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Any chemical reactio* + B— C whose progress is modulated by another reaction of the fgfar A is
said to be gated. The gating reactidii=A represents a reversible fluctuation from a active stdtgo an
inactive statéA that does not react witB. Reversibly blocked chemical reactions, conformational fluctuations
in proteins, and reactions occurring within biomembranes or involving biological molecules have all been
studied recently in contexts related to gating. This paper gives a unified, general formalism for calculating
trapping rates and mean survival times of gated reactions. It also presents and solves some gating models.
Although most of its explicit formulas are for problems with a single particle moving in the presence of a
single gated, static trap, the method of solution is formally applicable to problems involving several particles
and several point traps, even when the gating kinetics are non-Markovian. Those cases give integral equations
that cannot be solved in closed form, however. This paper’s results also include the bimolecular rate constant
for a gated ligand binding to a gated protdi81063-651X96)02509-3

PACS numbe(s): 0.5.40:j, 05.60+w, 02.50.Ey, 82.20-w

I. INTRODUCTION lating trapping rates and mean survival times for a restricted

class of gated reactions. Our original motivation, which was

Any chemical reactionA* +B—C whose progress is to determine bimolecular Smoluchowski mean-field rate con-

modulated by another reaction of the foAfi = A is said to ~ stants[7-9] for a particular class of gated reactions, led this

be gated. The gating reactiéxf = A represents a reversible paper to focus on the survival of a single moving particle in
fluctuation from an active sta®* to an inactive statd that ~ the presence of a single, gated, static trap. Much of the paper
does not react witlB. In some situations, a fourth specips  therefore assumes that particle movement and gating are in-

may be responsible for the interconversioh* + D=A. dependent, although this restriction is inessential in our

When other effects due to the blocker can be neglected method of solution. The method combines particle move-
however, this reversible chemical blocking is completelyMent and gating into a single Markov process whose states

equivalent to gating. Several recent papers have investigatéacfe ordered pairs containing both the particle position and the

. ; - gating state at timeé [1-3,12,13. Methods commonly used
?ﬁtmg[l]’ dynamic trapping2,3], or other related problems for analyzing Markovian trapping then furnish a solution

; : - ; 14].
Early studies of gatingb,6] derived Smoluchowski mean- [ . . .
field ra){e constant%?—9]§‘og a ligand binding to a gated The plan of this paper follows. Section Il gives a formal-

protein. Gating has also been studied in other biological con!—sm for solving both ungated and gated trapping in Markov-

texts, e.g., reactions occurring within biomembraf@ksor ian systems. Section Ill then describes some gating Green’s

small molecules migrating through heme protdifhs Medi- functions, which are uged t.o derive trapping rates,'rate con-
stants, and mean survival times for the corresponding gating

cal therapies also can involve blocking chemical reactions .
P g Mmodels. One of these formulas determines the rate constant

and in fact the failure of an HIV blocker in clinical trials f ted ligand binding t ted protein. The Di .
(e.g.,[10]) originally motivated the present investigation. Al- or a gated ligand binding to a gated protein. The DIScussion
en delineates the range of our solutions and several prob-

though most gating and blocking models do not change th for fut iderati
universality class of a chemical reactigtl] (e.g., they ems for future consideration.
rarely change algebraic asymptotics into exponential Jpnes

they are yvort.hy pf study t.)ecause. they can have prof_ound Il GENERAL SURVIVAL RESULTS
practical implications, particularly in medical therapy, just
by changing effective reaction rate constants. The main result in this section is E@), an integral equa-

This paper gives a unified, general formalism for calcu-tion for the propagatop(r,t|ry) in gated trapping. Gating
solutions are obtained from E@2) by incorporating both
particle movement and the gating state into a general formal-

*Fax number: (301) 435-2433; Electronic address: ism for solving Markovian trapping. Results are conve-
spouge@nih.gov niently divided into two cases, depending on whether or not
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54 SINGLE-PARTICLE SURVIVAL IN GATED TRAPPING 2249
the particle movement yields an equilibrium probability den- p+
sity in the absence of traps. i~ LP+—c(r)p+—BoP++ aop-,

Let G(r t|ry) be any Green'’s function that describes time-
homogeneous Markovian particle movement in a space with-
out traps. ThusG(r,t|ro) is the probability density that a
particle initially at positionr, will be at positionr at timet
later. The initial condition for a continuous volumé (as
opposed to the one for a latticis G(r,0lr )= & —r), where
&(r —rg) is a Diracé function. Also, since there is no trapping

