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Edwards-Wilkinson type models are studied in-1 dimensions and the time-dependent distribution
P_(w?,t) of the square of the width of an interfaug is calculated for systems of size We find that, using
a flat interface as an initial conditiom®, (w?,t) can be calculated exactly and it obeys scaling in the form
(W?), P (W2, 1) =D (W (w?), t/L?), where(w?),, is the stationary value of2. For more complicated initial
states, scaling is observed only in the large-time limit and the scaling function depends on the initial amplitude
of the longest wavelength mode. The short-time limit is also interesting $tate?,t) is found to closely
approximate the log-normal distribution. These results are confirmed by Monte Carlo simulations on a single-
step, solid-on-solid type modéloof-top model of surface evolutionS1063-651X96)07405-2

PACS numbe(s): 05.40:+j, 05.70.Ln, 81.10.Aj

[. INTRODUCTION derive P, (w?,t) and the associated dynamical scaling func-
tion (w?),.P (w?,t) in closed form for the case of a flat

Interfaces play an important role in a number of physical,initial surface. An interesting feature of the result is that the
chemical, and biological phenomena. Their fluctuations disshort-time limit is closely approximated by the log-normal
play universal features and, accordingly, models of interfacdistribution (Sec. Ill). Arbitrary initial conditions are harder
motion have been analyzed and distinguished in terms df treat and we obtain general results only for the long-time
universality classefl]. The classification usually proceeds limit where the dependence on the initial state disappears
by taking systems of various sizesand measuring the time- except for the initial amplitude of the longest wavelength
evolution of the average of the square wid¢w?), of the  mode(Sec. Il).
interface. Then the values of the stati¢) (and dynamic In order to carry out a limited check of the universality of
(2) exponents which determine the universality class are obeur results we used Monte CailblC) simulations to study a
tained[2] by observing the collapse of the data in accordancesingle-step, solid-on-solid type modétoof-top” model) of
with the scaling form(w?)~L2f(t/L?). surface evolutiori8,9]. This model belongs to the EW uni-

In practice, this procedure is not so easy to realize sinceersality class when the overall velocity of the surface is
(w?) is an integral over all modes in the system and, consezero. Otherwise, it is in one universality class with the KPZ
quently, large corrections to scaling are present. Recently, gquation. Excellent agreement is fouflec. I\V) between
was suggestefB] that an alternative and more detailed char-the analytic and simulation results for the dynamical scaling
acterization of interfaces may be obtained through the probfunction in the EW limit and, furthermore, we also find that
ability distribution of the random variabl@?. The steady- this scaling function is easily distinguishable from the corre-
state distribution functionP{®(w?) has been calculated Sponding function obtained for the KPZ case.
exactly for various growth modelg3—5] and it has been

S/ 2 ) : (e
found thatP(”(w?) defines a scaling functio® ), IIl. CALCULATION OF THE WIDTH DISTRIBUTION
(W2, P (w?) =0 (w?/(w?).,), 1) A simple model of surface evolution governed by surface
tension and noise is the EW equatildi:
which is a universal characteristic of the interface fluctua-

tions.
2
The above scaling function, however, distinguishes only dh(x,t) _ va—h(x )+ n(x,) %)
among static universality classes. For examdé9(x) is ot axe I

the same for both the one-dimensional=(1) Edwards-
Wilkinson (EW) [6] and Kardar-Parisi-ZhandgKPZ) [7] ) ) , i
equations since these models describe processes which hdyg'€(x.1) is the height of the surface at sitess@<L, » is
the same steady-state distributions and differ only in the scaf constant related to the dynamical surface tension,aisd
ing of their dynamics. Thus in order to distinguish among® Gaussian white noise of strengdth
dynamical universality classes one should extend the static
results to the time-dependent width distributidPs(w?,t). (p(x,) 7(x" ,t))=2T 8(x—x") 8(t—t"). &)
This is what we shall do here for the simplest model of
surface growth, thel=1 EW equatior6].

Since the EW equation is linear, much of the calculationFor simplicity, we shall assume periodic boundary condi-
can be done analyticall{Sec. I) and, in particular, we can tions. It should be noted, however, that free boundary condi-
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tions may be more realistic in higher dimensions where com- *

parisons with experiments are possible. pl{cn()}{c,(0)}]= 11 palca(t)|ca(0)]. (12
Our aim is to calculate the time-dependent distribution n=-e

P_(w?,t) for an arbitrary initial conditiorh(x,0). The deri-

vation follows along the line that has been worked out for th

static casd 3] with extra complications arising from time

dependence as well as from initial conditions.

