as priate to the lattice sita, defined byr,=2at/n?. Using
(2.36 and the definition oC"(q,t) we have
~ x(q)
C(q.,s)=——. (2.39 1 (n= 1
s+e(q,s) nCH(t)= g f du ex;{ -3 uzrn)cosu. (2.41
0

The quantitye(q,s), the memory function, is a generalized

space- and time-dependent relaxation rate and contains dfl rnn2>2 we may extend the upper limit to infinity so that
the information about the dynamics of the system in thewe obtain

linear-response regime. In general,s) is a complicated "

object involving higher-order dynamical correlation func- NCH(t)=(27r)) Y2 exd —1/(27,)], 7,n°=2. (242
tions; an explicit expression is given in REB3]. In particu- . e He

lar, ¢(q,s) cannot be obtained in closed form for this model, This result states that the quantitie€ (1), if plotted versus
which is a direct consequence of the infinite hierarchy disthe local time varlabzlen, will be given by a single universal
cussed in Sec. Il C. We can, however, rigorously establisifurve as long as,n“=2. This approximate scaling formula
the form of the memory function ag—0, which is what we IS @ lattice analog of thexactscaling property satisfied by
require to find the asymptotic properties of the time-the solutions to the usual diffusion equatiomhich is the
dependent correlation functior@,(t). First, we know that continuum limit of a lattice fanchyy wa)kforz a &function
(9,s) will vanish asq? asq—0 because of the conservation initial condition, C(r,t) =(4mDt) "~ exp(—r“/4Dt).

law. Hence we can write thab(q,s)=g?D(q,s) where It is of interest to compare the result (.42, which we
D(q,s) is nonzero asj—0. For smallg, then, the Laplace ©obtained within the hydrodynamic approximation, with the
transform C(q,s) has a “hydrodynamic” pole at exactresult fomC,(t) for the special case of ==. In this
s=—g2D(0,0)+0O(q*) provided thatD(0,s) is well be- limit we can obtain the exact memory function
haved as—0. As shown by Mazenko and Og{29], how- ¢(0,s) =4« S|n_2(q/2) since in this case(q) is an eigenmode
ever, for the Zwerger mod@®(q,s) is independentf s for ~ Of the dynamicgsee(2.24] [34]. We then have the exact
small g. We may therefore sdb(0,0)=D, whereD is the ~result for allg and allt,

diffusion coefficient, Cla.t)=exd — 4a sinz(q/2)t] (T=w)  (2.43

D=LimLimq 2¢(q,s)=a(1l-u)(1—7v), (2.39

$-0 gq—0 which, we note, is consistent witt2.40 for smallq. Com-

bining (2.36) and (2.43), we have the exact expression,
where we have given the exact valuelbthat results for this
model[27,29. Note that the parametercan be identified as
the diffusion coefficient in the high-temperature limit. By
taking the inverse Laplace transform 6fq,s) we thus ar-
rive at the key result, that for smadl and all timest, the  This integral is readily evaluated to yield
leading form of the structure fact@(q,t) is given by,

C(q,)~x(a)exq —Dg’*) (q—0). (240 , - _ _
wherel,, is a modified Bessel function. An analysis of the

We note that this is precisely the form th@(q,t) would integral representatiof2.44 shows that forr,n?=2, this
adopt had we started with the continuum diffusion equationgquation reduces to the scaling formya42 that we ob-
instead of the lattice-based spin-exchange kinetic Isingained in the hydrodynamic approximation. Note also, from
model. In the following we will refer to an approximate, (2.49), thatC,(0)= 6,0, as should be the case in the high-
“hydrodynamic” structure factorC"(q,t), which we define temperature limit. We can see, however, that startirtg-4x,
to have the form2.40 throughout the BZ, as well as hydro- spatially separated spirtkevelopcorrelations because of the
dynamic correlation functionsCH(t) defined by using spin-conserving dynamics. This dynamic correlation effect is
(2.36 in conjunction withC"(q,t). We will show that in  evident in Fig. 1.
many cases this approximation is remarkably accurate. The correlation functiorf2.45 will be recognized as the

We first examine the simplest case of infinite temperaturgrobability distribution for a one-dimensional continuous-
for which x(q, T=w)=1 for all q, andD =«; we consider the time random walk that starts at the oridih5]. This is not
case of generall below. Thaty(q) is independent off ex-  surprising given the connection between the Kawasaki model

Ch(t)= % f_ﬂ dq exd —4at siré(g/2)—ign]. (2.44

C.()=exp—2at)l (2at) (T=wx), (2.49
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1 o)
0.25 Cn(t)~5f dg x(q)exd —Dg?t—iqn]
0.2
x(0)
~ , (Dt>L?), 2.4
JanDt (Dt>L%) (2.47

0.15

i wherelL is a length defined as follows. For ferromagnetic
interactionsL. =max(n,§), i.e.,L=¢&,n for n<,>¢& Hereéis
the  equilibrium  correlation length, given by
& I=In(cothK)~exp(—2K) asK —o. For antiferromagnetic

ncC (t)

0.1}

0.05 ]

interactions, howevet,=n. We see that for sufficiently long

times, C,(t) decays with a~Y? power-law form, a result
b 1 that is solely a consequence of the conservation law in one
0 2 4 6 8 10 dimension. Note that the time required before the onset of

T thet 2 regime depends on the temperature as well as.on
From (2.39, for ferromagnetic interactions and for low tem-
peraturesD vanishes aD~a¢ 2 and hence ag—x the

FIG. 1. Product of the lattice-site indem with the time- “waiting time” obtained from(2.47 D71§2 diverges36] as

correlation functionsC,,(t), given by (2.45, as a function of the . o :
dimensionless local time variablg=_2at/n?. The arrow identifies 55 For antiferromagnetic interactiond,—4a for low tem-

the curve forn=1, while those fom=2, 3, and 4 are nested suc- peratures, _and one attai_ns the"? regim_e relatively rapidly.
cessively. The curves for=2 andr,>2 are very well described by ~ 1N€ main result of this subsection 1S that at all tempera-
the universal curvé2.42), shown as+ symbols. The dashed curve fures, for sufficiently long timeDt>L" the eqU|I|br|u/m
shows the leading asymptotic terf®,46), for nC,(t) that follows  time-correlation function<C,(t) are described by the
from (2.42) or (2.45. The correlations are maximized at approxi- Power-law form, a result that follows directly from the dy-
mately 7,~1, confirming the picture that the spins interact by a hamics that features a conserved mode. As discussed at the
random walk process. beginning of this subsection, this leads us to expect similar
behavior for the nonequilibrium structure fac®(q,t) in the

at T=o and nearest-neighbor random hopping. Thus tWOIong-tlme limit. Specifically, in the asymptotic approach to

spins that interact by a random walk process, initially sepaequ”'b”um’ we expect tha(q,t) will also be characterized

e by diffusive behavior, the signature of which ig a2 time
rated byn lattice sites, should be most strongly Correlateddependence in one dimension. This asymptotic power-law
after a characteristic time proportional b5. We can thus

: ¢ form is indeed found in the results derived below. We will
expe;ct that all .Of the correlation functio®;, should _have @ find however that the time required &dtain the asymptotic
maximum for virtually the same value of the local time vari- regime depends strongly on the initial temperaffirand the
able 7,=2at/n?. In fact, Montroll [35] showed that, for

largen, (2.45 is maximized when the value of the indepen- sign of the coupling constant.
dent variable 2t is given byn?+ 1/2+0O(1/n), i.e., when,

T~ 1+1/(2n%) + O(1/n%). All of these properties are con-
sistent with our earlier remark thélt, is most appropriately A. Preliminaries
considered as a function of a local time variable, appropriate
to the lattice siten.

I1l. DETERMINATION OF S(q,t)

In Sec. Il C we derived the equation of motig@.32

; A - : satisfied by the nonequilibrium structure facgfq,t) for the

We display in Fig. 1 the quantitiesC, (t) [obtained from : .

(2.45] Io?tec)i/a air?st the I(;qcal time vanr(ia)bi[ﬁ Also shown present model upon assuming that the system is suddenly
' P 9 : exposed to a heat bath at a temperaiyre In the remainder

are the_resu_lts obtained fro@.42, denoted by thejr SYM= — of this article the dimensionless quantitw#will be denoted
bols. It is quite remarkable that the hydrodynamic result is 'nbyt so that the equation of motion reads

effect, at least fon=2, for such early times. We also have,
from either (2.45 and the asymptotic properties of Bessel 3(q,t)