G(r tlro) satisfies a normalization condition G(x,t|xo) be the probability density that a system initially in
JvG(r trg)dr=1 for all t. (This paper uses £” to denote state>|<oowill be inpstatex a¥timet later. Particle survival )i/n
equal!ty for all values of a variable. In this case, e.g., thethe presence of gated traps will now be relatectat|x),
equation holds for alt=0.) under the assumption that the gated statéq,r) evolves as
As a specific example, G(rtlrg could be the 5 Markov process. A formalism for calculating Markovian
Green’s function for particle diffusion in a potentia(r).  particle survival with ungated traps already exiktd] and
This  particular  G(r,tlro) satisfies the evolution can pe applied directly to gated traps, if the positional
equation dG/dt=LG, where L is the second-order lin- Green's functionG(r t|r,) in the original formalism is re-
ear differential operatorlf(r)=—(V,-J)f(r), andJ is the  placed by the gated Green’s functi@ix,t|x,). The formal-
flux defined by the vector-valued operatadf(r)= ism is given below for the gated Green'’s functiGitx,t|x,),
—e D (1) V [ef*Df(r)]. but the original formalism can be recovered by substituting
The presence of traps introduces sink terms into the evgpositional Green's functionss(r tlr,) for gated Green's
lution equation. If, e.g., each positiorhas a trap of strength functionsG(x,t|x,) everywhere, changing's to r’s, and re-
c(r)=0 associated with it, the evolution equati@iG/st  placing( by V.
=G becomes&p/&t:ﬁp—c(r)p_ Here, p(r,t|r0) is the When traps are prese(gated or nc)t the formula
probability density that a particle initially at positiag will
be at positionr, untrapped, at timé later. The propagator
p(r.tlry) satisfies the same initial condition as the Green's
function G(r t|ry), p(r,Qrg)=48(r —ry), but does not satisfy a
normalization condition, since in gener@p(r t|ro)dr<1. XG(x,t=T[X)c(X)p(X, T|xo) )
A system with gated traps has, in addition to the above . . s :
particle-trap structure, a gating statehat evolves in a gat- gives the prqbablllty thqt a system initially In stagewill be
ing state spaceo={q, s, ... G}, Where N is finite. in statex, with the particle untrapped, at tintelater [15].

Above, the strength of an ungated trap depended only on th%quation(Z) indicates that the stat¢ has a trap of strength

particle positionr. In contrast, the strength of a gated trap C(X) associated with it
' T As an example without gatinchangex’s to r's every-
can now also depend on the gating stgteThus, when the b gatinghang y

. . where, when the Green'’s functiols(r t|ro) satisfies the
gating state become, the strength of the trap at position ¢,/ tion equationdG/dt=LG (£ being the second-order

becomesc(r), i=12,...,N. The gated trap strengths |inear differential operator defined aboyeEq. (2) for
c;(r)=c(q; ,r) are therefore a function of the “gated state” p(r tlro) is equivalent to the evolution equatiaip/dt=Lp
of the systenx=(q,r), an ordered pair specifying both the —c(r)p with the initial conditionp(r,0lro)=&(r —ry).

gating state and partiCIe pOSition. The gatEd ska@yolves As an examp|e with gating, E@) for p(x’t|xo) is equiva_
in a “gated state spacel)=0,XxV. Note carefully that the |ent to Eq.(1), when the gated trap strengths in E) are
preceding used the terms “gating state” and “gated state”taken ax:(X)=c(R) for X=R, , with gating in the(+) state,
to distinguish between andx=(q,r). andc(X)=0 for X=R_, with gating in the(—) state.

Gating models can be either stochastic or deterministic. Equation(2) is basically a mass balance equation and as
One example of a stochastic model, Poisson gating, has twguch has a combinatorial interpretation. Because the system
gating states, one active and the other blocked. The activie Markovian, the Chapman-Kolmogorov relation
state g;=(+) permits trapping, whereas the blocked state

ap_
7=£p_+ﬂop+—aop_, 1

that display the particle movement, the trapping, and the gat-
ing interconversion.
For a general gated system, let the gated Green’s function

t
P(X,t|Xg) =G(X,t|Xq) — deTdeX

g,=(—) inhibits it completely. In Poisson gating, the inter-

g G(x,t[xp)= | G(x,t=T|X)G(X,T|xp)dX )
conversions {)=(+) are Poisson processes with rate con- o

Bo
stantsay and B,. For brevity, the gated states=(=,r) will holds for any timeT with O<T=<t. In Eq. (2) for partial
be abbreviated to-. in the following. trapping, the system staftp(x,t|xo)] follows the evolution of

As a specific example of gated trapping, superimposinghe corresponding conservative systg&ix,t|xo)] until it is
Poisson gating on the evolution equatiép/t=L,—c(r)p  killed by trapping and becomes a “ghost.” Because of the
makes trap strengths switch frastr ,)=c(r) in the(+) state  Chapman-Kolmogorov E(d3), the integrand in Eq(2) rep-
to c(r_)=0 in the (—) state. Ifxy=(qg.r o) is the initial sys- resents the trajectories of ghosts that would have been in
tem state, defing..(r t|xo):=p(r- t|x,), where “:=" de- statex at timet but instead passed through a trapXaand
notes a definition. The ungated evolution equatipidt  were lost at timeT. The rate of loss per unit volume is
=Lp—c(r)p becomes a pair of coupled equations, c(X)p(X,T|xg).
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Equation(2) can solve many ungated radiation boundary BeyondM =1 or 2, the matrix inversion becomes tedious.

