
ARTICLES

Single-particle survival in gated trapping

John L. Spouge,1,* Atilla Szabo,2 and George H. Weiss3
1National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland 20894,

2Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health,
Bethesda, Maryland 20892

3Physical Sciences Laboratory, Division of Computer Research and Technology, National Institutes of Health,
Bethesda, Maryland 20892
~Received 21 March 1996!

Any chemical reactionA*1B→C whose progress is modulated by another reaction of the formA*�A is
said to be gated. The gating reactionA*�A represents a reversible fluctuation from a active stateA* to an
inactive stateA that does not react withB. Reversibly blocked chemical reactions, conformational fluctuations
in proteins, and reactions occurring within biomembranes or involving biological molecules have all been
studied recently in contexts related to gating. This paper gives a unified, general formalism for calculating
trapping rates and mean survival times of gated reactions. It also presents and solves some gating models.
Although most of its explicit formulas are for problems with a single particle moving in the presence of a
single gated, static trap, the method of solution is formally applicable to problems involving several particles
and several point traps, even when the gating kinetics are non-Markovian. Those cases give integral equations
that cannot be solved in closed form, however. This paper’s results also include the bimolecular rate constant
for a gated ligand binding to a gated protein.@S1063-651X~96!02509-3#

PACS number~s!: 0.5.40.1j, 05.60.1w, 02.50.Ey, 82.20.2w

I. INTRODUCTION

Any chemical reactionA*1B→C whose progress is
modulated by another reaction of the formA*�A is said to
be gated. The gating reactionA*�A represents a reversible
fluctuation from an active stateA* to an inactive stateA that
does not react withB. In some situations, a fourth speciesD
may be responsible for the interconversion:A*1D�A.
When other effects due to the blockerD can be neglected,
however, this reversible chemical blocking is completely
equivalent to gating. Several recent papers have investigated
gating@1#, dynamic trapping@2,3#, or other related problems
@4#.

Early studies of gating@5,6# derived Smoluchowski mean-
field rate constants@7–9# for a ligand binding to a gated
protein. Gating has also been studied in other biological con-
texts, e.g., reactions occurring within biomembranes@3# or
small molecules migrating through heme proteins@4#. Medi-
cal therapies also can involve blocking chemical reactions,
and in fact the failure of an HIV blocker in clinical trials
~e.g.,@10#! originally motivated the present investigation. Al-
though most gating and blocking models do not change the
universality class of a chemical reaction@11# ~e.g., they
rarely change algebraic asymptotics into exponential ones!,
they are worthy of study because they can have profound
practical implications, particularly in medical therapy, just
by changing effective reaction rate constants.

This paper gives a unified, general formalism for calcu-

lating trapping rates and mean survival times for a restricted
class of gated reactions. Our original motivation, which was
to determine bimolecular Smoluchowski mean-field rate con-
stants@7–9# for a particular class of gated reactions, led this
paper to focus on the survival of a single moving particle in
the presence of a single, gated, static trap. Much of the paper
therefore assumes that particle movement and gating are in-
dependent, although this restriction is inessential in our
method of solution. The method combines particle move-
ment and gating into a single Markov process whose states
are ordered pairs containing both the particle position and the
gating state at timet @1–3,12,13#. Methods commonly used
for analyzing Markovian trapping then furnish a solution
@14#.

The plan of this paper follows. Section II gives a formal-
ism for solving both ungated and gated trapping in Markov-
ian systems. Section III then describes some gating Green’s
functions, which are used to derive trapping rates, rate con-
stants, and mean survival times for the corresponding gating
models. One of these formulas determines the rate constant
for a gated ligand binding to a gated protein. The Discussion
then delineates the range of our solutions and several prob-
lems for future consideration.

II. GENERAL SURVIVAL RESULTS

The main result in this section is Eq.~2!, an integral equa-
tion for the propagatorp~r ,t ur0! in gated trapping. Gating
solutions are obtained from Eq.~2! by incorporating both
particle movement and the gating state into a general formal-
ism for solving Markovian trapping. Results are conve-
niently divided into two cases, depending on whether or not
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the particle movement yields an equilibrium probability den-
sity in the absence of traps.

LetG~r ,t ur0! be any Green’s function that describes time-
homogeneous Markovian particle movement in a space with-
out traps. ThusG~r ,t ur0! is the probability density that a
particle initially at positionr0 will be at positionr at time t
later. The initial condition for a continuous volumeV ~as
opposed to the one for a lattice! isG~r ,0ur0!5d~r2r0!, where
d~r2r0! is a Diracd function. Also, since there is no trapping
G~r ,t ur0! satisfies a normalization condition
*VG~r ,t ur0!dr[1 for all t. ~This paper uses ‘‘[’’ to denote
equality for all values of a variable. In this case, e.g., the
equation holds for allt>0.!