functions, or from(2.42, that prama sirf(a/2)[(1— yecom){S(a,t) — x(q,T)}

nCy(t)~(2mr,) Y2 (r,>1, T=w). (2.46
whereW(q,t) andG(t) are given by(2.33 and (2.34), re-
spectively. We remind the reader th&@tandG depend orT,
This quantity is shown in Fig. 1 as the dashed curve. and Tg, as well as the arguments explicitly listed. As dis-
For an arbitrary finite value of the temperature, the analycussed in Sec. Il C, the integrff .dq W(q,t)sin’(q/2) van-
sis of C,(t) is considerably more complicated and we will ishes for all times. Thus, if we integraf8.1) on q over the
present only the asymptotic form 6£,(t) for long times, the ~ BZ, the integral/” dq q,t) will be time-independent as
analog of(2.46). For long times only the smatj-regime long as we require that
contributes tq2.36). It is then legitimate to extend the limits 1
of integration in(2.36 to *«, use(2.40, and replacey(q) —__ j” ' "y ' ' _
by x(0). We thus obtain, G=-— wdq [S(a",t)—x(a", Te)12(a’), (3.2
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where )(q) is defined by(2.30. That is, any solution of equations of motion can be extremely sensitive to the details
(3.1) which also satisfie$3.2) will at all times satisfy the of the truncation scheme. Thus, the long-time steady-state
sum rule (2.9), so long as the proposed initial form for solution may be incorrect, or the approximate theory may
S(q,0) satisfies that rule. Also note that if one combinesonly be valid for long wavelengths. For the present system,
(3.) and (3.2, the rate of changeS(q,t)/dt depends not an exact treatment for an arbitrary finite final temperature
only on the current value d(q,t), but also on the current appears to be hopelessly intractable. It is therefore of interest
value ofS(q’,t) for all other wave vectorg’ within the BZ.  to develop an approximation foN(q,t) that is rigorously
Put differently, the role of the sum rul@.9) is to cause the valid whenever the system is in thermal equilibrium, i.e., for
equation of motion to be highly nonlocal i space, even t=0 and fort=c. This will be sufficient to ensure that the
though it is local in time(i.e., Markovian. result forS(q,t), obtained using the approximate theory, will
In Sec. Il C we also pointed out that the four-spin non-in fact evolve to the correct long-time value, namely,
equilibrium correlation functior{o_,0¢0,0,,);, which ap-  S(q,t)— x(q,Tg) ast—.
pears in the definitiof2.33 of W(q,t), satisfies an equation We replace the four-spin functiofo_,00010,); in
of motion involving still other, higher-spin nonequilibrium (2.33 by the two-spin functiojoyo,); . That is, we impose
functions. In particular(3.1) is but the first of an infinite on the nonequilibrium four-spin function the same equality
hierarchy of equations of motion. For the present model, thevith the nonequilibrium two-spin function as appliesee
only case where one can avoid this hierarchy without invok{2.39] for the thermal equilibrium versions of these spin
ing a truncation procedure is when the final temperafipe functions for any temperature for the one-dimensional
is infinitely large, so that the parametgr vanishes. In par- nearest-neighbor Ising model. As a consequence of this pro-
ticular, the forms of o_ 04010, and®,(t) are irrelevant cedure the functionN(q,t) vanishes identically and3.1)

whenTg= and(3.1) reduces to reduces to
S(q,t dS(q.t .
(&? )=—2sir?(q/Z)[S(q,t)—1+G(t)] (Tp=00). S(a? )=—2Slnz(q/Z)[(l—chom){S(q,t)—x(q,TF)}
(3.3
+G(1)]. (3.9

In Sec. IV we provide a detailed analysis @3 and (3.2

leading to the exact analytical form of bot®(q,t) and . . .
g y ®a.t We stress that whil€3.4) is in general an approximate equa-

G(t)=d(t) for this special case. : ; ST | lid at=0 and att—o f
In the next subsection we present an approximation prol@n of motion, it s rigorously valid at=0 and att=c for

cedure for arbitranfinite T that truncates the hierarchy at arrtl)ltr:_arryjlnltle Te. Itis also rigorously valid ;or all umes ¢
the level of nonequilibrium two-spin correlation functions. whenTg=c<. In essence, our truncation procedure consists o

We summarize here the major results that emerge upon agonstraining the time evolution of the four-spin nonequilib-

suming that the spins are initially in equilibrium. For the case/um gorrﬁlatlon fqnc‘:tjlot;as ifthis functlonl ag e}ny mo(rjnent Cg

of antiferromagnetic interactions, Ti, is sufficiently low, the ~UM€ IS characterized by a common, global time-dependent

initial peak inS(q.t) at first decays exponentially while ap- temperaturd 38] that ultimately reaches the final valde .

proximately retaining its original shape. As time proceeds Ve remark thatW(q,t) is not identically zero forTg=cc;

this gives way to the following. In the regim@(q)t>4, only becauseyF;O is (3.4) rigorously valid in the high-.
S(q.t) exhibits “quasiequilibrated” behavior S(q,t)/ temperature limit. In the next paragraph, however,. we give
¥(9,Te)~A(t) independent ofj, where A(t) evolves to- arguments that(q,t)=0 should be a good approximation

wards unity with a power-law 2 decay. In the vicinity of oF this system. o
the center of the BZ$(q,t) retains its originalnumerically, We haye alread_y remarked that th? approximation
very smal) form for extremely long times, untt>0(q ™ 2). W(qat)EO_'S compatible with bott(q,t) achlgvmg |t_s cor-

For the case of ferromagnetic interactions, the initial peak€Ct long-time value, and the sum ru@.9) being satisfied.
nearq~0 also decays exponentially but with a decay time!N this paragraph we provide arguments that even in an exact

proportional toq 2 The original shape of the peak is thus treatmentV(q,t) is not expected to contribute appreciably to

not preserved as time proceeds due to the conservation la§€ evelution ofS(q,t) [39]. We note that our basic approxi-

that forcesS(0,t) to remain constant. In the regim@(q)t mation,(o,0010y)=(aooy); Will, for all times and tem-
>4, S(q) also exhibits quasiequilibrated behavior PETatures, become progressively more accuraten as-

S(a,1)/ (9, Te) ~F(t/t,) except that the time is scaled in C'€ases. Only for relatively small values [off should the

units of a “waiting time” t,,. These issues are explored in co_rrelation Of(’n with oy, differ appregiablyfrom the corre-
detail in Sec. Il C W lation of o, with the local group of spine_;o407. Hence, in

the functionW(q,t), which is the Fourier transform of the
differences{o_ 090 10,)1—{0oo0n):, [S€€(2.33], we ex-
pect the terms in the summation to decay rapidly after some
With the exception of a handful of special caseg., the characteristic value of. For this reason, we do not expect
1D Glauber model; see Appendix Ball theories of the non- W(q,t) to ever become large, as for example compared with
equilibrium structure factor must confront the issue of trun-S(q,t). Furthermore, for a given value of this approxima-
cating an infinite hierarchy of equations of motion, and somdion will also become more accurate the lower the tempera-
approaches have proven successfas an example, the ture, since in this case the product of spims,oqyoy Will
Langer, Bar-on, and Miller theor}87]). We note, however, effectively have the same value as the sgirfor both ferro-
that the qualitative behavior of the ensuing approximateand antiferromagnetic couplings. Thus, for low temperatures,

B. Truncation procedure for finite T
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we expect that the effective number of terms(h33 to [ 2dt g(t)h(t)=g(xy) S bdt h(t) for at least one valug,
achieve convergence W¥(q,t) will be reducedover that for  in [a,b]. We may thus rewritd3.6) as
higher temperatures. This is in direct contrast to the behavior
of $(q,t), where, because long-range correlations are in-
duced at low temperatures, progressively more and more
terms must be included i(2.8) to achieve convergence, and
we obtain the strong peaks in this function fge=0 and =G(&t) (1 yecos) " H{1—exp —2Q(q)t]},
g=a. This implies, then, that theamecircumstances that (3.10
lead to strong peaks i8(q,t) will also result in W(q,t)
being relatively small for all wave vectors. Hence, we expeciwhereg, is a number in the intervdD,1] that depends on
that W(q,t) starting from itsexactinitial value W(q,0)=0,  as well as the value af. Using(2.6) and(3.10), we arrive at
will remain small compared t&(q,t) before it eventually the following exact, alternate representation®),
decays to zero for long times. We therefore believe that
W(q,t)=0 (for all times is an excellent approximation for S(q,t)=S(q,0)e @'+ x(q,Te)[1- G(&)(1— vE) 2
this system. 20t

Our task now reduces to solving the pair of E(@4) and X(1-e )- 311
(3.2). The procedure we invoke consists of solvifdg4) for
S(q,t), treatingG(t) as a given function, and then imposing
(3.2 upon the solution. Following this procedure we find
that G(t) satisfies the Volterra integral equati@®.7) given
below. The kernel of that integral equation is of convolution \
form,and thus we will be able to finfkee Sec. IIl D the our attention on
exact solution by invoking Laplace transform methods. We _ —20(gt
now turn to the details. S(a.)=x(a,T)e ¥+ x(a,Te)

The formal solution 0f3.4) is given by X[1—G(&gt)(1— y3) 12| (1—e 2@,

t
Jq,H)=2 sir?(q/Z)G(gqt)fodt’exq—ZQ(q)(t—t')]

Generally, in the remainder of this section we suppose
that the system is initially in thermal equilibrium at tempera-
ture T,, so that in(3.1) we may make the replacement
S(q,0)=x(q,T,). Thus in the next subsection we will focus

S(q,t)=S(g,00e” 24Dt y(q,Te) (1—e 22— J(q,t), (3.11)

3.
39 We will also suppose thal,<Tg, and in particular that
where IK,|=13/(kgT;)=2 and |Kg|=|J|/(kgTg)<0.5. Thus, for
ferromagnetic(antiferromagnetic coupling between spins,
L v, , , we havex(q,T,)>x(q,Tg) for g=0 (q~=m), whereas in
J(q,t)=23|r12(q/2)J'0dt G(t")exd —20(a)(t=t")]. the remainder of the BZ we havgq,T,)<x(q,Tg).
(3.6

. — . C. General properties of S
In writing (3.5), the initial form of S has been left arbitrary,

other than satisfying the obligatory sum r§&9). Substitut- In the following we establish some general properties of
ing (3.5 in (3.2), one finds that the unknown functigg(t)  S(a,t) that can be inferred even prior to deriving the detailed

satisfies a Volterra integral equation of the first k[a@,41] ~ form of G(t) andJ(q,t). Only in Sec. Ill D do we provide a
detailed derivation of those functions.