problems for a particle moving on a lifd4]. As shown

Most of this paper therefore considdvs=1, a single trap,

below, it can also solve many gating problems. Symmetriesnly. ForM =1, Eq. (5) yields

can sometimes reduce a problem om-@imensional con-

tinuum (d>1) to a problem on a line. When trapping sur-
faces do indeed reduce to trapping points, the following
analysis is applicable. It also applies with minor changes to

reaction-diffusion systems am-dimensional latticegd=1),

where all bodies are represented as geometric points. Sin

the analysis applies to problems drdimensional lattices, it
retains boldface vector notation.

First, let us specialize(x) in Eq. (2) to a linear combina-
tion of & functions:c(x)==M , k;8x—a,). When x; is finite,

the termk; 8(x—q;) represents the strength of a partially ab-

sorbing point trapa; . Solutions for fully absorbing points
can be derived by taking limitg;—o° in the following solu-

tions for partially absorbing points. FéA partially absorb-

ing point traps,

M
t
P(X,t|Xg) = G(X,t|Xg) — fodT;l G(x,t—Tla)

(4)

As an example, without gatin¢see the beginning of the
section for notatiop) whenG(r t|ro) is the ungated Green’s

X Kip(ai 1T|XO)'

function for diffusion with reflecting boundaries in a poten-

tial ¢(r), p(r.tro) in Eq. (4) provides a solution for the evo-
lution equation dp/dt=Lp with the initial condition

p(r,0rg)=8r—r, and the radiation boundary conditions

[(n-J)p(r,tro)]=4=rxip(a tlro), i=1,2,... N, wheren
is a unit normal into the partially absorbing surface ata,
away from the diffusion regionBoth the sign of] and the
normal direction are the opposite of those in Hél.) The

;<CA5(x,s|a+)(A3(a+ ,S|Xo)
1+ Ké(a+ ,sla;)

(6)

FA)(X:5|X0):(A3(X,S|X0)—

For gated trapping wittM =1, x=a, =(+,a) denotes a single

tfap atr=a, which can trap only when the system is in a

single active statg=(+). For ungated trapping, thet) is
redundant, so then we write_=a.

The probability the particle survives to tinhef it starts at
rois

it = [ pOxthg)ax. @

Since oG (xt|xo)dx=1 implies [,G(x,s|x;dx=s"%, Egs.
(6) and(7) give

xG(a, ,8|%o)
1+ Ké(a+ ,sla;)

1

. (8

:S(s|x0) =s~

The presentation now splits into two cases, depending on
whether or not particle movement without trapping has an
equilibrium probability distribution.

A. Systems without an equilibrium probability distribution

As a specific example, three-dimensional Brownian mo-
tion has no equilibrium probability distribution, since
lim;_.G(r,t|rg)=0 for all positionsr. Under the Brownian
motion, however, a uniform unit density evolves into a well-
defined equilibrium densityp(r)=Ilim,_..JvG(r,t|R)dR

radiation boundary condition is consistent with the mass balfyhich happens to be(r)=1]. Under any motion, and in

ance interpretation, since it forces the loss teq/p(a ,t|ro)
in Eq. (4) to equal the rate of fIOV\[(n~J)p(r,t|r0)]r:ai

gating applications, if the equilibrium density exists, it is
defined byp(x):=lim_..JvG(x,t|X)dR, whereX=(Q,R).

across the absorbing surfacerata; , just as a mass balance The integral is specifically ove¥ and not(), becausep(x)

interpretation requires.

needs to evolve from a undpatial concentration. Thug(x)

As a corresponding example with gating, Poisson gatingheeds to be independent of the initial gating $&t®, but
changes the ungated evolution into a pair of coupled equathis is usually the case in applications. The ungated situation

tions, dp,/dt=Lp,—Bop+agp- and dp_/ot=Lp_

+ BoPs — agp_ . p satisfies a radiation boundary condition;

p_ a reflecting one. Again, however, E() remains for-
mally the same, if it sets the trap strengtiX)=0 whenever
X=R_, with gating in the blocked—) state.