As a specific example,G~r ,t ur0! could be the
Green’s function for particle diffusion in a potentialf~r !.
This particular G~r ,t ur0! satisfies the evolution
equation ]G/]t5LG, where L is the second-order lin-
ear differential operatorLf ~r !52~¹r•J!f ~r !, and J is the
flux defined by the vector-valued operatorJf (r )5
2e2bf(r )D(r )¹ r@e

bf(r ) f (r )#.
The presence of traps introduces sink terms into the evo-

lution equation. If, e.g., each positionr has a trap of strength
c~r !>0 associated with it, the evolution equation]G/]t
5LG becomes]p/]t5Lp2c~r !p. Here, p~r ,t ur0! is the
probability density that a particle initially at positionr0 will
be at positionr , untrapped, at timet later. The propagator
p~r ,t ur0! satisfies the same initial condition as the Green’s
functionG~r ,t ur0!, p~r ,0ur0!5d~r2r0!, but does not satisfy a
normalization condition, since in general*Vp~r ,t ur0!dr<1.

A system with gated traps has, in addition to the above
particle-trap structure, a gating stateq that evolves in a gat-
ing state spaceVQ5$q1,q2, . . . ,qN%, where N is finite.
Above, the strength of an ungated trap depended only on the
particle positionr . In contrast, the strength of a gated trap
can now also depend on the gating stateqi . Thus, when the
gating state becomesqi , the strength of the trap at positionr
becomesci~r !, i51,2, . . . ,N. The gated trap strengths
ci~r !5c~qi ,r ! are therefore a function of the ‘‘gated state’’
of the systemx5~q,r !, an ordered pair specifying both the
gating state and particle position. The gated statex evolves
in a ‘‘gated state space’’V5VQ3V. Note carefully that the
preceding used the terms ‘‘gating state’’ and ‘‘gated state’’
to distinguish betweenq andx5~q,r !.

Gating models can be either stochastic or deterministic.
One example of a stochastic model, Poisson gating, has two
gating states, one active and the other blocked. The active
stateq15~1! permits trapping, whereas the blocked state
q25~2! inhibits it completely. In Poisson gating, the inter-

conversions (2)

b0

a0
(1) are Poisson processes with rate con-

stantsa0 andb0. For brevity, the gated statesx5~6,r ! will
be abbreviated tor6 in the following.

As a specific example of gated trapping, superimposing
Poisson gating on the evolution equation]p/]t5Lp2c~r !p
makes trap strengths switch fromc~r1!5c~r ! in the~1! state
to c~r2!50 in the ~2! state. Ifx05~q0,r0! is the initial sys-
tem state, definep6~r ,t ux0!:5p~r6 ,t ux0!, where ‘‘:5’’ de-
notes a definition. The ungated evolution equation]p/]t
5Lp2c~r !p becomes a pair of coupled equations,

]p1

]t
5Lp12c~r !p12b0p11a0p2 ,

]p2

]t
5Lp21b0p12a0p2 , ~1!

that display the particle movement, the trapping, and the gat-
ing interconversion.

For a general gated system, let the gated Green’s function
G~x,t ux0! be the probability density that a system initially in
statex0 will be in statex at time t later. Particle survival in
the presence of gated traps will now be related toG~x,t ux0!,
under the assumption that the gated statex5~q,r ! evolves as
a Markov process. A formalism for calculating Markovian
particle survival with ungated traps already exists@14# and
can be applied directly to gated traps, if the positional
Green’s functionG~r ,t ur0! in the original formalism is re-
placed by the gated Green’s functionG~x,t ux0!. The formal-
ism is given below for the gated Green’s functionG~x,t ux0!,
but the original formalism can be recovered by substituting
positional Green’s functionsG~r ,t ur0! for gated Green’s
functionsG~x,t ux0! everywhere, changingx’s to r ’s, and re-
placingV by V.

When traps are present~gated or not!, the formula

p~x,tux0!5G~x,tux0!2E
0

t

dTE
V
dX

3G~x,t2TuX!c~X!p~X,Tux0! ~2!

gives the probability that a system initially in statex0 will be
in statex, with the particle untrapped, at timet later @15#.
Equation~2! indicates that the stateX has a trap of strength
c~X! associated with it.

As an example without gating~changex’s to r ’s every-
where!, when the Green’s functionG~r ,t ur0! satisfies the
evolution equation]G/]t5LG ~L being the second-order
linear differential operator defined above!, Eq. ~2! for
p~r ,t ur0! is equivalent to the evolution equation]p/]t5Lp
2c~r !p with the initial conditionp~r ,0ur0!5d~r2r0!.

As an example with gating, Eq.~2! for p~x,t ux0! is equiva-
lent to Eq.~1!, when the gated trap strengths in Eq.~2! are
taken asc~X!5c~R! for X5R1 , with gating in the~1! state,
andc~X!50 for X5R2 , with gating in the~2! state.

Equation~2! is basically a mass balance equation and as
such has a combinatorial interpretation. Because the system
is Markovian, the Chapman-Kolmogorov relation

G~x,tux0!5E
V
G~x,t2TuX!G~X,Tux0!dX ~3!

holds for any timeT with 0<T<t. In Eq. ~2! for partial
trapping, the system state@p~x,t ux0!# follows the evolution of
the corresponding conservative system@G~x,t ux0!# until it is
killed by trapping and becomes a ‘‘ghost.’’ Because of the
Chapman-Kolmogorov Eq.~3!, the integrand in Eq.~2! rep-
resents the trajectories of ghosts that would have been in
statex at time t but instead passed through a trap atX and
were lost at timeT. The rate of loss per unit volume is
c~X!p~X,Tux0!.
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Equation~2! can solve many ungated radiation boundary
problems for a particle moving on a line@14#. As shown
below, it can also solve many gating problems. Symmetries
can sometimes reduce a problem on ad-dimensional con-
tinuum ~d.1! to a problem on a line. When trapping sur-
faces do indeed reduce to trapping points, the following
analysis is applicable. It also applies with minor changes to
reaction-diffusion systems ond-dimensional lattices~d>1!,
where all bodies are represented as geometric points. Since
the analysis applies to problems ond-dimensional lattices, it
retains boldface vector notation.