t
fodT P(t—7)G(7)=Q(t), 3.7 1. Exponential time decay of initial correlations

Consider first the case of antiferromagnetic interactions
where the kernel is given by and wave-vectorfyj|~. Note that for sucly we can replace
QO(q) by Q(7)=1+ ¢ in the first term of(3.11). The large
o7 - _ peak inS for |g|~ initially decays exponentially with time,
P ZJqu sir(ai2ex —20(q)t], (3.9 with a time constant” '=2(1+ ) independent ofy. The
first term of (3.11) can thus play a dominant role over a
and lengthy time interval measured by when that term has de-
creased sufficiently so as to become of the same order of
| _ _ magnitude as the second term. We also note that for these
Q(t)_J wdq[S(q,O) x(9,Te)Jexd —2Q(a)t]. (3.9 values ofq, and for the time interval just described, as
S(q,t) decreases with time, its initial shape
The initial and final forms ofs appear in the functio®(t), S(g,0)= x(q,T,) is preservedSpecifically, a semilog plot of
and we note tha®(0)=0 as a consequence &.9. We use  S(q,t)/x(q,T,) will exhibit a linear dependence anwith
Laplace transforms in Sec. Il D to sol\8.7) for G(t) as  slope Z1++¢), independentof q for wave vectors suffi-
well as to obtain an expression fd¢q,t) using(3.6). ciently close to the BZ boundaries. We will discuss this re-
To assess the significance of the tef(q,t) in (3.5, itis  sultin Sec. IV for the cas&-=« and in Sec. V for general
useful to invoke one of the standard mean-value theorem®mperatures, especially with regard to experimental evi-
[42] for integrals. Given an integral of the form dence[18,19 for this behavior.
fgdt g(t)h(t), where in the closed intervah[b] bothg and By contrast, for ferromagnetic interactions, tat0 we
h are continuous andh does not change sign, then haveS(q,0)= x(q,T,), featuring a sharp peak for=0. Con-
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sidering a small, fixed value df| featuringx(q,T,)>1, we  of x(q,T,) is negligible except fog~0. For the case of
note from (3.11) that ast increases from zero, the time antiferromagnetic interactions we must retain the first term
dependence a8 features exponential decay, with a time con-of (3.11') despite the smallness ef 2*(@! sincex(q,T,) is
stant given byq-g1=29(q). Indeed, one can essentially ig- very large for|g|~ and thus this term can dwarf the second
nore the second term d@B8.11) for a large multiple ofrq, term over an extended time interval.
until such a time that the first term has decreased to become In the regime(q)t=4, the factore 2*@-1) iy (3.6)
of the same order gg(q,Tg). Clearly 7, diverges asg| 2 for is very small except in the immediate vicinity of the upper
g—0. Because of this strong dependencecpthere is no limit, namely,t’~t. We may therefore replace the function
shape preservation of the decaying peak, as occurs for thg(t’) by G(t), with the result
case of antiferromagnetic interactions.

Binder[43] has given heuristic arguments that, if the final ) t
state is in a disordered phase and for wave vectors in the J(Q,1)~2 S|r12(q/2)G(t)Jodt’exy:[—ZQ(q)(t—t’)]
hydrodynamical regime$(q,t) should maintain exponential
decay behavior even fdr—. Such a form, however, i.e., ~G(t)(1—yecoq) 1 [Q(q)t=4]. (3.12
(3.5 with J(q,t) identically zero, would be correct only if
G(t) itself were identically zero, in contradiction to the in- Comparing with(3.10 we then have that
tegral equation(3.7) which is a direct consequence of the
sum rule(2.9). That is, exponential decay in the long-time G(&D~G(t) [Q(q)t=4] (3.13
limit cannot occur for the spin-conserving kinetic Ising
model and still satisfy the sum rul&e anticipate that a
similar statement applies for higher-dimensional system
The asymptotic behavior of for large times is treated in
Sec. lll D 2. We show thal(q,t) decreases to zero for long
times ast~ Y% however, the onset time for this behavior de-
pends org and grows a2 for g—0. Hence, for any non-
zero value ofqg, at sufficiently long times the terrd(q,t)
will greatly dominate over the decaying exponentia(3rb).
Nevertheless, exponential time dependence does provide an [Q(gt=4]. (.19
accurate description of the time evolution of the structure
factor during the first stage, and as we have seen, the durdhe interesting feature df3.14) is the second term whose
tion of this stage increases monotonically with decreaging dependence oqg bears the signature of the heat bath at the

so that, as claimed, the paramefgiincreases with time and
quwl for Q(q)t=4. An immediate consequence &.13 is
that we may legitimately approximate the exact re€iit1')

by

S(a.) = x(a, Tpe 2@+ [1-G(1)(1- ¥7) Ix(q,Te)

growing asq 2 for q—0. temperaturél . We may say, onc8(q)t=4, that the spins
have essentially equilibrated to their final temperature
2. Quasiequilibrated spins@ (q)t=4] There is a multiplicative time-dependent amplitude

. [1-G(t)(1— y2) Y2 that very gradually approaches unity
The result(3.5) for S(q,t) calls for the evaluation of the for long times. This factor will be smalléfargen than unity

function J(q,t) defined by(3.6), and in tm, the function for ferromagneticantiferromagneticinteractions. This can
G(t) which is the solution of the integral equatiég.7). The readily be seen as a direct manifestation of the underlying

subsequent development, centered on the mean-value theg-; : : . .
rem, led to the result€3.11) and (3.17'), which are fully Spin-conserving dynamics for this model. For valuesdf

! ' ol o the immediate vicinity of the center of the BZ whed€q) is
equivalent ta3.5). The form of(3.11) hints at the possibility vanishingly small, the requireme(q)t=4 will be met
that some of the major qualitative properties3eg, t) can be nly at egleremel ,Iate timz-s Thus fc?r tﬁe antiferromagnet
established even at this stage prior to the full calculation o o zom ensate f{yr the “holé” in tr,1e values & for verg '
J(q,t) and G(t). We base this remark on the fact that a P y

: small values of/g|, which persists for an enormously long-
knowledge of theg andt dependence of the parametgris : X :
fully equivalent to possessing the functidiq,t), yet this time period, and yet to satisfy the sum rgi9), the above

parameter lies in the rand®,1] and is surely a continuous amplitude factor must be larger than unity, i®s<0. On the

function of its variables. This hint is confirmed in the follow- other hand, for the ferromagnet where initiafiys very Iar.ge
ing for small values ofq|, to satisfy the sum rule, the amplitude

. . must be smaller than unity, i.65>0. We will find in Sec.
pro\{a\l/:hessh Ovﬁnf{]yatgf‘io?nradﬁglyw'ncéﬁﬁsefngﬁ'et" s;:cif?fé"y [ D 2 by an asymptotic analysis of the solution of the inte-
G(&)~G(1) if Q(q)t=4. This greatly simplifies3.17) "gral equation(3.7), that S decreases as 2 for long times.

; : The power-law exponent-1/2 is due to the fact that for
and allows us to arrive at an important general result, even 12

prior to obtaining the explicit form of5(t). It should be small g, '.[he condition((q)t=4 is equivalent toq=A
. , whereA is a constant.

noted that the regimé€)(q)t=4 commences at a relatively . L .

. The key result of this subsection is that at late times the
early timet~4/(1+ ) for wave vectors near the edge of the . )

. ! . o time dependence &(q,t) is governed by that of the short-

BZ and for increasingly later times deeper within the Zone. e correlation functions contained@(t)
For values ofg in the immediate vicinity of the center of the 9 '
BZ where Q(q) is vanishingly small, the requirement
Q(q)t=4 will be met only at extremely late times. In the
case of ferromagnetic interactions, whéiiq)t=4 we may Using (2.6) one may rewrite the equation of moti¢8.4)
discard the first term of3.11') because the numerical value as

3. The regime %q,t)/x(q,Tg)<1



2278 JAMES H. LUSCOMBE AND MARSHALL LUBAN 54

9S(q.t the exception of a branch cut extending from the origin to
@av _, 21/ .
g =2 sirf(q/2){(1— y&)"11-S(q,t)/ x(q,Te)] —2Qax, Where Q.. denotes the maximum value of the
function Q(q). Referring to (2.30, one finds that
—G(1)}. 319  Quacltye for y=—1/3, Qua=(1+[ye)¥(8ly) for

. . _ —1=<y-=<-1/3. Furthermore, becau&q,0), x(q,T¢), and
Now, in a regime wheres(q,t)/ x(q,Tg)<1 we may inte-  ()(q) are real quantities, we have that()]* =p(s*), with

grate(3.19 so as to obtain the approximate relation a similar relation applying fog(s), and thus also fog(s)/
. p(s). Given these properties @f andq, the ratioq(s)/p(s)
S(q,t) = x(q,T))+2 sinz(qIZ)[(l— y'2:)1/2t_j dt’G(t’)} is also analytic irs except for the branch cut just described;
0 it would have isolated poles corresponding to zerop(®),

(3.16 if such were to exist. Howevep(s) has no zeros. To show
this we obtain an explicit expression for (s) using the
substitution cog=(1-y)/(1+y) in (3.1 and Eg.
(3.197.2 of Ref.[45], with the result

Inspecting this result we may conclude tH&t16) should
apply in the regime where bott(q,T,)/x(q,T¢) and

t sinf(q/2) are small compared to unity. In that regime the
departure of S(qg,t) from x(q,T,) is proportional to “1ay— -1 172 U 112
sinf(q/2), with a time-dependent proportionality constant. p(S)=(4m) st 2(1t yp) s+ 1=y A(S)]

For antiferromagnetic interactions this behavior will apply +[s+1—ye+A(s)]Y3, (3.20
even for relatively long times for values {| in the imme-

diate center of the BZ. For the case of ferromagnetic interwhereA(s)=[(1— yg)?—4ygs] Y2 Clearlyp~(s) remains
actions, the conditio’s(q,t)/x(g,Tg) <1 will apply for val- finite for all finite values ofs.

ues ofg which are not near the center of the BZ yet fulfillthe  In view of the above properties one may alter the
condition thatt sir’(q/2) be small compared to unity. The s-integration(Bromwich contour in(3.19 so as to proceed

applicable range of] values rapidly shrinks with time. from —oo to O along a line parallel to but slightly below the
negative real axis, and then back to> on a similar line
D. Determination of S(q,t) slightly above that axis. The contributions of each integral
from the intervalg —=*i0,—20,,.,+i0] cancel, with the re-