Many equations in this paper involve Laplace transforms,

which will be denoted by carets, i.€(s):= [ e~ S'f(t)dt.
Transform Eq.(4) and then sek=g (i=1,2,...,M). The
convolution property of Laplace transformi$6] yields M

does not suffer this complication, because théaR and
QO=V.
The equilibrium density satisfies

p(X)= jﬂe<x,t|xO>p<x0>dx0 ©

for all t=0.
As an example of an equilibrium density, for diffusion in

simultaneous linear equations. These can be solved fof potential with lim_...¢(r)=0, p(r)=e #%(") is stationary,

P(a,sxp) in terms of G(x,s|x) and G(a,sla) (i.j
=1,2,...,M) and then back substituted to obtain

B(X,5[x0) = G(x,5/x0) — [ k] G(x,5|a)]
X[+ x;G(a,sla) ] {G(a ,slx)]. (5)
The final three factors are, respectivelyxi, inverse

M XM, andM X1 matrices(Ref.[14] gives a detailed deri-
vation of Eq.(5).) Here, ;:=1 fori=], O otherwise.

sinceLp(r)=V,.{e #*D(r)=V [ef*"p(r)]}=0. In the
@Q
corresponding diffusion with Poisson gating Y=(+), the
Bo
equilibrium  probabilty of the (+) state s
ppg(+)=a0(a0+ﬁo)’1, whereas the equilibrium probability
of the (—) state iSpp(g(—):ﬁo(aoﬂL,Bo)*l. Thus ast—-,
ppg(r+)zppg(+)e_ﬁ¢ K andppg(rf):Ppg(_)e_ﬁ¢(r)v in-
dependent of the initial gating stée Q, as required.
A transformation of Eq(9) yields
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. - surfacer =a. In Eq. (2), spherical symmetry and the radi@l
s p(x)= f G(X,8[X) p(Xo)dXo. (100 functon  make the inner  spatial integral
° JydR G(r t=TIR)C(R)P(R, TIr )=k G(r,t—T|a)p(a,T|ro).
The rate of trapping starting from the equilibrium density Spherical symmetry therefore reduces the sphere to a single

p(X) is ‘point” trap along the_ radial_coordinate. Formally, the
strength «; &(r —g;) of this trap isk.qd(r —a), and formal

substitution into the equations following E@®) makes Eq.
(O =@ [ [1-Stxoloed. 1D (13 yield
The asymptotic rate of trappinig.=lim,_,.k(t), if it exists, Nap(S)=keq +(47Da) *(1+ays/D) "1 (16)

provides a rate constant for mean-field approximations t 11 1 .
chemical kinetics. The transform of Ed1l), standard theil k?ownéesullg6] kéth_keq+(AI7TR|0?(2M_1]CS|I§?\6VS di-
Laplace transform identitigsl6], and Eqs(8) and(10) then rectly from Eq.(16) and the general relatiok..”=\(0).
ield
y B. Systems with an equilibrium probability distribution

As an example without gating, consider diffusion in a
one-dimensional harmonic potentiah(r)=(1/2)cr?. The
particle movement has the evolution equatio/dt=
4 kp(a,;) Dalor(aG/or + BcrG), and an equilibrium probability dis-
=S (e, slan)’ (12 tribution p(r)=lim,_..G(r t|ro) exists[14].

Koldyslds In general, lep(x)=lim,_..G(x,t|x,) be the relevant equi-
Standard theorem4.7] showkmzlimtamk(t)=Iimsﬂosi<(s). librium pmb"?‘b'“ty dle.ns'ty’ sof%p(ﬁ)dlel.' We |mpI|C|t!y
Since many gating results are more easily phrased in ternfSSUMe. as is usual in cases of physical interest olats

of characteristic timesk;! than rates k., define ndependent of the initial state,. o .y
N(s):=[sk(s)] L. Thus Eq.(12) implies k. =\ (0), where The probability that a particle starting in the equilibrium
probability  distribution survives to timet s

k(S)ISfQ[Sfl—é(S|Xo)]P(Xo)dXo

) 1+«G(a, ,5a.) S(t)=fQS(t|x0)p(xo)dx0, where S(t|x,) is given in Eq.(7).
N(s)= . (13 Equations (8), (10, and (13) therefore show that
xp(as) S(5) = J o S(slo)p(x0)dx, equals
Some problems may require an untransformed expression for -1 -1
_ - s a s
k. 1=\ 0): S(s)=s"11- AKP( +) =s 11— —
1+ «G(a, ,sla;) K\(S)
* 17
1+« | G(a,,tla,)dt A A
Kl= ° _ (14) _Equgtio'n(1'7) reIat_esS(s) andX\(s) if a equilibrium prpbabil—
kp(ay) ity distribution exists. Note that although(x) has different

normalizations depending on whether or not an equilibrium

As an example without gating, consider three-dimensionakopapility distribution exists, Eq13) always defines\(s)
Brownian motion in the presence of a partially absorblngforma“y.

sphere of radiusa. The spherically symmetric Laplacian Standard  theorems [17] again imply that
V2f=r"2(glar)(r*f/or) specifies the problem mathemati- ;) =lim, _G(x.tjx;)=lim, ..sG(xsx;). Equation (8)

cally: the spherically symmetric reflecting Green's function gpows that the average time to reactia®,20 starting from
Gap(r.tlr) satisfiesdG/at=DV?G for r>a, and has are- 4 statex, is ’

flecting boundary §G/dr],-,=0 at the spherical surface.