First, let us specializec~x! in Eq. ~2! to a linear combina-
tion of d functions:c~x!5( i51

M k id~x2ai!. Whenkj is finite,
the termkid~x2ai! represents the strength of a partially ab-
sorbing point trapai . Solutions for fully absorbing points
can be derived by taking limitski→` in the following solu-
tions for partially absorbing points. ForM partially absorb-
ing point traps,

p~x,tux0!5G~x,tux0!2E
0

t

dT(
i51

M

G~x,t2Tuai !

3k i p~ai ,Tux0!. ~4!

As an example, without gating~see the beginning of the
section for notation!, whenG~r ,t ur0! is the ungated Green’s
function for diffusion with reflecting boundaries in a poten-
tial f~r !, p~r ,t ur0! in Eq. ~4! provides a solution for the evo-
lution equation ]p/]t5Lp with the initial condition
p~r ,0ur0!5d~r2r0! and the radiation boundary conditions
@(n•J)p(r ,tur0)# r5ai

5k i p(ai ,tur0), i51,2, . . . ,N, wheren
is a unit normal into the partially absorbing surface atr5ai
away from the diffusion region.~Both the sign ofJ and the
normal direction are the opposite of those in Ref.@6#.! The
radiation boundary condition is consistent with the mass bal-
ance interpretation, since it forces the loss termk i p~ai ,t ur0!
in Eq. ~4! to equal the rate of flow@(n•J)p(r ,tur0)# r5ai
across the absorbing surface atr5ai , just as a mass balance
interpretation requires.

As a corresponding example with gating, Poisson gating
changes the ungated evolution into a pair of coupled equa-
tions, ]p1/]t5Lp12b0p11a0p2 and ]p2/]t5Lp2

1b0p12a0p2 . p1 satisfies a radiation boundary condition;
p2 a reflecting one. Again, however, Eq.~2! remains for-
mally the same, if it sets the trap strengthsc~X!50 whenever
X5R2 , with gating in the blocked~2! state.

Many equations in this paper involve Laplace transforms,
which will be denoted by carets, i.e.,f̂ (s):5* 0

`e2stf (t)dt.
Transform Eq.~4! and then setx5ai ( i51,2, . . . ,M ). The
convolution property of Laplace transforms@16# yields M
simultaneous linear equations. These can be solved for
p̂~ai ,sux0! in terms of Ĝ~x,sux0! and Ĝ~ai ,suaj ! ( i , j
51,2, . . . ,M ) and then back substituted to obtain

p̂~x,sux0!5Ĝ~x,sux0!2@k j Ĝ~x,suaj !#

3@d i j1k j Ĝ~ai ,suaj !#21@Ĝ~ai ,sux0!#. ~5!

The final three factors are, respectively, 13M , inverse
M3M , andM31 matrices.~Ref. @14# gives a detailed deri-
vation of Eq.~5!.! Here,di j :51 for i5 j , 0 otherwise.

BeyondM51 or 2, the matrix inversion becomes tedious.
Most of this paper therefore considersM51, a single trap,
only. ForM51, Eq. ~5! yields

p̂~x,sux0!5Ĝ~x,sux0!2
kĜ~x,sua1!Ĝ~a1 ,sux0!

11kĜ~a1 ,sua1!
. ~6!

For gated trapping withM51, x5a15~1,a! denotes a single
trap at r5a, which can trap only when the system is in a
single active stateq5~1!. For ungated trapping, the~1! is
redundant, so then we writea15a.

The probability the particle survives to timet if it starts at
r0 is

S~ tux0!:5E
V
p~X,tux0!dX. ~7!

Since *VG~x,t ux0!dx[1 implies *VĜ~x,sux0!dx5s21, Eqs.
~6! and ~7! give

Ŝ~sux0!5s21F12
kĜ~a1 ,sux0!

11kĜ~a1 ,sua1!
G . ~8!

The presentation now splits into two cases, depending on
whether or not particle movement without trapping has an
equilibrium probability distribution.

A. Systems without an equilibrium probability distribution

As a specific example, three-dimensional Brownian mo-
tion has no equilibrium probability distribution, since
limt→`G(r ,tur 0)50 for all positionsr . Under the Brownian
motion, however, a uniform unit density evolves into a well-
defined equilibrium densityr(r )5 limt→`*VG(r ,tuR)dR
@which happens to ber~r ![1#. Under any motion, and in
gating applications, if the equilibrium density exists, it is
defined byr(x):5 limt→`*VG(x,tuX)dR, whereX5~Q,R!.
The integral is specifically overV and notV, becauser~x!
needs to evolve from a unitspatialconcentration. Thusr~x!
needs to be independent of the initial gating state~s! Q, but
this is usually the case in applications. The ungated situation
does not suffer this complication, because thenX5R and
V5V.