1. Solution of integral equation (3.8) sult

In the preceding subsection we were able to arrive at a
number of significant conclusions concerni@,t) without 10 ¢ 1 ”
establishing the detailed properties @{t) and J(q,t). In G(t)__; _2q ds &1mj p~*(s+i0) wdq[S(q,O)
this subsection we determine both of these functions by pro- e
viding the formal solution of the integral equati¢8.7) for . 1
an arbitrary choice of the initial functio®(g,0) and any —x(0,Te) J[s+i0+20(q)]
value of Tz. The left side of(3.7) is a convolution integral,

so thatg(s)=q(s)/p(s), whereg, p, and q denote the Tne functiond(q,t) is in principle determined by3.6) once
Laplace transforms o, P, andQ, respectively, defined by G (t) is known. In practice, a simpler approach is to exploit

(2.37). Now the convolution form 0f3.6) so as to obtain

. (3.21

Q(S)=f_ﬂ da[S(a.0)— x(aq.TR)I[s+22()]™ %, (317  Jab=2sif(a2L "@(s)/{p(s)[s+2Q(a]). (3.22

and 2. Asymptotic behavior

. The leading asymptotic behavior @&(t) for larget is
p(S)ZZJ dq sifi(q/2)[s+2Q(q)]" L. (3.18  easily obtained front3.19. In this regime only the segment
- of the negative reas axis adjacent to the origin is of any
consequence. For this segment we may repfdse-i0) by

Thus, p(0)=2m(1—y2) 2 5(q,0)— x(q,T¢) by its value for
- =0, Q(q)~(1—v£)g%4, and use the following result,
G(t)= Ltl{ p*l(s)f da[S(g,00— x(a,Te)] which is valid for negative rea of sufficiently small mag-
- nitude,
><[s+2()(q)]1}, (3.19 fﬂ 1 { 2 vz
Im dqg — e = W
—m  SHI0+(1-yp)(9%/2) (1= ve)ls]
whereL ; ! denotes the inverse Laplace transform, which can (3.23
be expressed in terms of the standard Bromwich corjtedir i ]
chosen to the right of all singularities of the integrand. Thus, the leading term for large of the asymptotic expan-

We will now show that(3.19 may be reduced to a sim- Sion of (3.21) is given by
pler form (3.21) upon exploiting the analytic properties of 1+ "™
p(s) andq(s). Both of these functions are expressed as dis- N( YE _ —12
persion integrals, so each is an analytic functiorsoWith G 27 [S(0.0=x(0.Te)Jt" 7= (329
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In particular, this function decays according to a square-root 1

power law, as we have claimed earlier in this article. Finally, pi(s)= yp [s+2+sY4(s+2)17. (4.1
combining(3.12 and(3.24) provides an asymptotic expres-

sion forJ(q,t) for the regime(}(q)t=4. It is then fairly straightforward to show tha&(t) may be

In the following section we specialize to the cage=>  written as
and suppose that the system initially is in thermal equilib-
rium at a temperatur&, , so thatS(qg,0)=x(q,T,). We de- G()=(1-uF(6,1), (4.2
rive exact formulas foG(t) andJ(q,t) for arbitrary values ) ) i
of t. The detailed analysis for arbitrary times whep is  Where the functiorF is defined by
finite will be presented elsewhere.

1 (1 exp—27%)
F(W,T)ZZfodx%[(l—x)/x]l’z 4.3

IV. EXACT SOLUTION FOR Tg=® . . .
for arbitrary values of the complex variable The quantity

A. Preliminaries 6=(1—u)?/(4u) is a parametrization of the coupling
In Sec. Il we remarked that the exact equation of motiorstrengthK, which can be reexpressed in terms of the corre-
(2.32 for S(q,t), or (3.1) in terms of the dimensionless time lation length¢ as
variable, takes on a particularly simple form if the system is i 4
suddenly placed in contact with a heat bath at infinite tem- 0(K)=[ sinhr[(2¢€) _]1 (K>0) 4.4
perature. In this case the paramefertanh(X¢) vanishes, —cosif[(26€)7'] (K<0). '
(2.39 givesG(t) =d,(t), the equation of motiori3.1) re- ) ) )
duces t0(3.3), andG(t) satisfies the integral equati¢d.7). ~ Here 6 is to be evaluated using the coupling constént
The functionsP(t) and Q(t) appearing in that equation are corresponding to theinitial temp_eratureT,. Note that
defined by(3.8) and (3.9), where now(}(q) =sir?(q/2). The 0>0(_<—1), for K>O(<Q), respectively. To arrive _a(t4.3)
key feature is that for this choicBr=c without invoking  Starting from(3.21) Wemflrst perlf/o.rmed the integration over
any approximationss(q,t) is rigorously decoupled from O noting that 6+i0)"?=(—s)4 for values ofs on the
higher-order spin correlation functions. In this section weSegment(—2,0 of the reals axis, and introduced the inte-
derive the detailed properties 6f gration variablex= —s/2. . _ . _
We remark that withy.=0 several of the equations in In Appendlx A we discuss in detail t.he major properties
Sec. Il greatly simplify. Thus, the quantiy ; . ,, given by and provide a number of useful expansions of the fundtion

(2.20, reduces to a constaw, ; , ,=a, while the single-spin  defined in(4.3). One of the most computationally effective
’ = expansions i$A21), which is of the Neumann type, with the

equation of motion (2.24 reduces to D, o(Q) result that(4.2) may be written as

=—4a sirf(q/2)o(q). In particular,o(q) is an eigenvector

of the operatorD,, corresponding to the eigenvalue
—4a sirf(q/2). The specific dependence of this eigenvalue G(t)=e™"
on wave vector is a direct consequence of the spin-
conserving dynamics of this model. That such a simple resul
emerges is of course due to the fact that the master equati
operatorD[o]o’'] of (2.19, reduces to a quadratic form in the
spin variables. To an extent one can rephrase this property
the language of standard many-body theory, that wier0
the quartic coupling between spins vanishes and the equati
of motion can be described in terms of independent singl
spins. However, this analogy is not complete, since, first, th%
two-spin objectS(q,t) is not an eigenvector of the dynamics
in this limit, and, second, to obtai® we must yet solve the

integral equation foG so as to satisfy the global constraint method for calculating values df(t) consists of using the

(2.9). As we shall see, in the following this renders the cal- . )
culation of S(qg,t) nontrivial. As we have remarked previ- standard Taylor Seres expans@_i_q. (9.6.10 of Ref.[46]].
All terms of that series are positive, so round-off problems

ously, the Glauber model is solvable without approximationdo not arise. However. a far more efficient brocedure con-
for anyvalue of T ; for that model the corresponding masterSists of the ;‘ollowing ’We calculaty(t) using its Taylor
equation operatob[olo”] is always quadratic in the spin series, and then use a recurrence fornilg. (9.6.26 of

variables(see Appendix & Ref.[46]] to obtain values of the ratiag=1,. 1/l for each

o desired value of the argumentTo avoid crippling numeri-

B. Determination of G(t) cal instabilities it is necessary to invoke a backward iteration
In this subsection we obtain detailed results@ft) start- [47] method. One then hdg, ;=1grorq---r.

ing from the general resuli3.21). For the present case of  Another numerically effective and physically insightful
Tr=, recalling thatQ(q) =sir’(q/2), we haveQ, =1, as approach for calculatin@(t) for t>4 consists of employing
well as x(q,Tg) =1, andS(q,0) is given by(2.6). We also  (A23) for K>0, and (A24) for K<0. The details of this
have that(3.20 reduces to approach are given in the following paragraphs.

ulo(t)+(1+u)k21 ukl (1) . (4.5

bviously (4.5) reduces to the correct initial vali@(0)=u
?see(2.34)] since 1 (0)= 6y, For a given value of, this
t?]eries converges more rapidly the higher the value of the
Initial temperature corresponding to smaller values of the
rameteru. Also note that the modified Bessel functions
if(t) decay extremely rapidly with increasing for k>t.
hus, if the timet is not too large one can achieve results of
igh numerical accuracy by summing a relatively small num-
ber of terms in the serie§t.5. However this process be-
comes rather lengthy for large values tof An accurate
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1. Ferromagnetic spin coupling

We consider first the case of ferromagnetic spin interac-
tions (K>0). Using (4.2) and (A23) we have fort=4

G(t)~uexpt/t,)erfd (t/t,)Y?], (4.6)

