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Edwards-Wilkinson type models are studied in 111 dimensions and the time-dependent distribution
PL(w

2,t) of the square of the width of an interfacew2 is calculated for systems of sizeL. We find that, using
a flat interface as an initial condition,PL(w

2,t) can be calculated exactly and it obeys scaling in the form
^w2&`PL(w

2,t)5F(w2/^w2&` ,t/L
2), where^w2&` is the stationary value ofw2. For more complicated initial

states, scaling is observed only in the large-time limit and the scaling function depends on the initial amplitude
of the longest wavelength mode. The short-time limit is also interesting sincePL(w

2,t) is found to closely
approximate the log-normal distribution. These results are confirmed by Monte Carlo simulations on a single-
step, solid-on-solid type model~roof-top model! of surface evolution.@S1063-651X~96!07405-2#

PACS number~s!: 05.40.1j, 05.70.Ln, 81.10.Aj

I. INTRODUCTION

Interfaces play an important role in a number of physical,
chemical, and biological phenomena. Their fluctuations dis-
play universal features and, accordingly, models of interface
motion have been analyzed and distinguished in terms of
universality classes@1#. The classification usually proceeds
by taking systems of various sizesL and measuring the time-
evolution of the average of the square width,^w2&, of the
interface. Then the values of the static (z) and dynamic
(z) exponents which determine the universality class are ob-
tained@2# by observing the collapse of the data in accordance
with the scaling form̂ w2&;L2z f (t/Lz).

In practice, this procedure is not so easy to realize since
^w2& is an integral over all modes in the system and, conse-
quently, large corrections to scaling are present. Recently, it
was suggested@3# that an alternative and more detailed char-
acterization of interfaces may be obtained through the prob-
ability distribution of the random variablew2. The steady-
state distribution functionPL

(s)(w2) has been calculated
exactly for various growth models@3–5# and it has been
found thatPL

(s)(w2) defines a scaling functionF (s),

^w2&`PL
~s!~w2!5F~s!~w2/^w2&`!, ~1!

which is a universal characteristic of the interface fluctua-
tions.

The above scaling function, however, distinguishes only
among static universality classes. For example,F (s)(x) is
the same for both the one-dimensional (d51) Edwards-
Wilkinson ~EW! @6# and Kardar-Parisi-Zhang~KPZ! @7#
equations since these models describe processes which have
the same steady-state distributions and differ only in the scal-
ing of their dynamics. Thus in order to distinguish among
dynamical universality classes one should extend the static
results to the time-dependent width distributionsPL(w

2,t).
This is what we shall do here for the simplest model of
surface growth, thed51 EW equation@6#.

Since the EW equation is linear, much of the calculation
can be done analytically~Sec. II! and, in particular, we can

derivePL(w
2,t) and the associated dynamical scaling func-

tion ^w2&`PL(w
2,t) in closed form for the case of a flat

initial surface. An interesting feature of the result is that the
short-time limit is closely approximated by the log-normal
distribution ~Sec. III!. Arbitrary initial conditions are harder
to treat and we obtain general results only for the long-time
limit where the dependence on the initial state disappears
except for the initial amplitude of the longest wavelength
mode~Sec. III!.

In order to carry out a limited check of the universality of
our results we used Monte Carlo~MC! simulations to study a
single-step, solid-on-solid type model~‘‘roof-top’’ model! of
surface evolution@8,9#. This model belongs to the EW uni-
versality class when the overall velocity of the surface is
zero. Otherwise, it is in one universality class with the KPZ
equation. Excellent agreement is found~Sec. IV! between
the analytic and simulation results for the dynamical scaling
function in the EW limit and, furthermore, we also find that
this scaling function is easily distinguishable from the corre-
sponding function obtained for the KPZ case.

II. CALCULATION OF THE WIDTH DISTRIBUTION

A simple model of surface evolution governed by surface
tension and noise is the EW equation@6#:

]h~x,t !

]t
5n

]2

]x2
h~x,t !1h~x,t !. ~2!

Hereh(x,t) is the height of the surface at sites 0<x<L, n is
a constant related to the dynamical surface tension, andh is
a Gaussian white noise of strengthG:

^h~x,t !h~x8,t8!&52Gd~x2x8!d~ t2t8!. ~3!

For simplicity, we shall assume periodic boundary condi-
tions. It should be noted, however, that free boundary condi-
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tions may be more realistic in higher dimensions where com-
parisons with experiments are possible.

Our aim is to calculate the time-dependent distribution
PL(w

2,t) for an arbitrary initial conditionh(x,0). The deri-
vation follows along the line that has been worked out for the
static case@3# with extra complications arising from time
dependence as well as from initial conditions.