Equation (10) is well known as the Langevin equation of
®Brownian motion and thup,[cy(t)|ca(0)] can be obtained
from the Fokker-Planck description of the procgs8]

The quantityw?(t) is defined for a configuratioh(x,t) 1 lcn—(cn(t))|?
as the mean square fluctuations of the height: cn(t)|cy(0)]= exg — , (12
q ens o g pn[ n( )| n( )] 2770'ﬁ(t) F{ ZO'ﬁ(t) } (12
wA(t)=h?—h?, @ Wwhere
where the time-dependent averdEe) of a functionf(x,t) (1 e,zykzt)
. . . . 2 —_— n
is obtained as its spatial average (Co(t))=cp(0)e™" !,  o2(t)= o . (13
n
_ 1L
f(t)= EJ dxf(x,t). 5 Now we can write the functional integré8) as a product
0 of integrals over the coefficients,
The first step of the calculation &, (w?,t) is writing it in o
terms of a path integral G \)=NTT | dedct pﬁ[cn(t)|cn(O)]e‘Z"‘Crﬂz,
n=1
(14

PUwe.0= [ SMstwe— @-Rlp({LD, @

where N is a normalization factor. Substituting

where p({h},t) is the path probability that the surface plcn(t)[c(0)] from (12), the Gaussian integrals can be cal-
evolves from an initial stateh(x,0) to a configuration culated and the inverse Laplace transform of the result gives

h(x,t) in time t. The dependence on the initial condition is the_ time-dependent probabil?ty distribution in a scaled form
not written explicitly though it is understood that this depen-Which does not depend explicitly do

dence is important for any finite 2y P (W2t
The Laplace transform of E(q6) gives the generating (W5 PLWSD)
function of the moments oP  (w?,t) — d(x, 7. {50})
1 4 n
] . [} — 27.
GL(x,t):f dZPL(L, e, 7) _ f'x ﬂexy exf —yseoe " /(1+yay)] 15
0 w2 e (1+ya,) '
and one finds thaB(\,t) is the following path integral: Here(w?),,=LT/(12v) and
GLND = f ZIhlp({h}vexd —n(h?=h?)].  (8) an:(;;) (1—e-™), (16)
The next step is to note that the above path integral can bgiih, ihe scaling variables given by
written as an infinite product of ordinary integrals provided
the system is described in terms of the Fourier amplitudes. w? 8m2vt ,  2lca(0)]?
Indeed, let us write X:(w2> » TE Tz SnO:W' 17

o

— i In the case of a flat initial surfaces{;=0), one can
— — ikpx ’
h(x,t)=h(?) n;w Ca()e™, ©) evaluate the integrdll5) exactly by collecting contributions
from simple poles at-1/a,, and one finds a scaling function
wherek,=2mn/L andc_,=c} (note thatc,=0, thus the of two variables:

n=0 Fourier mode can be left out from further consider- > -

ations. The EW equation is replaced now by an infinite set _4 _ -+ —-X am

of ordinary differential equations P(x,7)=P(x,7,{0}) mz:l am ex am n:gqﬁm am—an,
. , (18)
Cn(t) + ancn(t) = (1), (10

For any finitex, the above sum can be approximated by a
where 7,(t), defined as the Fourier transform g{x,t), is  finite number of terms and(x,7) can be evaluated with a
also an uncorrelated white noise. We can see that the Fourigiven accuracy. Difficulties arise only in the limit of—0
modes with differenti’s are decoupled and evolve indepen- where ®(x,7) goes into a delta function. The evolution of
dently. Thus the probability of a path that an initial stated(x,7) obtained by numerical evaluation (f8) can be seen
characterized by a set §€,(0)} evolve into{c,(t)} is just in Fig. 1.
the product of probabilitiesp,[c,(t)|c,(0)] that c,(0) We conclude this section by calculating the time depen-
evolves intoc,(t): dence of{w?) which will be needed for comparing the time
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we are not able to evaluate the probability distribution in
general. The representatidh5) is useful however for find-

exactresult : ——

lognormal fit : e ing the long- and short-time asymptotics ®{x, 7).
roof-top  : L=256 = For 7—o0, one has to keep contributions which are pro-
6T L=sl2 ¢ portional toe™ "<1. It follows then that® depends on the
e T=1,=0.039 initial state only through the initial amplitudsgg of the long-
5 4l est wavelength mode. The calculation of the terms which are

T=41 proportional toe™ " involves collecting contributions from
both simple poles and quadratic singularitiegi) with the
result that thes,;o dependence appears in a prefactor in front

of a new scaling functionV (x):