wheret,=(26) . Numerical comparisons between the ap-
proximate result(4.6) and the exact Neumann expansion
(4.5 shows that the former provides arcellentapproxima-
tion to G(t) for times satisfying >4, although the accuracy
depends somewhat on the initial temperatlife Note that
the t=0 value of (4.6) is \u, whereas the exact result is ol . . . ‘
given by G(0)=u. Thus, the lower the value of the initial 0 50 100 150 200 250 300 350 400
temperature, the closer are the initial values for the two t
cases, and the better th@t6) approximates4.2), even for
t<4. FIG. 2. Time dependence of the nonequilibrium nearest-
The formula(4.6) exhibits an important scaling property, Neighbor correlation functiorG(t)/G(0) for ferromagnetic spin
namely, that the time evolution of the nonequilibrium coupli_ng, as given b_y4.2). Each curve is labeled by the valuekof
nearest-neighbor correlation function is expressible solely ifsed in the calculation.
terms of the dimensionless varialtlé,, . The physical origin ) 1 )
of the characteristic timg, is as follows. In the initial state, and we obtain the expect¢d™* time dependence. Equation
where the system is in equilibrium at a temperatiiye the (4.7) is in accord with(3.24 in this limit. Note that the value.
ferromagnetic spin coupling gives rise to ordered domain®f tw grows extremely rapidly as the initial temperature is
with a characteristic size of the order of the initial correlationr€duced. For example, the valuestgffor K=0.1, 1.0, 1.5,
length £ *=In(cothK) governing the exponential decay of 2.0, and 3.0 are 0.24, 26.8, 200, 1488, and 81376, respec-
the equilibrium correlation functiori2.3). For low initial  tively. Thus, although the scaling form 64.6) is already in
temperaturesi~exp(2K). Upon suddenly raising the tem- effect fort=4, the power-layv form(4.7) becomes operative
perature toT-=c, the domains begin to decompose as gfor the !ow-temperature regime only fextremelylate times.
result of spin exchanges, which, we note, initially occur N Fig. 2 we show the time dependence G{t)/G(0)
solely at theboundariesbetween the domains of oppositely computed from(4.5) for ferromagnetiqK>0) spin interac-
aligned spins. Because of the form of the dynamics fortions. Each curve is labeled by the valuetofemployed in
Ke=0, the spin-exchange probability is independent of théhe calculation. The curves we yvould obtam using the scal-
local spin configuratiorisee (2.20]. Hence if the nearest- N9 formula (4.6) are |nd|s_t|ngwshable in the figure from
neighbor pair of spins at the domain boundaries have flippedhose shown. As noted in the preceding paragraph, for
there is equal probability of either recovering their previousK =23 the values of,, are so large as to be off the scale
configuration, or for continuing spin exchanges to graduallyshown in Fig. 2. The existence of such long waiting times for
propagate into the interior of the two original domains. Thisthe ferromagnetic system, initially prepared at low tempera-
can be pictured in terms of the domain boundaries performtures, despite the fact that the system has been placed in
ing independent random walK48]. One therefore expects contact with a heat bath at temperatdre=c°, is a direct
that the time to randomize a domain of sigdy spin ex- consequence of the spin-exchange dynamics of the model.
changes will be on order af*&~(a6) %, and the latter is . o .
consistent with our definition of th@imensionlesstimet,, . 2. Antiferromagnetic spin coupling
In short, the scaling property explicit i#.6) is an expres- We now provide the analog @#.6) for the case of anti-
sion of the fact that the constraint of a conserved order paferromagnetic interactioné< <0) so that#é, given by (4.4),
rameter ensures that the time evolution of the ferromagnetigatisfies the inequality<—1. Using (4.2) as well as the
spin correlations proceeds by the random walk of domaimasymptotic formuldA24), we obtain as the leading behavior
boundaries as the mechanism for the demise of the domaing, the regimet >4
We can then see froi8.14) that for long times the evolution
of S(q,t) will also exhibit this scaling property. In the ab- —|u] ~
sence of the requirement of a conserved order parameter, the G(t)~ Ty (wt/2)" 12 (4.8
domains would be disrupted by spontaneous spin flips within
the interior of the domain, and this scaling property would
not hold for such systems. Similar statements can be e
pected to apply for the two- and three-dimensional variant

G()/G(0)

Superficially, the asymptotic formuldd.7) and(4.8) appear
0 agree. Note however, th&d.7) applies only fort>t,,.
The waiting timet,, is very large, for the same value of,

of this model. ! : L
N . S . compared to the time=4 where(4.8) applies. That is, in the
givzzeb;mltlng form of (4.6 for times such that>t,, is antiferromagnetic case there is no significant waiting time

for the domains to randomize, and one obtains the power-law
form almost immediately, namely, for-4. These properties
G(t)~ _u (mt/2)~ V2 @47 e evident in Fig. 3 where we show the time dependence of
1-u ' ' G(t)/G(0) for K<O0. The solid curves correspond to the ex-
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1 L T T T T T T T T T J — Slnquz 1 I: R F n2 /2
_ ] (q.t)—mq—/z (1-u){F(6,t) —ReF[—sin"(q/2)
0.8 . 1 ‘
i iio,t]}—E (1+u)e 2 s'“zq&]. (4.12
S 0.6 . o o
o r —0.1 ] As is evident from(3.6), J(g,0) must vanish. UsingA4) and
= I N\ ] (A22) one finds F(#,0)=u/(1—u) and F[—sinXq/
ol 0.4~ RN T g 2),0]=—1/2, so that this requirement is satisfied.
3 1 Combining(4.12 with (4.9) givesS(q,t). These formulas
0o T T J can be simplified greatly in the cage=. Indeed, we have
- -10 ] special interest in the time dependencespfr,t) for antifer-
i 1 romagnetic interactions. For this special valuegpftarting
0 ————t b b from (A16), one can show that
0 1 2 3 4 5

t d

S(,t)=1+[x(m,T))—1]e*"—(1—-u)t qt [e o(t)]
FIG. 3. Time dependence @(t)/G(0) for antiferromagnetic

spin coupling as given by the exact res@#t2), (solid curve$, as +0((1+u)?). (4.13

well as the asymptotic formuléd.8), (dashed curvegs for the la-

beled values oK. The asymptotic regime commences for4. This formula is useful for alt and for very small values of

T,, where we haved~—1 andu~—1 for antiferromagnetic
act values ofG(t)/G(0), while the dashed curves are ob- interactions. We shall use it in our discussion in the follow-
tained using the asymptotic expressi@ng). Note that the ing paragraph. Note that the term containing the factor
power-law form is well obeyed fot>4. We note that in t(d/dt)[e 'Io(t)] may be approximated agmwt) *2 for
contrast to the ferromagnetic cage(t) decaysfasterthe  t=2, explicitly showing once again the slow power-law de-
lower the initial temperature. This is to be expected since theay that applies after the initial Bragg peak has decayed suf-
more ordered the initial antiferromagnetic state, the morsdiciently.
rapidly the structure is disrupted by the near-neighbor spin- We now summarize our major results 8¢q,t). In Fig.
exchange process. 4(a) we show values 08(q,t) as a function of wave vector
for the antiferromagnetic with initial coupling,=—3 in the
immediate vicinity of the BZ boundary for the dimensionless
times 0, 0.25, 0.5, 1.0. The numerical valuesS(d|,t) were

The remaining task to be performed so as to determinebtained using4.9), (4.12, and the Neumann expansions
S(q,t) is to establish the form of the functial{q,t) given  (A21) and(A22). The calculated values for the special case
by (3.6). Once this is achieved we hajgee(3.9)] q=m are in excellent quantitative agreement with13),

) which is to be expected since the coefficiéht-u)? of the

S(g,t) =1+[x(a,T)) — L]exd — 2t sirf(q/2)]-J(q.b). neglected correction term in that equation is>2140°. The

(4.9 rapid decrease of the initial Bragg peak with time is note-
worthy. The qualitative discussion in Sec. Il C 1 leads to the
Probably the simplest way to proceed is to substitutgif)  conclusion that in the first stage this decrease should proceed
for the functionG using (4.2) and (4.3) and to interchange in an exponential fashion, with a characteristic time that is
the order of the integrations. The calculation is fairly essentially independent of wave vector. In particular, the
straightforward upon using the identity shape of the decaying Bragg peak should be preserved and a
semilog plot ofS(q,t)/x(qg,T,) should exhibit a linear de-
1 1-x
f dx(
0 X

112 pendence on. This predicted behavior is confirmed by the
) _ 1}, (4.10 data shown in Fig. @) for early times, approximately<1.5.

which applies for arbitrary values of the complex varialle

For the special case that approaches the interval-1,0) of

Subsequently the curves for different wave vectors fan out
the real axis(4.10 can be used to yield the relation

C. Determination of S(q,t)

vz o1 1+w

w

x+w "
and the decay proceeds at a much slower rate. In this time
regime the further decay of the Bragg peak should proceed as
t~Y2 This feature is in fact supported by our computed data.
In Fig. 5 we provide data fog(q,t) for all wave vectors

in the BZ, again forK,=—3. The approximate behavior in
the regime where sin’(q/2) is small compared to unity has
Pfl (1—x)1/2 1 been discussed in Sec. Il C 3, and the results are summa-

. dx rw_ ™ (41D rized by (3.16. For |q|<0.8x the first term in(3.16), the

X
initial susceptibility, is negligibly small, and we can expect

that theq dependence will be proportional to §ig/2). The
where P denotes principal value. With the aid of these idenamplitude of this term is given by 2f [ §dt’ G(t')], which
tities and exploiting a partial fraction decomposition of theis dominated by linear growth. The data shown in Fig. 5 are
rational form 1f(x+ 6)(x—sir’g/2)], one finds consistent with these predictions. As time progresses and



2282 JAMES H. LUSCOMBE AND MARSHALL LUBAN 54

4007 . 2 LA e e . ; 1
- K=-3 K =0
L ] F
300 - }
1.5 N 5 1 1
e 200 : 4 j
=2
P L 400 / 1
L - 3 0.5 1
L g | _
100 i ) i ]
r 0.5 .
0 E= ]
0.99 |
eI E TR R
@ 00 0.2 0.4 0.6 0.8 1
—-0.9971 ] FIG. 5. Wave-vector dependence of the nonequilibrium struc-
-----0.9981 | ture factorS(q,t) for the system described in Fig. 4 but for the
[ . | 0.999 entire Brillouin zone. The behavior & can be described as though
% 01 \_\_‘ —1 E the spins for the larger values gfrapidly equilibrate to the final
= F AN ] structure factor alT =2, for which S is independent o], but with
- r X NN ] a slowly decaying time-dependent amplitude. This slow decay is a
n T direct consequence of the conserved spin dynamics and the sum
K=-3 K =0 N~ rule (2.9). Similarly the behavior forg~0 can be described as
0.01¢ ‘— though the spins remain “frozen” at their initial structure factor
F ] because of the conserved spin dynamics.