The quantityw2(t) is defined for a configurationh(x,t)
as the mean square fluctuations of the height:

w2~ t !5h22h̄2, ~4!

where the time-dependent averagef̄ (t) of a function f (x,t)
is obtained as its spatial average

f̄ ~ t !5
1

LE0
L

dx f~x,t !. ~5!

The first step of the calculation ofPL(w
2,t) is writing it in

terms of a path integral

PL~w
2,t !5E D@h#d@w22~h22h̄2!#p~$h%,t !, ~6!

where p($h%,t) is the path probability that the surface
evolves from an initial stateh(x,0) to a configuration
h(x,t) in time t. The dependence on the initial condition is
not written explicitly though it is understood that this depen-
dence is important for any finitet.

The Laplace transform of Eq.~6! gives the generating
function of the moments ofPL(w

2,t)

GL~l,t !5E
0

`

dzPL~z,t !e2lz, ~7!

and one finds thatG(l,t) is the following path integral:

GL~l,t !5E D@h#p~$h%,t !exp@2l~h22h̄2!#. ~8!

The next step is to note that the above path integral can be
written as an infinite product of ordinary integrals provided
the system is described in terms of the Fourier amplitudes.
Indeed, let us write

h~x,t !2h̄~ t !5 (
n52`

`

cn~ t !e
iknx, ~9!

wherekn52pn/L and c2n5cn* ~note thatc0[0, thus the
n50 Fourier mode can be left out from further consider-
ations!. The EW equation is replaced now by an infinite set
of ordinary differential equations

ċn~ t !1nkn
2cn~ t !5hn~ t !, ~10!

wherehn(t), defined as the Fourier transform ofh(x,t), is
also an uncorrelated white noise. We can see that the Fourier
modes with differentn’s are decoupled and evolve indepen-
dently. Thus the probability of a path that an initial state
characterized by a set of$cn(0)% evolve into$cn(t)% is just
the product of probabilitiespn@cn(t)ucn(0)# that cn(0)
evolves intocn(t):

p̂@$cn~ t !%u$cn~0!%#5 )
n52`

`

pn@cn~ t !ucn~0!#. ~11!

Equation ~10! is well known as the Langevin equation of
Brownian motion and thuspn@cn(t)ucn(0)# can be obtained
from the Fokker-Planck description of the process@10#

pn@cn~ t !ucn~0!#5
1

2psn
2~ t !

expF2
ucn2^cn~ t !&u2

2sn
2~ t ! G , ~12!

where

^cn~ t !&5cn~0!e2nkn
2t, sn

2~ t !5
G~12e22nkn

2t!

Lnkn
2 . ~13!

Now we can write the functional integral~8! as a product
of integrals over the coefficientscn

GL~l,t !5N)
n51

` E dcndcn* pn
2@cn~ t !ucn~0!#e22lucnu2,

~14!

where N is a normalization factor. Substituting
p[cn(t) ucn~0!# from ~12!, the Gaussian integrals can be cal-
culated and the inverse Laplace transform of the result gives
the time-dependent probability distribution in a scaled form
which does not depend explicitly onL:

^w2&`PL~w
2,t !

[F̂~x,t,$sn0%!

5E
2 i`

i` dy

2p i
exy)

n51

` exp@2ysn0
2 e2n2t/~11yan!#

~11yan!
. ~15!

Here ^w2&`5LG/(12n) and

an5
6

~pn!2
~12e2tn2!, ~16!

with the scaling variables given by

x5
w2

^w2&`
, t5

8p2nt

L2
, sn0

2 5
2ucn~0!u2

^w2&`
. ~17!

In the case of a flat initial surface (sn050), one can
evaluate the integral~15! exactly by collecting contributions
from simple poles at21/an and one finds a scaling function
of two variables:

F~x,t![F̂~x,t,$0%!5 (
m51

`
1

am
expH 2x

am
J )
n51,nÞm

`
am

am2an
.

~18!

For any finitex, the above sum can be approximated by a
finite number of terms andF(x,t) can be evaluated with a
given accuracy. Difficulties arise only in the limit oft→0
whereF(x,t) goes into a delta function. The evolution of
F(x,t) obtained by numerical evaluation of~18! can be seen
in Fig. 1.

We conclude this section by calculating the time depen-
dence of̂ w2& which will be needed for comparing the time
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scale of MC simulations with the time scale of the EW equa-
tion. We find ^w2& t from the generating function as
2]lG(l)ul50

^w2& t
^w2&`

511 (
n51

` S sn02 2
6

p2n2De2tn2. ~19!