0 0.5 1 15 2 . stymr?
x D(x,7,{Sno}) = Ps(x) +| 1= —c—| W (x)e™ "+ O(e™?7),
FIG. 1. Evolution of the scaling function of the width distribu- 22
tion in the case of a flat initial interfackEq. (18)]. The scaling  \where
variablesx and = are given by Eq(17). Exact results for the EW
model are compared with log-normal fits and with Monte Carlo w2 (7 P e
results on the “roof-top” model. The exact results and the log-  W(X)= ?(Z_ ?X>€‘XP{ - FX]
normal fits are indistinguishable within linewidth fe<4r7; .
a2 > m? w2
scale of MC simulations with the time scale of the EW equa- ——> (—1m1t 2exp[ - —mzx] .
tion. We find (w?); from the generating function as m=2 1=m 6
=G\ |r=o (23
W <, 6 This scaling function¥ (x) is shown in Fig. 3 and discussed
(W?).. _1+n§1 Sno” 22)€ - 19 iy sec. IV.

Comparing Eq(22) with (20), one can see that the same
In the long-time limit @~ "<<1) this expression reduces to prefactor,sﬁo—6/w2, appears in front o€~ 7 in both cases.
Thus the relaxation of the scaling function is also accelerated

(W) 2 — —4r if s19is chosen to be the steady-state vafye. Further-
<w2 w =1+ s~ w2 e +0(e™), (20 more, it also follows that the steady-state distribution can

also be bracketed by choosing small and large initial values
and one can see thaw?), approaches its steady-state valuefor S10.
much faster if we start with an initial surface Whﬂ% is set Now we turn to the description of the short-time limit of
to its steady-state valug,=s7,. = 6/7. The above equation ®(x,7) in case of a flat initial condition. The description is
also suggest a method for finding out in simulations if thebased on an earlier observatiphl] that the fluctuations of
system has settled to its steady state. One can choose smellemical reaction fronts which are supposed to belong to the
(s?,<s2,) and large §,>s2.) initial values fors?, and EW universality class produced®(x,7) which is rather well
then(w?), approaches its steady-state value from below an@pproximated by log-normal distributidi 2]
above, correspondingly. If the two values converged, one
may assume that the steady state has been reached. This type B 1 In?(x/Xq)
of checking for steady state is widely used in simulations of P (X, 7)=2(X,Xg,0)= 2 EXP{ - T]’ (24)
L s . ToX

equilibrium systems such as the Ising model where com-
pletely ordered and disordered initial states are employe
Similar procedures, however, do not seem to have been f(;t/
lowed in the simulations of surface evolution models.

For short times, one can change the s(®) into an
integral and(w?);—(w?);_, can also be calculated

herexy(7) and o(7) are fitting parameters which can be
etermined from various considerations. We have deter-
mined xq(7) and o(7) by equating both the maxima and
positions of the maxima,, of the two functionsb(x,r) and
Z(X,Xg,0). The values of,, and ®(x,,7)=P(7) have

2\ _ fanr2 BT e1/2 been determined numerically frof@8) and theno was ob-

(W= (Wihot V2/mr T O(D). 2Y) tained by solving the following equation:

The above result is valid for a flat initial state as well as for 2
an initial surface containing a finite number of nonzero Fou- V2TXmPro=e" 7, (29

rier terms 6,070 for n=<np,,,).
Eno ma) and finally, x, was expressed ag=Xyexp(?). For suffi-

ciently short times, the width of the distribution goes to zero

ando— 0. In this limit the expressions foty ando simplify
The case of arbitrary initial conditions with nonzero to Xo=~Xy,, ando~1/(v27Xy® ).

Sho'S is complicated by the presence of essential singularities The results of this fitting procedure can be seen in Fig. 1.

in the function which is integrated if15). As a consequence, Qualitatively, the fit is quite good over the whole time inter-