(b) t rq~2q‘2, which diverges forg—0. For|q|=0.27 the dis-
played data shows plateaulike behavigfq,t)~1—G(t)
FIG. 4. (9 Wave-vector dependence of the nonequilibrium since ()(q)t=4 for the times considered. An increase to-
structure factoS(q,t), (4.9), in the vicinity of the Bragg peak, for \yards unity is to be expected sin@ is positive for allt.
the times listed in the legend, for spins with antiferromagnetic Spi”However, this rate of increase towards unity is extremely
coupling initially in thermal equilibrium(initial coupling constant small, because of the corresponding slow decay of the Bragg
K,=—3) that suddenlyat t=0) are brought in contact with a heat peak along with the constraint of the sum r(@9). As dis-

reservoir of infinite temperaturéKc=0). (b) Semilog plot of the . : A
decay ofS(q.t)/x(q.T,), for the system described i, in the cussed in Sec. IV B 1, the functio@(t) is given by(4.6).

region of the Bragg peak, as a functiontddr values ofg/ listed

in the legend. The initial decay @ is exponential, but the time 0.2
period over which this behavior persists decreases with decreasing

g. In the regime of exponential decay, the shap&(@f,t) remains

approximately invariant. 0.151

t sir(g/2) is no longer small compared to unity, in fact when
Q(q)t=4, we may use&3.14. Except in the immediate vi-
cinity of the BZ boundary we may neglect the first term of
that equation. For the present caselgf=o we havey-=0 r
and x(q,Tg)=1 for all g. Thus for Q(q)t=4, we have 0.05|
S(q,t)=1—G(t). In particularS is independent ofj and 3
very slowly (like t Y2 for larget), decreasesowards unity, i .
becausés(t) <0 for antiferromagnetic interactions. This pre- 00 " 02 04 o086 o8 1
dicted plateaulike behavior is confirmed by the data shown q/n
for t=4. As expected, even for the time-400, for|qg|~0 the
structure factor remains “frozen” at its i'nitial value, since s 6 \Wave-vector dependence $fq,t), for the dimension-
for a small vz_:tlzue O_ﬁ' one re_:ac_hes the reglnﬂa(q)t_?4 only less times 0, 25, 50, 100, 500, 750, for spins with ferromagnetic
Whent21f_3q o This behf';lV|0r2|s due to the combined effects spin coupling initially in thermal equilibriuninitial coupling con-
of the vanishing of}(q) like g~ for smallq and the require-  stantk, =3) that are suddenly brought in contact with a heat reser-
ment of the sum rulé2.9). voir of infinite temperaturéK-=0). The main features of the be-
In Fig. 6 we display our results for ferromagnetic interac-havior are qualitatively similar to the case of antiferromagnetic
tions for initial couplingK,=3. The persistence of the Bragg coupling(Fig. 5). For larger values of the spins rapidly equilibrate
peak for|g|~0 is very dramatic and, as discussed in Secto the final temperature structure factor, but with an amplitude
[l C 1, it follows from the fact that although the decay is which decays in an extremely slow manner, whereagyfe0 it is
exponential, the corresponding time constant is given byas though the spins are frozen at their initial structure factor.

0.1}

$(q,1)
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The asymptotic form(4.7) (square-root decreasbecomes of this stage increases without boundTgsis decreased to-
operational only fot>t,,, wheret, =81 376. wards zero. In the case of antiferromagnetic interactions one

We remind the reader that the major qualitative characterean, additionally, speak of the Bragg peak maintaining its
istics of S were already established in Sec. Il C, without the shape as a function of wave vector, during this initial stage
need for evaluating the functioi®(t) andJ(q,t), which are  of exponential decay. This is a consequence of the fact that
given by (3.21) and(3.29. Of course, one could not avoid the lifetime 7, is in essence independent of wave vector in
evaluating the latter equations in order to establish the dehe immediate vicinity of the BZ boundary. For the case of
tailed quantitative behavior &. ferromagnetic interactions, however, although the Bragg
peak forg~0 also initially decays exponentially with time,
in the process the shape of the peak is not retained. This is
becauser, is strongly dependent ogy; diverging asq 2 for

In this article we have investigated the time evolution ofsmallq.
the nonequilibrium structure fact®(q,t) for a system of Secong as discussed in Sec. Il C 2, as time progresses
spins subject to Kawasaki spin-exchange dynamics, whichQ)(q)t=4], S(q,t) demonstrates quasiequilibrated behavior.
conserves the total spin. We have considered the case whe$pecifically, apart from a time-dependent amplitugég, t)
the system is subject to a sudden temperature increase, frashows the sameave-vector dependenes its equilibrium
an initial temperaturd, to a final temperatur@r. The ex- form at the final temperature, i.e5(q,t)/x(q,Tg)~A(t),
istence of a conserved variable greatly complicates the treatrdependent of wave vector but dependent on time. The
ment, as compared to the analogous issues for the Glaubfmction A(t) approaches unity at long times withta*?
dynamics, which does not possess a conserved modeorrection term. This description is applicable for both fer-
Whereas an exact expression f8(q,t) can be derived for romagnetic and antiferromagnetic interactions, except that in
the latter model in one dimension whatever the value§,of the latter case for wave vectors in the immediate vicinity of
and T, for the case of the spin-conserving dynamics, arthe BZ boundary the presence of the Bragg peak complicates
approximation-free treatment can be given onlfffis in-  the story.[In particular, if the initial temperature is suffi-
finitely large. Except for that case, the equation of motionciently small, the behavior d%(q,t) continues to be domi-
satisfied byS(q,t) involves a nonterminating hierarchy of nated by the exponentially decaying Bragg peak long after
equations of motion for higher-order spin correlation func-the behaviorS(q,t)/x(q,Tg)~A(t) has set in for smaller
tions. values of|qg|.] As time progresses, the range of wave vectors

We have found the exact form &(q,t) for the case for which this description is valid gradually spreads towards
Te=o in Sec. IV, which, to the best of our knowledge, is the the interior of the BZ. By contrast, for wave vectors in the
first instance of an exact solution f&(q,t) in which the vicinity of the center of the BZ, the behavior 8fover long
total spin is conserved. In order to gain insight for the intrac-periods of time is as though the spins are frozen at their
table case of finitel -, we have invoked an approximation initial temperature, and thus for these wave vectors
procedure that truncates the hierarchy of equations of motio8(q,t)~ x(qd,T,). The physical origin of this very slow evo-
at the level of two-spin nonequilibrium correlation functions. lution for small wave vectors is due to the fact that achieving
This truncation procedure was introduced in Sec. Ill B anda major change its for smallqg requires a long-range spatial
consists of replacing the four-spin nonequilibrium correla-reorientation of the spins, but such a process is perforce very
tion function (o_,0450.0,); by the two-spin quantity slow since a given spin will flip only if one of its two
(ogon)i, leading to a solvable equation of motion for nearest-neighbors is at that moment oriented oppositely. This
S(q,t). Although invoking uncontrolled approximations in process can be visualized in terms of random walks of do-
nonequilibrium problems can have profound effects, we bemain boundaries, which feature spatial progression on a lat-
lieve our approximation is physically quite reasonable, andice proportional to the square root of the time interval.
arguments in support of this approximation were presented Thus far our remarks have been restricted to our explicit
in that section. The approximate equation of motion resultingesults for the one-dimensional spin-exchange model. We
from our truncation procedure was shown to preserve théelieve, however, that these results can offer qualitative in-
following two crucial features of the exact solution(i) sights into the disordering behavior of higher-dimensional
S(q,t) evolves to the correct long-time valygq,Tz) the  systems, e.g., the disordering of adsorbed monolayers upon a
final-state equilibrium structure factor, afit) S(g,t) satis- sudden increase in temperature at constant cove4@le
fies the exact sum rule.9). This is because the characteristic featureS(af,t) for dis-

The formal solution of the resulting approximate equationordering are shaped first and foremost by the requirement of
of motion for S(q,t) was obtained in Sec. Ill D for arbitrary a dynamics that features a conserved mode. The dimension-
Te. The details were worked out in Sec. IV only for the ality of the system is largely a secondary issue, with the
special case of infinitd . We plan to work out thejuanti-  exception that at long times we expect the dimensionality to
tative details for the case of finit€ in a future publication. be manifested in a4~ %2 power-law decay, the signature of
However, even in the absence of such a treatment, it wagiffusive motion ind dimensions. Of course, thegjuilibrium
already possible in Sec. Il C to outline the qualitative fea-properties of a higher-dimensional lattice of Ising spins are
tures and major trends in the behaviorSffy,t). We briefly  profoundly different from those for its one-dimensional
summarize the major conclusions. counterpart. Nevertheless we believe that the impact of the

First, as discussed in Sec. Il C 1, in the initial stage theconstraint of the conserved total spin on the time evolution is
decay of a Bragg peak proceeds exponentially for either feref prime importance as compared to the spatial dimension of
romagnetic or antiferromagnetic spin interactions. The lengththe system.

V. SUMMARY
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It would be of great benefit if this qualitative description can also be shown to arise in the treatment of the one-
of the dynamics could be put to experimental test. A two-dimensional Glauber model for arbitrary initial and final
dimensional spin-exchange model should be relevant in deemperature$50], and in Ref.[51] [see their Eq(55)] in a
scribing diffusive processes of atoms on surfaces where botstudy of the kinetics of a sequence of first-order chemical
adsorption and desorption are absent. We are aware of onhgactions. We have therefore chosen to provide here a list of
one experiment where the shape-preserving exponential deseful expansions of this function.
cay of the Bragg peak has been observed. This is the case of The dispersion integrdA1) defines a function that is ana-
the disordering of the §100—(2xn) ordered-defect state Iytic in the complexw plane except for a cut in the interval
[19]. We have also found some tentative evidence for thi§—1,0], and which is also analytic in the finite part of the
type of behavior upon analyzing some Monte Carlo datacomplex 7 plane. If w is any real number in the interval
(Fig. 3 of Ref.[17]) for the two-dimensional Ising model [—1,0] we have
with nearest-neighbor repulsion having th@Xx2) phase as

its ground state. We also urge that our prediction for suffi- ) 1 1 [1-x\Y? exp—27X)
ciently long times, namely, th&(q,t)/ x(a, Te) = A(t) inde- ReF(w=i0,7)=5— Pfo dx| — W
pendent of wave vector, be subject to experimental test. If (A2)

confirmed it would be of great interest to test whether the

long-term time dependence Aft) is that oft %, appropriate 1

to two dimensions. IMF(W=i0,7)=F=
The disordering process resulting from an abrupt increase 2

in the temperature involves issues in nonequilibrium statisti-

cal mechanics of great difficulty yet great interest. To pro-In writing (A2) and(A2’) we have used the standard identity

vide an approximation-free treatment based on spin-

exchange processes we had to restrict our attention to a one- 1 1

dimensional system and whose final temperature is infinitely rwrie  Pxgrw T imox+w),

large. Nevertheless, the approximate treatment developed in

Sec. Il has provided us with clear expectations for higheryhere. is a real, positive infinitesimal, and P denotes prin-

dimensional systems and whefeg is finite, even though an cipal value.

approximation-free treatment is out of reach. One can antici- * g, 5 few special cases one can evalu@®) in closed

pate that the availability of accurate experimental data for the, ., These includav=—1 for arbitrary 7, as well asr=0

nonequilibrium structure factor would spawn significant ¢, arbitraryw. The results are

theoretical progress in understanding these issues.