The equilibrium density satisfies

r~x![E
V
G~x,tux0!r~x0!dx0 ~9!

for all t>0.
As an example of an equilibrium density, for diffusion in

a potential with limt→`f(r )50, r(r )5e2bf(r ) is stationary,

sinceLr~r !5¹r . $e2bf(r )D(r )5¹ r@e
bf(r )r(r )#%[0. In the

corresponding diffusion with Poisson gating (2)

b0

a0
(1), the

equilibrium probability of the ~1! state is
rpg~1!5a0~a01b0!

21, whereas the equilibrium probability
of the ~2! state isrpg~2!5b0~a01b0!

21. Thus ast→`,
rpg(r1)5rpg(1)e2bf(r ) andrpg(r2)5rpg(2)e2bf(r ), in-
dependent of the initial gating state~s! Q, as required.

A transformation of Eq.~9! yields
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s21r~x!5E
V
Ĝ~x,sux0!r~x0!dx0 . ~10!

The rate of trapping starting from the equilibrium density
r~x! is

k~ t !5~d/dt!E
V

@12S~ tux0!#r~x0!dx0 . ~11!

The asymptotic rate of trappingk`5limt→`k(t), if it exists,
provides a rate constant for mean-field approximations to
chemical kinetics. The transform of Eq.~11!, standard
Laplace transform identities@16#, and Eqs.~8! and~10! then
yield

k̂~s!5sE
V

@s212Ŝ~sux0!#r~x0!dx0

5s21
kr~a1!

11kĜ~a1 ,sua1!
. ~12!

Standard theorems@17# showk`5limt→`k(t)5lims→0sk̂(s).
Since many gating results are more easily phrased in terms
of characteristic times k`

21 than rates k` , define
l̂(s):5[sk̂(s)]21. Thus Eq.~12! implies k `

215l̂~0!, where

l̂~s!5
11kĜ~a1 ,sua1!

kr~a1!
. ~13!

Some problems may require an untransformed expression for
k `

215l̂~0!:

k`
215

11kE
0

`

G~a1 ,tua1!dt

kr~a1!
. ~14!

As an example without gating, consider three-dimensional
Brownian motion in the presence of a partially absorbing
sphere of radiusa. The spherically symmetric Laplacian
¹2f5r22(]/]r )(r 2] f /]r ) specifies the problem mathemati-
cally: the spherically symmetric reflecting Green’s function
G3D(r ,tur 0) satisfies]G/]t5D¹2G for r.a, and has a re-
flecting boundary []G/]r ] r5a50 at the spherical surface.
Standard tables@18# containG3D(r ,tur 0), and other tables
@16# contain its Laplace transform

Ĝ3D~r ,sur 0!5
1

8pDrr 0As/D

3Fe2ur2r0uAs/D1e2~r1r022a!As/D
aAs/D21

aAs/D11
G .

~15!

Without trapping, the equilibrium density starting from an
initial uniform unit density isr(r )[1. On the other hand, a
radiation boundary condition at the sphere’s surface gives
D[ ]p/]r ] r5a5keq(4pa2)21p in the usual notation@6#,
which is equivalent to a trapping strength
c(r )5keq(4pa2)21d(r2a) everywhere on the spherical

surfacer5a. In Eq. ~2!, spherical symmetry and the radiald
function make the inner spatial integral
*VdR G~r ,t2TuR!c~R!p~R,Tur0!5keqG(r ,t2Tua)p(a,Tur 0).
Spherical symmetry therefore reduces the sphere to a single
‘‘point’’ trap along the radial coordinate. Formally, the
strengthkid~r2ai! of this trap iskeqd(r2a), and formal
substitution into the equations following Eq.~2! makes Eq.
~13! yield

l̂3D~s!5keq
211~4pDa!21~11aAs/D !21. ~16!

The known result@6# k 3D`
21 5k eq

211(4pR0D)
21 follows di-

rectly from Eq.~16! and the general relationk `
215l̂~0!.

B. Systems with an equilibrium probability distribution

As an example without gating, consider diffusion in a
one-dimensional harmonic potentialf(r )5(1/2)cr2. The
particle movement has the evolution equation]G/]t5
D]/]r (]G/]r1bcrG), and an equilibrium probability dis-
tribution r~r !5limt→`G~r ,t ur0! exists@14#.

In general, letr~x!5limt→`G~x,t ux0! be the relevant equi-
librium probability density, so*Vr~x!dx51. We implicitly
assume, as is usual in cases of physical interest, thatr~x! is
independent of the initial statex0.

The probability that a particle starting in the equilibrium
probability distribution survives to time t is
S(t)5*VS~t ux0!r~x0!dx0, whereS~t ux0! is given in Eq.~7!.
Equations ~8!, ~10!, and ~13! therefore show that
Ŝ(s)5*VŜ~sux0!r~x0!dx0 equals

Ŝ~s!5s21F12
s21kr~a1!

11kĜ~a1 ,sua1!
G5s21F12

s21

kl̂~s!
G .
~17!