Standard table§18] contain G5 (r,t|ro), and other tables o R R G(a, s|%o)
[16] contain its Laplace transform T(XO)ZJ S(t]xg)dt=S(0|xg) = lim| A\(S) - —————
0 s—0 p(a+)
Gap(r,sIro) - 19
ol Slho)= -—F7—=
8wDrroys/D (if the limit exist9, where the final equality in Eq18) fol-

lows from evaluating Eq(8) by continuity ats=0 and then
using Eq.(13). An alternative, untransformed expression for
7(Xp) is available from Eqgs(13) and (18)

r+ro—2a)yslD aysb-1
aysD+1

(19

x| oh¥0 1 ¢

1+Kf [G(a, ,t|a,)—G(ay ,t|xg)]dt
Without trapping, the equilibrium density starting from an 0

initial uniform unit density isp(r)=1. On the other hand, a
radiation boundary condition at the sphere’s surface gives
D[ap/&r],:a=keq(4wa2)’1p in the usual notation[6], Similarly, because of Eq(10), the mean survival time
which is equivalent to a trapping strength starting from equilibrium can be derived by averagirg,)
c(r)zkeq(47-ra2)’16(r—a) everywhere on the spherical over the equilibrium probability distributiop(xy)

7(Xo) = . (19

kp(a;)



2252 JOHN L. SPOUGE, ATTILA SZABO, AND GEORGE H. WEISS 54

. . examples that derive gated Green's functioBg(x,t[x0)
T= L) 7(Xo) p(Xo)dXo= lIM[A(s) —s™7]. (200 from the corresponding gating Green’s functid@&y,t|qo).
s—0
The rest of the paper simply referstas the “mean survival A. Poisson gating
time.” - . . o o
As with 7(x,), an untransformed expression fois avail- Let us revisit Poisson gating—)=(+), this time as a

able ; o - o :
possible model describing a ligand binding to a protein. For

" ease of linguistic reference, the gating of the ligand-protein
1+Kf [G(a. ,tla,)—p(a,)]dt system will be ascribed to the protein. Biologically, such
B 0 gating might be caused by fluctuations in the protein’s con-
t kp(a,) ' (22) formation, or by the binding of reversible blockers. What-
ever the cause, the “active” protein stdte) permits ligand
Consider again as an example diffusion in a onebinding, whereas the “blocked” protein state-) prevents
dimensional harmonic potentiai(r)=(1/2)cr?, with a trap  it.
atr=a=0. The reflecting Green’s functioB(r,s|r,) sat- The protein’s gating at time is completely specified by
isfies 9G/at=Dalar (9G/ar + BerG) for r>0, with the four gating Green's function®pq(=,t|=). Let Qqq(+,t[+)
boundary condition §G/dr],_,_,=0. When length and be the probability that the protein is active at tinte
time are rescaled sb = Bc=1, the reflecting Green’s func- given that it was active at time=0. Define the other three

tion Gy(a,s|la)=(1n2)(1/2s—1)![(1/2s—1/2)!]"* [14]. Green’s functions analogously. Sincé?pf(—,t|+)=1

Equation(13) then yields —Qpg(+ ,t|+), the Green’s functiolQ4(+,t|+) satisfies
172 dQpg(+,t[+)
Roi(8)= Kt %w) +%B(%,%s), 22 == BoQugl )+ ad 1= Qug(+ t]+)]

(24)

whereB(a,b) is the,B fpnction[}16]l. ng known resulf14] | ith the initial conditionQu(+,t| +)=1.
for the mean survival timey, =« “(37)~“+In 2 then follows Recall the equilibrium  probabilities pyq(+)=ag(aq

from Egs.(20) and (22). +80) - and ppy(—)= oy B . The solution to Eq(24)
is
ll. SURVIVAL RESULTS FOR SPECIFIC MODELS
OF GATED TRAPPING Qpg(+:tl+)=ppg(+) +ppg(—)e~ (0T Ft (25)
In accord with our original motivations, this section now Thys Qpq(— A +)=1-Qpq(+ A +)=ppg(—)[1

gives solutions for several simplified models in which the_e*(%*ﬂo)t]_ Interchanging the roles @f-) and(—) in the
system gating statg and particle positiom change indepen- go|ytion gives Qpg(—t| =) =ppg(—) + ppg(+) e (20 Fot
dently. Under this assumption, the positional Green’s funcyng Qug(+ .t =) =ppg(+)[1—e (0 Fot],

tion G(rt|ry), describing the particle movement in the ab-  gacause of Eq€6) and(23), Q(+,t|+) is the most im-
sence of trapping, is well defined without reference to theysrtant gating Green’s function in trapping problems with a

gating statey of the system. _ single active state(+). All four Green's functions
Since the formalism in Sec. Il applies to both ungated an(bpg(i t|+) were given here just for completeness.
gated systems, the usage db" there was deliberately am- “yost of the gating solutions in Sec. 11 require the Laplace

biguqus: “G” there denoted either a positional Green’s ¢ansform ofG4(a, tla.). Accordingly, Eqs.(23) and (25),
function G(r,t|ro) (for an ungated systemor a gated along with the shift property(s+a) = J Ze~S[e~*f(t)] dt