1/2

1+w )
e™v, (A2")

—W
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APPENDIX A: THE INTEGRAL F(w,7) is no alternative but to develop assorted expansions.

One can readily arrive at alternate integral representations
of F that are not only of intrinsic interest but will greatly aid

In this Appendix we establish the major properties andus later in developing expansions for various regimes. Sup-
useful expansions of the function defined for arbitrary com-ose first that R@>0. We may then substitute A1) the
plexw by integral representation

1+w)\ 2
) 1
w

(A4)

1. Preliminaries

1 (1 [1—x\Y2exp—27x) "
Flw,7)=5— fo dx( X ) X+wW (Rer>0). (x+w) t= fo dsexg —s(x+w)] (Rew>0). (A5)
(A1)

Interchanging the order of integrations and using the identity

This function first appears in Sec. IV, {4.2), wherew=6, a [52]

quantity defined by4.4), and wherer=t, the dimensionless
time variable. We recall that>0 for ferromagnetic cou-

. . . . 1 1—X 12 v
pling, whereasf<—1 for antiferromagnetic coupling. For f dx exp(—zx)( ) :(_) e 71 4(2/2)+14(2/2)]
these(rea) values of the argument the functionF is real. 0 X 2 '
Additionally, in (4.12 we require RE for values ofw which (AB)
are approaching the real intervht1,0], specifically for
w=—sir?(q/2)+i0, whereq lies in the BZ. This integral we arrive at the formula
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1 T 'e_T +1)2
F(W,T)ZGZTW{F(W’O)_E Jodx g F(w,7)= I477 %dzz[zz—Z((22w+1)z+l]
1
><[|O(x)+|1(x)]]. (A7) X exp% 2+ ). (A11)

Recall thatF(w,0) is given by(A4). We emphasize that the
result (A7), although derived subject to the restriction
Rew>0 so as to write(A5), can be analytically continued
throughout thew plane.

A useful check of(A7) is provided by considering the i
special casav=—1. Using Eq.(11.3.14 of Ref. [46], the F(-1n)=
indefinite integral can now be evaluated in closed form, with
the result being

Note that for the special case=—1 the last formula reduces

1
z+ .
z

¢’ 3£d L exp? A12
ppe z exps (A12)

. This integral can immediately be evaluated by noting that the
f dx €[lo(x)+11(x)]=€"lo(7)—1. (A8)  exponential term in the integrand is the generating function
0 for modified Bessel functions of integral ordétq. (9.6.33

) _ of Ref.[46]]
The resulting value of(—1,7) obtained from(A7) agrees

with (A3).
A useful variant of(A7) can be obtained by rewriting the T 1 * .
integral from O tor as the integral from 0 tee minus the exps |zt 7 ZH_Z_OC 2" (7). (AL13)
integral from7 to «. This leads to the result -
F(w, 7)== ezqwf dx e CWHDXT| 3y 41 (x Interchanging the sum gnd_|ntggrat|on(m12), noting that
(W.7) 2 B Ho(x) #1202} the only nonzero contribution is from the=0 term, and

using the Cauchy residue theorem, we find {/#€t2) agrees
(Rew>0). (A9)  with (A3). This procedure of utilizingA13) will be gener-
alized in Sec. A4 to provide an expansion efw, ) for
We emphasize thaA9) is applicable only for the right-half arbitrary (in general, complexvalues ofw, as an infinite
w plane, as is evident from the fact that the integral divergeseries in thd .
if Rew<0 since the functions, ; grow ase*(2wx) Y2 for
large positivex. Each of(A7) and(A9) will be employed in
Sec. A5 as the starting point for developing useful approxi- 2. Taylor expansion in 7

mate expressions fdf for large values ofr. _ The functionF can be expanded as a Taylor series in
~ We now provide two integral representationsfofvhich  powers ofr, (A16), which has an infinite radius of conver-
involve closed integration contours. The advantage providedence. To obtain this result we replage®™ in (A1) by its

by a closed contour is that one can employ the Cauchy respower series expansion and integrate term by term. One
due theorem and other standard results of analytic functiopeadily finds

theory.
The first of these representations is obtained by starting 1 (1/2),, 1
from (A1) and replacing the given integration contour by the F(w,7)= aw E (2)—nl oF41| In+ f;n+2;_ 1w
double hairpin contour which encloses the closed interval n=o m
[0,1] of the realx axis and which is traversed in tmegative X(—27)", (A14)

(clockwise sense. It is assumed thatw lies outside the

hairpin, i.e.,w does not lie on the intervdl1,0) of the real

axis. On the upper line segment of the hairpin we have argupon using the integral representation of the hypergeometric
=arg1—x)=0, whereas on the lower line segmentyar®, function ,F(a,b;c;z) [Eq. (15.3.) of Ref. [46]]. Here
arg(1—x)=—. Hence the contribution from the lower line (a)o=1, (a),=a(a+1)---(a+n—1) is the Pochammer
segment is identical to that from the upper segment. It theresymbol. It will be recalled that the hypergeometric function
fore follows that has branch points at1 ande«, and possesses a power series
expansion irg with unit radius of convergenddeq. (15.1.0)

of Ref.[46]]. Noting these analytic properties of the hyper-
geometric function, the individual terms of the expansion
(A14) are seen to exhibit the branch poirtte=0,—1) of F.

The second closed contour representation is obtaineBor actual numerical calculations, the power series represen-
from (A10) by defining a new variable according to the tation of F could be used to evaluate the expansion coeffi-
relationx= — (z— 1)?/(4z). Under this mapping the hairpin cients in(A14) as long agw|>1. However, rather than be
contour in(A10) corresponds to traversing the unit circle in limited by this restriction onw|, it is actually preferable to
the z plane and in th@ositive(counterclockwisgsense. Itis  derive, starting from(Al4), an alternate expansion d&f
then straightforward to show théA10) may be rewritten as which can be used for alll. We employ the identity

e—ZTX 1/2

1-x

X

(A10)

1
F(W,T)ZE é dx Xt w
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12 function, as an infinite series of ordinary Bessel functions. It
is of great computational usefulness especially for small and
moderate real values of

—2w(n+1),F; Our starting point is the integral representatiéi 1), and

w is any complex number subject to the restriction that it not

lie in the interval[—1,0] of the real axis. We note that the

polynomial zZ2—2(2w+1)z+1 has two roots, ®+1

. ) ) +2w(w+1), one of which, to be denoted by necessarily

which can be derived using Eq4.5.3.6 and(15.3.7 of Ref.  jigs within the interior of the unit circle, and the second is

[46], so that(A14) may be rewritten in the more convenient given by 1k and it lies exterior to the unit circlgSubse-

form quently we shall also alloww to approach the interval

1 [—1,0], so that both of and 1# approach the unit circle, but
(_) that will be a special limiting case of the general treatment
vz 1o \2, we now give) The integration contour itA11) is the unit
e - 2 Z:O (n1)2 2F1 circle of thez plane, and it therefore encloses the simple pole
of the integrand at= v as well as the essential singularity at
the origin. The integrand is otherwise analytic within the unit

(=27)" (A16) circle. We may thus alter the integration contour so as to

consist of two arbitrary nonintersecting closed contours lying

In contrast to(A14), which is useful for computational pur- Wwithin the unit circle, the first enclosing the simple pole and
poses only folw|>1, (A16) can be used for allv since the the second enclosing the origin. The contribution of the first
power series expansion oF ;(1,—n;1/2;1+w) terminates (pole) integral toF(w,7), to be denoted by, follows im-
aftern+1 terms, i.e., it is a polynomial of degree-1 in the ~ mediately from the residue theorem, and it is given by
variablew. Additionally, the first term on the right-hand side
of (A16) explicitly embodies all of the multivalued proper- = :l e 7 1+v
ties of F as a function of the variabler. In particular, the P2 1-v
branch points oF atw=—1, 0 are manifestly explicit in that o
term. Furthermore, the series(iA16) is single valued as one ~ TO evaluate the contribution, to be denotedmy, of the
crosses the branch line-1,0] of F in the variablew. In ~ Second(essential singularityintegral toF(w,7), we replace
short, (A16) is especially useful for small values of but it ~ the exponential factor of the integrand B413) and inte-
may be used for any value of. Note that(A16) correctly ~ drate term by term, and use the fact that
reduces to(A4) upon substitutingr=0. It should also be

noted that(A16) reduces to(A3) upon substitutingv=—1 — 3§ dz _ =

since the right-hand side dA16) may be identified with 2i "(v—2) "

—1/2,F1(1/2;1;—27)=—1/2e" "l y(7). Here ;F, denotes o o )

the confluent hypergeometric function and we have used qu n is a positive integer, whereas this integral equals zero if

£ 1 1 1w _2W(2)p(=w)" [1+w
2ha| L+ oant eI == w

1
1,—n; - 1+w

X 121

(A15)

1
F(W,T)Z E

1+w

w

X

L-n; 21
) nl E! W

exp %(v+ 1|, (A19)

(A19)

(13.6.3 of Ref. [46]. n is zero or a negative integefNote that the contour in
(A19) encloses the origin but excludes the point One
finds that

3. Laurent expansion inw
Our second major result is the Laurent expansiok oh 1 1+p = ~
powers ofw™*, which in view of the location of the branch Fedw,7)=5e"" —lo(7)+ 71— 21 (V" =v"Mn(7)|.
line of F, converges for the annular regipm|>1, " (A20)

1 & (1/2),

FWD=2w & @,

lFl

n-+ E'n+2'—27)(—1/w)” Finally, adding the contribution ofA18) after using(A13),
2’ ' ’ one obtains the result
(A17)

[

Plo(n)+ (14 %) 2, »My(7)

-T

e
To obtain(A17) note that ifjw|>1 the factor k+w) tin  F(w,7)= . (A21)

(A1) may be expanded as a geometric series in powers of 1-v

x/w, which converges for alk in the integration interval. ) i _
Substituting that expansion, integrating term by term, and¥Ote that ifw is real we haver=2w+132yw(w+1),
where the uppeflower) sign is chosen ifv>0 (w<—1).

using the integral representation of the confluent hypergeo
g g P yperg Finally, we can us€A18) and (A20) to obtain R€& and

ic f i F b Eq. (13.2. f Ref.[4 i
metric function,,F,(a;b;2), Eq. (13.2.9 of Ref. [46] gives ImF for values ofw which are situated an infinitesimal dis-

Al7). The power series expansion converges for all
ginite)z [seequ.(13.1.2) of Rgf. [46]].£ﬁ1 g tance above or below the segméntl,0) of the real axis.