Equation~17! relatesŜ(s) andl̂~s! if a equilibrium probabil-
ity distribution exists. Note that althoughr~x! has different
normalizations depending on whether or not an equilibrium
probability distribution exists, Eq.~13! always definesl̂~s!
formally.

Standard theorems @17# again imply that
r~x!5limt→`G~x,t ux0!5lims→`sĜ~x,sux0!. Equation ~8!
shows that the average time to reaction@19,20# starting from
a statex0 is

t~x0!5E
0

`

S~ tux0!dt5Ŝ~0ux0!5 lim
s→0

F l̂~s!2
Ĝ~a1 ,sux0!

r~a1!
G

~18!

~if the limit exists!, where the final equality in Eq.~18! fol-
lows from evaluating Eq.~8! by continuity ats50 and then
using Eq.~13!. An alternative, untransformed expression for
t~x0! is available from Eqs.~13! and ~18!

t~x0!5

11kE
0

`

@G~a1 ,tua1!2G~a1 ,tux0!#dt

kr~a1!
. ~19!

Similarly, because of Eq.~10!, the mean survival time
starting from equilibrium can be derived by averagingt~x0!
over the equilibrium probability distributionr~x0!
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t5E
V

t~x0!r~x0!dx05 lim
s→0

@ l̂~s!2s21#. ~20!

The rest of the paper simply refers tot as the ‘‘mean survival
time.’’

As with t~x0!, an untransformed expression fort is avail-
able

t5

11kE
0

`

@G~a1 ,tua1!2r~a1!#dt

kr~a1!
. ~21!

Consider again as an example diffusion in a one-
dimensional harmonic potentialf(r )5(1/2)cr2, with a trap
at r5a50. The reflecting Green’s functionGH(r ,sur 0) sat-
isfies ]G/]t5D]/]r (]G/]r1bcrG) for r.0, with the
boundary condition []G/]r ] r5a5050. When length and
time are rescaled soD5bc51, the reflecting Green’s func-
tion GH(a,sua)5(1/&)(1/2s21)![(1/2s21/2)!]21 @14#.
Equation~13! then yields

l̂H~s!5k21S 12 p D 1/21 1

2
BS 12 , 12 sD , ~22!

whereB(a,b) is theb function @16#. The known result@14#
for the mean survival timetH5k21~12p!1/21ln 2 then follows
from Eqs.~20! and ~22!.

III. SURVIVAL RESULTS FOR SPECIFIC MODELS
OF GATED TRAPPING

In accord with our original motivations, this section now
gives solutions for several simplified models in which the
system gating stateq and particle positionr change indepen-
dently. Under this assumption, the positional Green’s func-
tion G~r ,t ur0!, describing the particle movement in the ab-
sence of trapping, is well defined without reference to the
gating stateq of the system.

Since the formalism in Sec. II applies to both ungated and
gated systems, the usage of ‘‘G’’ there was deliberately am-
biguous: ‘‘G’’ there denoted either a positional Green’s
function G~r ,t ur0! ~for an ungated system!, or a gated
Green’s functionG~x,t ux0! ~for a gated system!. In this sec-
tion, to differentiate positional Green’s functionsG~r ,t ur0!
from gated Green’s functionsG~x,t ux0!, G~x,t ux0! is sub-
scripted asGg~x,t ux0!.

Let Q~q,t uq0! be the Green’s function for the gating state,
i.e., Q~q,t uq0! is the probability that if the gating state is
initially q0, it will be q at time t later. When the changes of
the gating stateq and the changes of the particle positionr
are independent, the gated Green’s functionGg~x,t ux0! for
x5~q,r ! is a product

Gg~x,tux0!5Q~q,tuq0!G~r ,tur0!. ~23!

In analogy to gating and gated states,q andx5~q,r !, we
refer to the ‘‘gating’’ and ‘‘gated’’ Green’s functions
Q~q,t uq0! and Gg~x,t ux0!. As stated above, Eq.~23! gives
Gg~x,t ux0! a subscript ‘‘g’’ to distinguish it from the posi-
tional Green’s functionG~r ,t ur0!. The following gives some

examples that derive gated Green’s functionsGg~x,t ux0!
from the corresponding gating Green’s functionsQ~q,t uq0!.

A. Poisson gating

Let us revisit Poisson gating (2)

b0

a0
(1), this time as a

possible model describing a ligand binding to a protein. For
ease of linguistic reference, the gating of the ligand-protein
system will be ascribed to the protein. Biologically, such
gating might be caused by fluctuations in the protein’s con-
formation, or by the binding of reversible blockers. What-
ever the cause, the ‘‘active’’ protein state~1! permits ligand
binding, whereas the ‘‘blocked’’ protein state~2! prevents
it.

The protein’s gating at timet is completely specified by
four gating Green’s functionsQpg~6,t u6!. Let Qpg~1,t u1!
be the probability that the protein is active at timet,
given that it was active at timet50. Define the other three
Green’s functions analogously. SinceQpg(2,tu1)51
2Qpg(1,tu1), the Green’s functionQpg(1,tu1) satisfies

dQpg~1,tu1 !

dt
52b0Qpg~1,tu1 !1a0@12Qpg~1,tu1 !#

~24!

with the initial conditionQpg(1,tu1)51.
Recall the equilibrium probabilitiesrpg~1!5a0~a0

1b0!
21 andrpg~2!5b0~a01b0!