Green'’s functionG(x,t[xo) (for a gated systeim|n this sec- Laplace transforms, give the Poisson gated Green’s func-
tion, to differentiate positional Green’s functio(r,t|ro) tion

from gated Green’s function§(x,t[x,), G(x,t|xo) is sub-

scripted agG4(x,t[xo). Goo(r s ,8|Fos)=poa(+)G(r,8|ro)+ pog(—)
Let Q(q,t|qo) be the Green’s function for the gating state, pol T+ Slfo pp? (1SlFo)* ppg
i.e., Q(q,t|go) is the probability that if the gating state is XG(r,s+a+g|ry). (26)

initially qq, it will be g at timet later. When the changes of
the gating stat@ and the changes of the particle position The Laplace transforms of the other gated Green’s functions
are independent, the gated Green’s functi®g(xt|x,) for Gpg(r+ Slro+) can be similarly derived from the gating

x=(q,r) is a product Green’s fgnctionng(i,ﬂt) listed above. Note, however,
that only Gp4(r ;. ,S|ro+) is required in Eq(13).
Gg(X:t]x0)=Q(q,t|ao) G(r,t[rg). (23 For any initial gating stateqg, lim;_..Qpg(+,t/0o)

=ppg(+), by letting t—o in Quq(+,t|+)=ppg(+)+ppq
In analogy to gating and gated statgsandx=(q,r), we  (—)e (®0*Aot [Eq. (25)] and the equatiorQpq(+,t|—)
refer to the *“gating” and “gated” Green’s functions =ppg(+)[1—e*(“0*ﬂo)‘]. Thus regardless of initial gating
Q(q.tlgy) and Gg(x,t|x0). As stated above, Eq23) gives statds), the independence of gating and particle movement
Gy(x.t[xo) @ subscript ‘§” to distinguish it from the posi- imply that pyq(a,)=pp4(+)p(@) for an initial unit particle
tional Green’s functiorG(r,t|ry). The following gives some density. For a gated trap at=a, the trapping strength is
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c(r,)=«d&(r—a) in the active gating statet), andc(r_)=0 éd (r4,slros)
otherwise. Sincep,q(—)/ppg(+)=Bd/ay, Ed. (26) substi- g A
tuted in Eq.(13) gives =p1(+)po(+)G(r,s|rg)

+p1(+)p2(—)é(r,s+ ay+ Bo|ro)

)A‘pg(s) R
+p1(—)pa(+)G(r,5+ as+ By|ro)
Kppg(+)P(a) (30)
2 Bo ~ In double Poisson gating,. (or ry,) denotes the gated sys-
_7\(5)+a_0 Ms+ao+ Bo), 27 tem state with the particle at position(or r), with boththe

protein and the ligand active. Although other double gated

- o .. Green's functions could be derived, only EgO) is required
whereA(s) for the ungated problem is given by substituting i, £q. (13).
the spatial Green’s functio@(r t|ro) and the ungated equi-  proceeding by analogy to Poisson gating shows that re-
librium density p(a) into Eq. (13). Because of the definition gardless of the initial gating staig, lim,_..Qqq(+,t|do)
N(s):=[sk(s)] !, Eq. (27) implicitly relates the trans- =pi(+)po(+), so Pdg(a+)=P1(+)Pz(+)P(a)- For a gated
formed rates of gated and ungated trappkig), in agree- trap atr=a, the trapping strength is(r_.)=«dr—a) in the
ment with previous, more specialized results about diffusiveactive gating staté+), andc(r _)=0 otherwise. With double

particle movement§1,13]. Poisson gating, Eq30) substituted in Eq(13) gives
When the asymptotic rate of trappinig.=lim_.k(t) 3 8

=limg_o sk(s) exists, settings=0 in Eq. (27) gives the f\dg(s):{\(s)Jr 2L N(s+ ay+ Br) + =2 N(s+ ap+ By)

gated characteristic timke, X =Apg(0) In terms of the un- ay ay

p 00
gated characteristic timle,, - A\(0) and\(s) for the ungated

problem N B1B2 »

)\(S+a1+ﬂ1+a2+ﬁz). (31)

Qa1

1 .1 Bo-~ Again, Eq.(31) relates the transformed rates of trappﬁ(g)
Kpge =K. "+ —= Nao+ Bo)- (28)  for the double gated and ungated problems.
0 When the asymptotic rate of trappirg.=Ilim_.k(t)
. o . . =limg_, sk(s) exists, settings=0 in Eq. (31) gives the
Again, the above derivation shows that E28) is valid not  yople gated characteristic tiﬁ@glekdg(o) in terms of

only for diffusion, but also other types of particle movement. o ungated characteristic time, 1=A(0) and A(s) for the
Similarly, when the gated system has an equilibriumungated problem

probability distribution, taking the limit as—0 in Eq. (20)

shows that the mean survival times also obey @) with

the gated survival time-pgzIimsﬁo[)\pg(s)—sfl] and the

ungated survival time=limg_ o[ A(S) — s~ ] replacingk gglw

andkwl.' ) . + Gk )’;(a1+181+ at B). (32
Equations(16) and (22) can be used to provide specific a;ap

solutions for Poisson gatingand for double and multiple

Poisson gating, below The result for Poisson gating is

known[1,5,6,13.