In the long-time limit (e2t!1) this expression reduces to

^w2& t
^w2&`

511S s102 2
6

p2De2t1O~e24t!, ~20!

and one can see that^w2& t approaches its steady-state value
much faster if we start with an initial surface wheres10

2 is set
to its steady-state values10

2 5s1`
2 56/p2. The above equation

also suggest a method for finding out in simulations if the
system has settled to its steady state. One can choose small
(s10

2 !s1`
2 ) and large (s10

2 @s1`
2 ) initial values for s10

2 and
then^w2& t approaches its steady-state value from below and
above, correspondingly. If the two values converged, one
may assume that the steady state has been reached. This type
of checking for steady state is widely used in simulations of
equilibrium systems such as the Ising model where com-
pletely ordered and disordered initial states are employed.
Similar procedures, however, do not seem to have been fol-
lowed in the simulations of surface evolution models.

For short times, one can change the sum~19! into an
integral and̂ w2& t2^w2& t50 can also be calculated

^w2& t5^w2&01A2/pn Gt1/21O~ t !. ~21!

The above result is valid for a flat initial state as well as for
an initial surface containing a finite number of nonzero Fou-
rier terms (sn0Þ0 for n<nmax).

III. LONG- AND SHORT-TIME ASYMPTOTICS

The case of arbitrary initial conditions with nonzero
sn0’s is complicated by the presence of essential singularities
in the function which is integrated in~15!. As a consequence,

we are not able to evaluate the probability distribution in
general. The representation~15! is useful however for find-
ing the long- and short-time asymptotics ofF(x,t).

For t→`, one has to keep contributions which are pro-
portional toe2t!1. It follows then thatF depends on the
initial state only through the initial amplitudes10 of the long-
est wavelength mode. The calculation of the terms which are
proportional toe2t involves collecting contributions from
both simple poles and quadratic singularities in~15! with the
result that thes10 dependence appears in a prefactor in front
of a new scaling functionC(x):

F̂~x,t,$sn0%!5Fs~x!1S 12
s10
2 p2

6 DC~x!e2t1O~e22t!,

~22!

where

C~x!5
p2

3 S 742
p2

6
xDexpH 2

p2

6
xJ

2
p2

3 (
m52

`

~21!m21
m4

12m2 expH 2
p2

6
m2xJ .

~23!

This scaling functionC(x) is shown in Fig. 3 and discussed
in Sec. IV.

Comparing Eq.~22! with ~20!, one can see that the same
prefactor,s10

2 26/p2, appears in front ofe2t in both cases.
Thus the relaxation of the scaling function is also accelerated
if s10 is chosen to be the steady-state values1` . Further-
more, it also follows that the steady-state distribution can
also be bracketed by choosing small and large initial values
for s10.

Now we turn to the description of the short-time limit of
F(x,t) in case of a flat initial condition. The description is
based on an earlier observation@11# that the fluctuations of
chemical reaction fronts which are supposed to belong to the
EW universality class produce aF(x,t) which is rather well
approximated by log-normal distribution@12#

F~x,t!'L~x,x0 ,s!5
1

A2psx
expH 2

ln2~x/x0!

2s2 J , ~24!

wherex0(t) ands(t) are fitting parameters which can be
determined from various considerations. We have deter-
mined x0(t) and s(t) by equating both the maxima and
positions of the maximaxm of the two functionsF(x,t) and
L(x,x0 ,s). The values ofxm andF(xm ,t)5Fm(t) have
been determined numerically from~18! and thens was ob-
tained by solving the following equation:

A2pxmFms5e2s2/2, ~25!

and finally, x0 was expressed asx05xmexp(s
2). For suffi-

ciently short times, the width of the distribution goes to zero
ands→0. In this limit the expressions forx0 ands simplify
to x0'xm , ands'1/(A2pxmFm).

The results of this fitting procedure can be seen in Fig. 1.
Qualitatively, the fit is quite good over the whole time inter-

FIG. 1. Evolution of the scaling function of the width distribu-
tion in the case of a flat initial interface@Eq. ~18!#. The scaling
variablesx and t are given by Eq.~17!. Exact results for the EW
model are compared with log-normal fits and with Monte Carlo
results on the ‘‘roof-top’’ model. The exact results and the log-
normal fits are indistinguishable within linewidth fort<4t1 .
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val and it clearly becomes excellent at short times. In order
to make the quality of the short-time fit more apparent, we
have redrawn the curves of Fig. 1 on a log-log plot with the
results shown on Fig. 2. As one can see again, the log-
normal fit becomes better at small times and, att50.039,
the fit becomes practically indistinguishable fromF(x,t) in
an interval where the function decreases from its maximum
value by three orders of magnitude.

A more quantitative description of the quality of the log-
normal fit can be given by defining a relative distance be-
tween the two functions as

l ~t!5maxx
uF~x,t!2L~x,x0 ,s!u

Fm~t!
. ~26!