21. The solution to Eq.~24!
is

Qpg~1,tu1 !5rpg~1 !1rpg~2 !e2~a01b0!t. ~25!

Thus Qpg(2,tu1)512Qpg(1,tu1)5rpg(2)@1
2e2(a01b0)t#. Interchanging the roles of~1! and~2! in the
solution gives Qpg(2,tu2)5rpg(2)1rpg(1)e2(a01b0)t

andQpg(1,tu2)5rpg(1)@12e2(a01b0)t#.
Because of Eqs.~6! and ~23!, Q(1,tu1) is the most im-

portant gating Green’s function in trapping problems with a
single active state ~1!. All four Green’s functions
Qpg(6,tu6) were given here just for completeness.

Most of the gating solutions in Sec. II require the Laplace
transform ofGg~a1 ,t ua1!. Accordingly, Eqs.~23! and ~25!,
along with the shift propertyf̂ (s1a)5* 0

`e2st[e2at f (t)]dt
of Laplace transforms, give the Poisson gated Green’s func-
tion

Ĝpg~r1 ,sur01!5rpg~1 !Ĝ~r ,sur0!1rpg~2 !

3Ĝ~r ,s1a1bur0!. ~26!

The Laplace transforms of the other gated Green’s functions
Ĝpg~r6 ,sur06! can be similarly derived from the gating
Green’s functionsQpg(6,tu6) listed above. Note, however,
that onlyĜpg~r1 ,sur01! is required in Eq.~13!.

For any initial gating stateq0, limt→`Qpg(1,tuq0)
5rpg(1), by letting t→` in Qpg(1,tu1)5rpg(1)1rpg

(2)e2(a01b0)t @Eq. ~25!# and the equationQpg(1,tu2)
5rpg(1)@12e2(a01b0)t#. Thus regardless of initial gating
state~s!, the independence of gating and particle movement
imply that rpg~a1!5rpg~1!r~a! for an initial unit particle
density. For a gated trap atr5a, the trapping strength is
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c~r1!5kd~r2a! in the active gating state~1!, andc~r2!50
otherwise. Sincerpg(2)/rpg(1)5b0/a0, Eq. ~26! substi-
tuted in Eq.~13! gives

l̂pg~s!

5
11krpg~1 !Ĝ~a,sua!1krpg~2 !Ĝ~a,s1a01b0ua!

krpg~1 !r~a!

5l̂~s!1
b0

a0
l̂~s1a01b0!, ~27!

wherel̂~s! for the ungated problem is given by substituting
the spatial Green’s functionG~r ,t ur0! and the ungated equi-
librium densityr~a! into Eq. ~13!. Because of the definition
l̂(s):5[sk̂(s)]21, Eq. ~27! implicitly relates the trans-
formed rates of gated and ungated trappingk̂(s), in agree-
ment with previous, more specialized results about diffusive
particle movements@1,13#.

When the asymptotic rate of trappingk`5 limt→`k(t)
5 lims→0 sk̂(s) exists, settings50 in Eq. ~27! gives the
gated characteristic timek pg`

21 5l̂pg(0) in terms of the un-
gated characteristic timek `

215l̂~0! andl̂~s! for the ungated
problem

kpg`
21 5k`

211
b0

a0
l̂~a01b0!. ~28!

Again, the above derivation shows that Eq.~28! is valid not
only for diffusion, but also other types of particle movement.

Similarly, when the gated system has an equilibrium
probability distribution, taking the limit ass→0 in Eq. ~20!
shows that the mean survival times also obey Eq.~28! with
the gated survival timetpg5 lims→0@ l̂pg(s)2s21# and the
ungated survival timet5 lims→0@ l̂(s)2s21# replacingk pg`

21

andk`
21 .

Equations~16! and ~22! can be used to provide specific
solutions for Poisson gating~and for double and multiple
Poisson gating, below!. The result for Poisson gating is
known @1,5,6,13#.

B. Double Poisson gating

Equation~25! is easily extended to double Poisson gating,
where both the protein and the ligand are Poisson gated. In
double Poisson gating, the active state~1! requires that both
the protein and that the ligand be active. In an obvious ex-
tension of notation, with subscripts ‘‘1’’ and ‘‘2’’ referring
to protein and ligand, Eq.~25! gives

Qdg~1,tu1 !5@r1~1 !1r1~2 !e2~a11b1!t#

3@r2~1 !1r2~2 !e2~a21b2!t#. ~29!

When either the protein~b150! or the ligand~b250! does
not gate, Eq.~29! reduces to Eq.~25!, as indeed it should.

Equations~23! and ~29! therefore yield the double gated
Green’s function

Ĝdg~r1 ,sur01!

5r1~1 !r2~1 !Ĝ~r ,sur0!

1r1~1 !r2~2 !Ĝ~r ,s1a21b2ur0!

1r1~2 !r2~1 !Ĝ~r ,s1a11b2ur0!

1r1~2 !r2~2 !Ĝ~r ,s1a11b21a21b2ur0!.

~30!