Kageo =k '+ b Nay+By)+ s Naz+ By)
a; an

When the particle movement has an equilibrium probability
distribution, by analogy with single Poisson gating results,
taking the limit ass—0 in Eq. (20) shows that the mean
survival times also obey E¢32) with the double gated mean

B. Double Poisson gating survival time 74q=1ims_o[Agg(S) S~ '] and the ungated
Equation(25) is easily extended to double Poisson gating,f“eamfoFViVall timer=lims_o[A(s) —s '] replacingk gg
where both the protein and the ligand are Poisson gated. [ANdK..~.
double Poisson gating, the active stéate requires that both

the protein and that the ligand be active. In an obvious ex- C. Multiple Poisson gating
tension of notation, with subscripts “1” and “2" referring Similarly, in multiple Poisson gating, the active stéte)
to protein and ligand, Eq25) gives requiresJ Poisson components to be active

Qug(+.t|+)=[p1(+)+py(—)e (A

J
= . (—=)e (ejtB)t
pa(+)4 pol Y- (02BN, (29 Qg +:tl+)=11 Tp(+)+py(—)e 741 (33

Just as in single or double Poisson gating, 88) permits
When either the protei3,=0) or the ligand(B8,=0) does  Gp(r, S|ro.) to be written down explicitly from Eq(23).
not gate, Eq(29) reduces to Eq(25), as indeed it should. By an easy extension of the above results, the multiple
Equations(23) and (29) therefore yield the double gated gating analogue of Eq.30) can be written out, and again,
Green'’s function regardless of the initial gating stésg it can be shown that
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lim;_,..Qmg(+.t|do) =p1(+)p2(+) - ps(+) and so the shift property of Laplace transforms and E85) yield
Pmg(@s)=p1(+)pA+) - ps(+)p(a). Gy(ri Slro;) as a linear combination ofG(r,s+ Ajilro),
Equation(31) generalizes to i=1,2,...,N whenL can be diagonalized.
The previous Poisson gated models are special cases of

J Markovian gating when the system state=(+) is active,
)A\mg(S):)A\(S)JFE ﬁ X(s+ aj+B;) with the other states; LaII blocked (=2,... N). In this
=1 | a; case,Ggy(r; ,t|ros)=[e""11,G(r t|ro). For a gated trap at
3 8 B r=a, the trapping str?ng)]th is(rz)jxa(r—a) in the single
Pj Pk > L active gating state;;=(+), andc(r;)=0 for the other states
+jJ<Zl {aj ay NSt aj+ B+ aict Bl g; (j=2,... N), Markovian gating has a similar solution to
i#k the previous Poisson gated models. Substitution of the

Laplace transform ofGgy(a, ,tla.)=[e""];;G(at|a) into
) (34 Eq. (13) produces formulas of sufficient complexity, how-
ever, that they need not appear in this paper.

+ N

J
s+j§=‘,l (a;+B;)

14

=1 «aj

When the asymptotic rate of trapping..=lim_.k(t)
=limg_o sk(s) exists, settings=0 in Eq. (34) relates the
multiple gated and ungated characteristic times just as it did This paper provides a simple, unified formalism for solv-
for single and double gated characteristic times. When thﬁ]g problems with a single moving particle in the presence of
particle movement has an equilibrium probability distribu- gated static traps, when gating is independent of the particle
tion, taking the limit as—0 in Eqg.(20) similarly relates the  movement. Smoluchowski mean-field rate constdts9)

IV. DISCUSSION

multiple gated and ungated mean survival times. depend on solving single particle, single trap problems. Thus
Egs. (28), (32), and (34) implicitly give rate constants for
D. Markovian gating with a single active state single[5,6], double, and multiple Poisson gating.