We writew = —sir?(q/2) +ie, wheres is a vanishingly small
real number(either positive or negatiyeand Gsq=<. One
then easily finds that—e™'9, where the uppeflower) sign
We now derive an expansion &f(w,7) as an infinite applies ife is positive(negative. Using(A18) and(A20) we
series of modified Bessel functions in the variableThis  find that the quantities , andF ¢ turn out to be pure imagi-
expansion is analogous to a Neumdii3] expansion of a nary and pure real, respectively. We thus have

4. Neumann expansions
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c. Asymptotic expansion

. . 1
ReF[—sir’(q/2) +i0,7]=—e 7 lo(7) The complete asymptotic expansion(éfl) in powers of

1/7 can be obtained by invoking the standard method of
Laplace[54]. One substitutes ilAl) the Taylor series ex-
: pansion of (1 x)%(x+w) in powers ofx, extends the up-
per limit of integration toc, and integrates term by term.
(A22) Now

+cot(q/2) 2, 1,(7)sinng
n=1

The value of InfF[—sir?(q/2)*i0,7] in essence has already ., .11 1 B N 1 (=w)
been given byA2'). (1= (x+w) w ngo( x/w) go 2/, k!
(A25)

5. Large-7 expansions One readily obtains as the final result

As one increases and enters the regime>1, the expan- "
sions(A21) and(A22) gradually become less useful because F(w, )~ 1 2 -1
a very large number of thiefunctions must be calculated. In 7 2w(27r)Y? &5 | 2w
the following we provide an assortment of useful formulas
for this important regime. The expansiot&23) and (A24)  where the expansion coefficiebt,(w) is a polynomial inw
provide accurate numerical values for much smaller value§iven by
of rthan can be obtained using the asymptotic expansion

n

Dn(w), (A26)

n

. . . .- . |
(A27), at least without invoking specialized acceleration _ (2n)! _ K/ Ll
s, Dn(W) = 22m, go (—1/2) W¥/k!. (A27)
a. w>0, real APPENDIX B: GLAUBER KINETIC ISING MODEL
Suppose first thaw is positive and real. Our starting point
is the integral representatiqA9). Now, if 7>4, for all val- In this appendix we derive selected formulas pertaining to

ues of the integration variable we may approximate each o§(q,t) for the one-dimensional Glauber kinetic Ising model.
I, andl, by €/(2mx)Y? which is the leading term of each We have already developed the necessary formalism in Secs.

function's asymptotic expansiofizqg. (13.5.1 of Ref.[46]]. Il and lIl, and it is relatively straightforward to provide a
Substituting in(A9) and using Eq(7.4.7) of Ref.[46], we  parallel derivation for the Glauber model. We restrict our
obtain attention here to providing basic formulas. Numerical results
and major asymptotic properties will be presented elsewhere
1 [50].
F(W,7)~ 5o eVerfq2rw)¥?  (r>4), (A23) In the Glauber kinetic Ising model, the allowed transitions
are single-spin flipsg;— o = —o;, and the basic form of

the spin-flip master equation operator is given[bge dis-

where erfc denotes the complementary error functlonCussion around2.15],

Higher-order terms of the asymptotic expansior pandl ;
give rise to two distinct sets of terms, the first of which are of

order 1(27) times the resultA23), while the second are of DSF[U|U’]:Z 811 Dsdolo’]. (B1)
order exf—27). Both sets of terms may be ignored+if-4.
This expansion is used in Sec. IV B 1. Corresponding to single-spin flips, the local operator has the

form [compare with(2.17)],

b. w<—1, real )
o , , Dsdala’ 1=WE(a') (8, _,— S ,a7)=

Results similar to(/A23) can be given for the regime i T
real andw<—1. In this regime we use the integral represen- ~We(o") a0 (B2)
tation (A7) and note that the exponential facef™ decays, ' e
while there is a contribution to the integral which grows where WiG(cr), the Glauber transition probability function
exponentially, arising from values of the integration variable[12], is constructed to satisfy detailed balance and is given
in the immediate vicinity of the upper limit. For these by [compare with(2.20],
values ofx we may again approximate the functionsand
I, as in the preceding paragraph. The dominant contribution _a. Y
té the integral can be obtained by integrating by parts and WP (o) = Ak (Tt o) |- (B3)

2
retaining the leading term. One readily finds that the exact ) , .
result(A7) can be approximated by In this appendix the quantity denotes the spifiip rate for
uncoupled spingdistinct from the Kawasaki spin-exchange

_ rate), and is taken as a phenomenological parameter of the
FW, 1)~ 55— (27>1). (A24)  model; the overall factor of two iB3) is introduced for
2(2m7) M w| convenience. Note frontB3) that for ferromagnetic cou-
plings the spin-flip rate is maximized when neighboring
This result is utilized in Sec. IV B 2. spins have values opposite to that at Siteo;..,=—o07,
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while WE(o) is minimized whens, . ;= o . For this reason, Of course(B7) must be solved subject to the constraint of

the Glauber model provides a relatively simple framework tothe sum rule(2.9) which arises solely because of the Ising

study the dynamics of cooperative phenomena. fixed-length spin condition and is independent of the dy-
Combining(B1), (B2), and(B3), the single-spin equation namical model. We can impoge.9) on (B7) by requiring

of motion can be deriveftompare with(2.21)], that the functiorG(t) obey the constraint analogous(&2),

YF

D5foi=—2W7(0)oi=—a 0i= % (ois1toig) .

(B4)

In the Glauber model, the single-spin equation of motionJust as with the Kawasaki model, the role of the sum rule is
includesonly single spins and does not involve higher-orderto effectively cause the equation of motion f8fq,t) to be
spin terms, as is the case with the Kawasaki mag@et3.  honlocal in theq space[see discussion aroun@.2)]. The
Fourier transformingB4) [see(2.4)] thus diagonalizes the formal solution to(B7) is then similar to(3.5) with €)(q)
dynamical problem, replaced withh(q) and with

G(t)=- | dar@rs@o-xaTol @9

2mayg

DSFr(q)=—a(1- =-\ : B5 t
Note that, in contrast to the Kawasaki model, the spectrum of 0
relaxation ratesi(q) is bounded betweem(1+ys) and As in Sec. lll, the effect of imposing the sum rule is to

a(1—g). In particular \(q) does not vanish for any nonzero . . :
temperature, i.e., there is no conserved mode for this d require thatG(1) obey the integral equatiof3.7), where the

namical model. We remark that whereagq) is an eigen- analogous quantities for the Glauber model are given by
vector of the spin-flip operator for all temperature$q) is
an eigenvector of the spin-exchange operator only for
Te=x; see(2.24. For this reason the exact form 8f{q,t)
can be established for the Glauber model for any final tem-
perature;Tg, but only forTz=c« in the case of the Kawasaki and
model.

The corresponding two-spin equation of motion for the m
Glauber model can be derived usifgl—-B3 and is given QD= f_wdq[S(q,O)—X(q,TF)]ex;{—2)\(q)t].

by

P(t)=2aypfj dgexd —2\(qt],  (B10)

(B11)

Note that(B11) is formally identical to(3.9), except that the
relaxation spectrumi(q) differs from that for the Kawasaki

which should be contrasted wiil2.22). Taking the Fourier model.

transform and proceeding as in Sec. Il, we arrive at the equa- !t iS thus clear that one can follow the steps presented in
tion of motion, Sec. lll and derive the exact solution f8(q,t). The equa-

tions presented here serve as the starting point for a detailed

d5(q,t) analysis ofS(q,t), an analysis that we present elsewhere

at [50]. A key result of that analysis is that the solution can be
expressed in terms of the dispersion intedfév, 7), and
where G(t)=®,(t) —ug, with ®,(t) the nearest-neighbor hence it is straightforward to derive the major asymptotic
nonequilibrium correlation function, now for spin-flip dy- properties ofS(q,t) for the Glauber model using the results
namics. As mentioned in Sec. Il C, and as we see here exf Appendix A. The purpose of the development we have
plicitly, the equation of motion fo5(q,t), since it includes provided here is to show the close formal similarity between
only two-spin nonequilibrium correlation functions, does notthe Glauber and Kawasaki models, even though the dynam-
entail an infinite hierarchy of associated equations of motiorics differ qualitatively in the lack of a conserved mode in the

BEFUiO'j:O'iSEFO'j‘FO'jBiFO'i+45i’jWiG(O'), (BB)

=—2{Ma)[S(q.) = x(a. Te) ]+ ayG()},  (B7)

for higher-order correlation functions.
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