This distance increases witht and reaches its maximum
value l max5l (`)'0.14 in the stationary state. Fort→0,
we find thatl ;t1/2 and l ,0.01 fort,0.02. Although the
diminishing relative distance actually comes from the ratio
of a strongly divergentFm(t);t23/4 and a less divergent
maximum distance maxxuF2Lu;t21/4, plots of the two
functions which extend from zero to their maxima are indis-
tinguishable~see Fig. 1! for t,0.1.

IV. MONTE CARLO SIMULATIONS

In order to see if the dynamic scaling found for the width
distribution had the expected universality, we carried out
Monte Carlo simulations for a ‘‘roof-top’’ model of surface
evolution @8,9#. In this model the height of the surface is
characterized by a single-valued functionhi at sites
i51,2, . . . ,L and periodic boundary conditionshi1L5hi are
imposed. The height differences are restricted to
hi112hi561 and the evolution consists of particles being
deposited at local minima or evaporating from local maxima
of the surface with ratesp1 andp2512p1 , respectively.
If p15p251/2, the model belongs to the universality class
of EW model while forp1Þp2 the universality class is that
of the KPZ equation@9#.

For equal rates, one can obtain@9# an exact expression for
^w2& t and comparing the result with the solution of the EW
Eq. ~19!, the time scale of the MC simulation can be related
to that of the EW equation. In this way one finds that the
parametersn andG should be set ton5G51/2. Then the

x’s and t ’s in the MC data and in the EW equation are
related in a unique way and there are no parameters to fit
when the F ’s are compared. Figure 1 shows both the
F(x,t)’s obtained from simulation and the theoretical
curves of the EW model. One finds good agreement although
a small systematic shift of the MC curves towards larger
values ofx can be observed. This shift is due to the fact that,
in the ‘‘roof-top’’ model, the initial surface is not entirely flat
(wt50

2 51/4) in variance with thewt50
2 50 used in the theo-

retical calculation. This difference should disappear in the
L→` limit and, indeed, one can see that the difference is
smaller for theL5512 sample as compared to theL5256
system.

We have also examined the functionC(x) which charac-
terizes the scaling of the long-time relaxation of the distribu-
tion function in the EW model~23!. Since one can find a
large enough time window where^w2&t2^w2&`;e2t for all
x, the functionC(x) can be determined accurately and, as
can be seen from Fig. 3, there is an excellent agreement with
the theoretical curve. Thus we can conclude that the ‘‘roof-
top’’ model which belongs to the EW universality class for
p15p251/2 indeed produces the same time-dependent dis-
tribution F(x,t) as the EW equation.

In order to investigate if theF(x,t)’s characterizing the
EW and the KPZ classes were distinguishable, we have also
studied the long-time behavior of the ‘‘roof-top’’ model for
unequal rates (p151, p250). In this case, we find that
^w2&`PL(x,t)2F(x,`) decays with time exponentially
exp(2aLt), with a relaxational rate,aL independent ofx and,
as can be seen in Fig. 3, the coefficient,C(x), of the expo-
nential differs significantly from that of the corresponding
EW scaling function.

V. FINAL REMARKS

It has been demonstrated previously@3–5# that one can
build a ‘‘picture gallery’’ of scaling functions for steady-
state width distributions and this gallery may be used for
distinguishing the static universality classes of growth pro-

FIG. 2. The analytical results and the log-normal fits of Fig. 1
on a log-log plot.

FIG. 3. Scaling functionC(x) describing the long-time relax-
ation of the width distribution@Eq. ~22!#. The theoretical curve for
the EW model is compared with the Monte Carlo results for both
the EW and KPZ limits of the ‘‘roof-top’’ model. The initial states
are either flat or contain a single sine perturbation with the longest
available wavelength.
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cesses. Here we have made the first steps towards building a
similar gallery for dynamic scaling functions and we believe
that this gallery will be equally instrumental in recognizing
dynamical universality classes. At this moment we have re-
sults only for the one-dimensional EW and KPZ processes
but there does not seem to be any principal difficulty in
extending these calculations to other processes and to higher
dimensions by using exact solutions, renormalization-group
methods, and simulations.

An interesting by-product of our calculation is the result
that the early-time width distribution in the EW process is
practically identical to the log-normal distribution. Log-
normal-like distributions tend to emerge more often in bio-
logical and social sciences than in physics@12,13# and they
are usually understood in terms of the ‘‘law of proportionate

effect’’ or on the basis of the assumption that an event occurs
only if a large number of independent ‘‘subevents’’ take
place. In our case, the log-normal distribution is produced by
EW dynamics and it appears as a characteristic of the initial
roughening of an interface. Whether this generation of log-
normal-like distributions was new or it was equivalent to one
of the standard derivations remains to be understood.
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