In double Poisson gating,r1 ~or r01! denotes the gated sys-
tem state with the particle at positionr ~or r0!, with both the
protein and the ligand active. Although other double gated
Green’s functions could be derived, only Eq.~30! is required
in Eq. ~13!.

Proceeding by analogy to Poisson gating shows that re-
gardless of the initial gating stateq0, limt→`Qdg(1,tuq0)
5r1(1)r2(1), so rdg~a1!5r1~1!r2~1!r~a!. For a gated
trap atr5a, the trapping strength isc~r1!5kd~r2a! in the
active gating state~1!, andc~r2!50 otherwise. With double
Poisson gating, Eq.~30! substituted in Eq.~13! gives

l̂dg~s!5l̂~s!1
b1

a1
l̂~s1a11b1!1

b2

a2
l̂~s1a21b2!

1
b1b2

a1a2
l̂~s1a11b11a21b2!. ~31!

Again, Eq.~31! relates the transformed rates of trappingk̂(s)
for the double gated and ungated problems.

When the asymptotic rate of trappingk`5 limt→`k(t)
5 lims→0 sk̂(s) exists, settings50 in Eq. ~31! gives the
double gated characteristic timek dg`

21 5l̂dg(0) in terms of
the ungated characteristic timek `

215l̂~0! and l̂~s! for the
ungated problem

kdg`
21 5k`

211
b1

a1
l̂~a11b1!1

b2

a2
l̂~a21b2!

1
b1b2

a1a2
l̂~a11b11a21b2!. ~32!

When the particle movement has an equilibrium probability
distribution, by analogy with single Poisson gating results,
taking the limit ass→0 in Eq. ~20! shows that the mean
survival times also obey Eq.~32! with the double gated mean
survival time tdg5 lims→0@ l̂dg(s)2s21# and the ungated
mean survival timet5 lims→0@ l̂(s)2s21# replacingk dg`

21

andk`
21 .

C. Multiple Poisson gating

Similarly, in multiple Poisson gating, the active state~1!
requiresJ Poisson components to be active

Qmg~1,tu1 !5)
j51

J

@r j~1 !1r j~2 !e2~a j1b j !t#. ~33!

Just as in single or double Poisson gating, Eq.~33! permits
Ĝmg~r1 ,sur01! to be written down explicitly from Eq.~23!.

By an easy extension of the above results, the multiple
gating analogue of Eq.~30! can be written out, and again,
regardless of the initial gating state~s!, it can be shown that
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limt→`Qmg(1,tuq0)5r1(1)r2(1)•••rJ(1) and so
rmg~a1!5r1~1!r2~1!•••rJ~1!r~a!.

Equation~31! generalizes to

l̂mg~s!5l̂~s!1(
j51

J Fb j

a j
l̂~s1a j1b j !G

1 (
j ,k51
jÞk

J Fb j

a j

bk

ak
l̂~s1a j1b j1ak1bk!G •••

1S )
j51

J
b j

a j
D l̂S s1(

j51

J

~a j1b j !D . ~34!

When the asymptotic rate of trappingk`5 limt→`k(t)
5 lims→0 sk̂(s) exists, settings50 in Eq. ~34! relates the
multiple gated and ungated characteristic times just as it did
for single and double gated characteristic times. When the
particle movement has an equilibrium probability distribu-
tion, taking the limit ass→0 in Eq.~20! similarly relates the
multiple gated and ungated mean survival times.

D. Markovian gating with a single active state

Single, double, and multiple Poisson gating are all
specializations of this model, which assumes a multistate
random walk model for the gating stateq. Consider a
gating state fluctuating betweenN different states
q1
q2
 . . .
qN according to a system of linear differen-
tial equations with constant coefficients

FdQ~qi ,tuq!

dt G5L @Q~qi ,tuq!#. ~35!

q is an arbitrary initial gating state, and the dimensions of the
three matrices in Eq.~35! areN31, N3N, andN31. The
elements of the matrixL5[Li j ]N3N give the rate constants
Li j of the interconversionsqj→qi ( i , j51,2, . . . ,N). Single
Poisson gating, e.g., is Markovian gating withN52,
q15~1!, q25~2!, andLi j5(21)i1 j21[d1 jb1d2 ja], where
again Kronecker’s deltadi j51 if i5 j and 0 otherwise. Note
that the$Li j % may be negative.

Using standard methods@21# to solve Eq.~35! subject to
the initial conditionsQ~qi ,0uqj !5di j , yields

@Q~qi ,tuqj !#5eL t. ~36!

so Q~qi ,t/qj ! is the (i , j )th element of the matrix
eL t5(k50

` (L t)k/k!. When the rate coefficients$Li j % and
equilibrium distributionr~q! satisfy the detailed balance con-
dition Li jr~qj !5L jir~qi!, the matrixL can be diagonalized
to L5[d i jL i i ]5S21LS. ComputingeL t5SeLtS21 is then
particularly easy.