[lI. LONG- AND SHORT-TIME ASYMPTOTICS
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FIG. 2. The analytical results and the log-normal fits of Fig. 1 ~ FIG. 3. Scaling function¥(x) describing the long-time relax-
on a log-log plot. ation of the width distributiofEq. (22)]. The theoretical curve for
the EW model is compared with the Monte Carlo results for both
val and it clearly becomes excellent at short times. In ordethe EW and KPZ limits of the “roof-top” model. The initial states
to make the quality of the short-time fit more apparent, weare either flat or contain a single sine perturbation with the longest
have redrawn the curves of Fig. 1 on a log-log plot with theavailable wavelength.
results shown on Fig. 2. As one can see again, the log-
normal fit becomes better at small times and7at0.039, x’s and 's in the MC data and in the EW equation are
the fit becomes practically indistinguishable frabfx,7) in  related in a unique way and there are no parameters to fit
an interval where the function decreases from its maximunwhen the ®’s are compared. Figure 1 shows both the
value by three orders of magnitude. ®(x,7)’s obtained from simulation and the theoretical
A more quantitative description of the quality of the log- curves of the EW model. One finds good agreement although
normal fit can be given by defining a relative distance beqa small systematic shift of the MC curves towards larger
tween the two functions as values ofx can be observed. This shift is due to the fact that,
o in the “roof-top” model, the initial surface is not entirely flat
[P (X,7) — Z(X.X,0)] 26)  (W{_g=1/4) in variance with thav;_,=0 used in the theo-
P (1) retical calculation. This difference should disappear in the
L—oo limit and, indeed, one can see that the difference is
smaller for theL=512 sample as compared to the=256

/(7)=max

This distance increases with and reaches its maximum
value / ma= 7 ()~0.14 in the stationary state. Fer0,

we find that”~ 72 and /'<0.01 for 7<0.02. Although the Syg[V\?(;nHave also examined the functigif(x) which charac-
diminishing relative distance actually comes from the ratio,

fa st v di o ¥ and a | di ¢ terizes the scaling of the long-time relaxation of the distribu-
ol a strongly divergen m(T)_ T _ﬂim a 1ess QIVergent  ,n function in the EW mode(23). Since one can find a
maximum distance makb— |~ 74 plots of the two

funcii hich extend f 0 thei : ind large enough time window whetev?),—(w?)..~e" 7 for all
unctions which extend from z€ro to their maxima are in Is'x, the functionW(x) can be determined accurately and, as
tinguishable(see Fig. 1 for 7<0.1.

can be seen from Fig. 3, there is an excellent agreement with
the theoretical curve. Thus we can conclude that the “roof-
top” model which belongs to the EW universality class for

In order to see if the dynamic scaling found for the width P+ =P-=1/2 indeed produces the same time-dependent dis-
distribution had the expected universality, we carried outfibution ®(x,7) as the EW equation. o
Monte Carlo simulations for a “roof-top” model of surface _ [N order to investigate if thed(x, 7)'s characterizing the
evolution [8,9]. In this model the height of the surface is EW and the KPZ classes were distinguishable, we have also
characterized by a single-valued functiom at sites studied the long-time behavior of the “roof-top” model for
i=1,2,...L and periodic boundary conditioms, =h; are ~ unequal rates, =1, p_=0). In this case, we find that
imposed. The height differences are restricted to\W)=PL(X,t)=®(x,>) decays with time exponentially
h,.,—h,=+1 and the evolution consists of particles being €XP(—at), with a relaxational ratey, independent ok and,
deposited at local minima or evaporating from local maxima@S can be seen in Fig. 3, the coefficiefit;x), of the expo-
of the surface with ratep, andp_=1—p, , respectively. nential @ffers S|gn|f|cantly from that of the corresponding
If p, =p_=1/2, the model belongs to the universality classEW scaling function.
of EW model while forp, # p_ the universality class is that
of the KPZ equatiori9].

For equal rates, one can obtdf an exact expression for
(w?); and comparing the result with the solution of the EW It has been demonstrated previoug8~-5] that one can
Eq. (19), the time scale of the MC simulation can be relatedbuild a “picture gallery” of scaling functions for steady-
to that of the EW equation. In this way one finds that thestate width distributions and this gallery may be used for
parametersy andI" should be set ta-=1"=1/2. Then the distinguishing the static universality classes of growth pro-

IV. MONTE CARLO SIMULATIONS

V. FINAL REMARKS
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cesses. Here we have made the first steps towards buildingedfect” or on the basis of the assumption that an event occurs
similar gallery for dynamic scaling functions and we believeonly if a large number of independent “subevents” take
that this gallery will be equally instrumental in recognizing place. In our case, the log-normal distribution is produced by
dynamical universality classes. At this moment we have reew dynamics and it appears as a characteristic of the initial
sults only for the one-dimensional EW and KPZ processesoughening of an interface. Whether this generation of log-
but there does not seem to be any principal difficulty innormal-like distributions was new or it was equivalent to one
extending these calculations to other processes and to highgf the standard derivations remains to be understood.
dimensions by using exact solutions, renormalization-group
methods, and simulations.

An interesting by-product of our calculation is the result ACKNOWLEDGMENTS
that the early-time width distribution in the EW process is
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