) ] _ ] This paper’s formalism is general and simple, and helps
Single, double, and multiple Poisson gating are allipgicate which gating problems are likely to have explicit
specializations of this model, which assumes a multistatgg,tions.
random walk model for the gating stat. Consider a The gating solutions in Sec. Il use the Laplace transform
gating state fluctuating betweerN different states of the reflecting Green’s functios(r,s|r,) with arbitrary
Q;=0,= . . . =Qy according to a system of linear differen- 5,quments. Implicitly, if an equilibrium probability distribu-

tial equations with constant coefficients tion exists, they also us8(s|ro) from Eq. (17), also with
dQ(a;,t|q) arbitrary arguments. This indicates that solving arbitrary gat-

{é =L[Q(q; t|q)]. (35) ing problems requires knowledge@t least implicitly of

dt G(r,s|ro) or S(s|ry). Note, however, that Eq$14), (19), and

(21) can be used to calculate rate constants and mean sur-
g is an arbitrary initial gating state, and the dimensions of thevival times numerically from the gating Green’s functions
three matrices in Eq(35) areNx1, NxN, andNx1. The  Gg(a, t|xo) without recourse to analytic Laplace transforma-
elements of the matrik =[L;;]yxn give the rate constants tion. This is useful, because the gating Green’s function
Lj; of the interconversiong;—g; (i,j=1,2,...,N). Single G4(X,t[x0)=Q(q,t|ge)G(r t|ro) in Eq. (23) may be accessible
Poisson gating, e.g., is Markovian gating witN=2,  without its also having a simple Laplace transform.

g1=(+), go=(-), andLijz(—l)i+j‘1[5lj,8+ d,5a], where This paper’s formalism requires more than just knowl-
again Kronecker's delta; =1 if i=j and O otherwise. Note edge ofQ(q,t|qe) andG(r t|ry), however. It is based on Eq.
that the{L;;} may be negative. (2), which requires the system evolution as a whole to be
Using standard method&1] to solve Eq.(35) subject to  Markovian. Thus, e.g., the formalism does not directly apply
the initial conditionsQ(q; ,0lg;)=4; , yields to coherent gatingb,6], a deterministic gating where the trap
is active and blocked over predetermined time periods. Al-
[Q(q; ,t|qj)]=e“. (36) though the coherent gating Green’s functi@iq,t|qy) is

simply a square switching function, when particle movement
) ) . Is considered, the memory in coherent gating leads to a con-
s Q(gi ta;) 3 the (,j)th element of the matrix in,um of trapping states in E€R) and an integral equation.
e~ =3, _o(Lt)"/kl. When the rate coefficient$Lij} and | other non-Markovian gating problems, i.e., other problems
equilibrium distributionp(q) satisfy the detailed balance con- \yhere the transition times are not described by a first-order
dition LijP(Qj)=|-ji_/i(Qi)y the matrixL can be diagonalized jnetic scheme, Eq2) also yields integral equations. Simi-
to A=[5;A;]=S'LS. Computinge''=Se™S™* is then  |arly, problems with several diffusing particles can be trans-
particularly easy. formed into problems with a single particle diffusing in a
Let x=(q;.r)=r; (or x=rq;) denote the system state high dimensional space, and E(®) is again an integral
where the particle is at position (or ro) while the gating  equation. Unfortunately, these integral equations appear to
state isg; . Since the matrix of gated Green’s functions is  |gck analytic solutions.
Other types of memory can be embedded into a Markov-
[Gy(ri tlro))1=[Q(a; t|a;)]G(r,t|ro) =e“'G(r.,t|ry), ian description without significant complications, however.
3 In double Poisson gating, e.g., EQ9 for the gating
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Green’s functionng(+,t|+) appears superficially non- pendentlygated traps have at least four distinct gating states
Markovian. Indeed, e.g., knowing that binding is blocked++, +—, —+, and——, of which the first three are active,
does not determine whether it is the protein or the ligand thainh general requiring at leadt =3 in Eq. (5).
is blocked. Knowing that the binding is active defines a re- In many physical situations, e.g., protein gating and
generative(Markoviar) gating state; however, if trapping is blocking chemical reactions, gating is independent of par-
active, both the protein and the ligand must be active. Thusicle movement. On the other hand, a related situation called
double Poisson gating was solved by implicitly embedding it“dynamic trapping” does couple particle movement and gat-
into a Markovian gating problem with one active gatinging. Like the gating problems here, dynamic trapping prob-
state. This solution can also be developed explicitly with Eqlems can be solvef?,3] by extending ungated trapping for-
(5), which handles multiple discrete trapping states. malisms [22]. Unlike the gating solutions here, however,
For simplicity, this paper focused on the cade=1in Eq.  those dynamic trapping solutions seem to require particle
(5), but solutions withM =2 are also practicable, since they movement and gating to be coupled. On the other hand, al-
involve inverting only 22 matrices. The cas® =2 pro- though Eq.23) assumes the independence of particle move-
vides a solution for the following problemét) a single trap ment and gating, the assumption was not crucial when Sec. Il
fluctuating between two positive strengtb§,)=x;8r—a)  extended its ungated formalisii4] to gated trapping. Thus
and c(ry)=r,d(r —a), with c(r;)=0 for other stateg);; and it will be interesting to see if the present formalism can be
(2) two separate traps, one gated, the other not. Twde-  applied to dynamic trapping as well.
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