Let x5~qj ,r !5r j ~or x5r0 j ! denote the system state
where the particle is at positionr ~or r0! while the gating
state isqj . Since the matrix of gated Green’s functions is

@Gg~r i ,tur0,j !#5@Q~qi ,tuqj !#G~r ,tur0!5eL tG~r ,tur0!,
~37!

the shift property of Laplace transforms and Eq.~35! yield
Ĝg~r i ,sur0,j ! as a linear combination ofĜ~r ,s1L j j ur0!,
j51,2, . . . ,N whenL can be diagonalized.
The previous Poisson gated models are special cases of

Markovian gating when the system stateq15~1! is active,
with the other statesqj all blocked (j52, . . . ,N). In this
case,Gg(r1 ,tur01)5@eL t#11G(r ,tur0). For a gated trap at
r5a, the trapping strength isc~r1!5kd~r2a! in the single
active gating stateq15~1!, andc~r j !50 for the other states
qj ( j52, . . . ,N), Markovian gating has a similar solution to
the previous Poisson gated models. Substitution of the
Laplace transform ofGg(a1 ,tua1)5@eL t#11G(a,tua) into
Eq. ~13! produces formulas of sufficient complexity, how-
ever, that they need not appear in this paper.

IV. DISCUSSION

This paper provides a simple, unified formalism for solv-
ing problems with a single moving particle in the presence of
gated static traps, when gating is independent of the particle
movement. Smoluchowski mean-field rate constants@7–9#
depend on solving single particle, single trap problems. Thus
Eqs. ~28!, ~32!, and ~34! implicitly give rate constants for
single @5,6#, double, and multiple Poisson gating.

This paper’s formalism is general and simple, and helps
indicate which gating problems are likely to have explicit
solutions.

The gating solutions in Sec. II use the Laplace transform
of the reflecting Green’s functionĜ~r ,sur0! with arbitrary
arguments. Implicitly, if an equilibrium probability distribu-
tion exists, they also useŜ~sur0! from Eq. ~17!, also with
arbitrary arguments. This indicates that solving arbitrary gat-
ing problems requires knowledge~at least implicitly! of
Ĝ~r ,sur0! or Ŝ~sur0!. Note, however, that Eqs.~14!, ~19!, and
~21! can be used to calculate rate constants and mean sur-
vival times numerically from the gating Green’s functions
Gg~a1 ,t ux0! without recourse to analytic Laplace transforma-
tion. This is useful, because the gating Green’s function
Gg~x,t ux0!5Q~q,t uq0!G~r ,t ur0! in Eq. ~23! may be accessible
without its also having a simple Laplace transform.

This paper’s formalism requires more than just knowl-
edge ofQ~q,t uq0! andG~r ,t ur0!, however. It is based on Eq.
~2!, which requires the system evolution as a whole to be
Markovian. Thus, e.g., the formalism does not directly apply
to coherent gating@5,6#, a deterministic gating where the trap
is active and blocked over predetermined time periods. Al-
though the coherent gating Green’s functionQ~q,t uq0! is
simply a square switching function, when particle movement
is considered, the memory in coherent gating leads to a con-
tinuum of trapping states in Eq.~2! and an integral equation.
In other non-Markovian gating problems, i.e., other problems
where the transition times are not described by a first-order
kinetic scheme, Eq.~2! also yields integral equations. Simi-
larly, problems with several diffusing particles can be trans-
formed into problems with a single particle diffusing in a
high dimensional space, and Eq.~2! is again an integral
equation. Unfortunately, these integral equations appear to
lack analytic solutions.

Other types of memory can be embedded into a Markov-
ian description without significant complications, however.
In double Poisson gating, e.g., Eq.~29! for the gating
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Green’s functionQdg(1,tu1) appears superficially non-
Markovian. Indeed, e.g., knowing that binding is blocked
does not determine whether it is the protein or the ligand that
is blocked. Knowing that the binding is active defines a re-
generative~Markovian! gating state; however, if trapping is
active, both the protein and the ligand must be active. Thus
double Poisson gating was solved by implicitly embedding it
into a Markovian gating problem with one active gating
state. This solution can also be developed explicitly with Eq.
~5!, which handles multiple discrete trapping states.

For simplicity, this paper focused on the caseM51 in Eq.
~5!, but solutions withM52 are also practicable, since they
involve inverting only 232 matrices. The caseM52 pro-
vides a solution for the following problems:~1! a single trap
fluctuating between two positive strengthsc~r1!5k1d~r2a!
and c~r2!5k2d~r2a!, with c~r j !50 for other statesqj ; and
~2! two separate traps, one gated, the other not. Twoinde-

pendentlygated traps have at least four distinct gating states
11, 12, 21, and22, of which the first three are active,
in general requiring at leastM53 in Eq. ~5!.

In many physical situations, e.g., protein gating and
blocking chemical reactions, gating is independent of par-
ticle movement. On the other hand, a related situation called
‘‘dynamic trapping’’ does couple particle movement and gat-
ing. Like the gating problems here, dynamic trapping prob-
lems can be solved@2,3# by extending ungated trapping for-
malisms @22#. Unlike the gating solutions here, however,
those dynamic trapping solutions seem to require particle
movement and gating to be coupled. On the other hand, al-
though Eq.~23! assumes the independence of particle move-
ment and gating, the assumption was not crucial when Sec. II
extended its ungated formalism@14# to gated trapping. Thus
it will be interesting to see if the present formalism can be
applied to dynamic trapping as well.
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