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Zipf's law, the central limit theorem, and the random division of the unit interval
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It is shown that a version of Mandelbrot’s monkey-at-the-typewriter model of Zipf's inverse power law is
directly related to two classical areas in probability theory: the central limit theorem and the “broken stick”
problem, i.e., the random division of the unit interval. The connection to the central limit theorem is proved
using a theorem on randomly indexed sums of random varigleGut, Stopped Random Walks: Limit
Theorems and Application$pringer, New York, 1981. This reveals an underlying log-normal structure of
pseudoword probabilities with an inverse power upper tail that clarifies a point of confusion in Mandelbrot’s
work. An explicit asymptotic formula for the slope of the log-linear rank-size law in the upper tail of this
distribution is also obtained. This formula relates to known asymptotic results concerning the random division
of the unit interval that imply a slope value approachind under quite general conditions. The role of
size-biased sampling in obscuring the bottom part of the distribution is explained and connections to related
work are noted[S1063-651X96)01007-0

PACS numbegps): 05.40+j, 02.50~r, 87.10+€

[. INTRODUCTION sky [7] greatly clarified the situation by discussing an illus-
trative, special case of Mandelbrot's model. Millg6]
Mandelbrot’s creative and influential work on Zipf's in- showed that one can straightforwardly derive a step function
verse power law of word frequency distributions containsapproximating an inverse power law with the simplifying
two potential points of confusion. One of these concerngissumptions okquiprobableand independently combined
what Mandelbrof 1] now acknowledges as the “linguistic letters. He concludes with the clear words—which are im-
shallowness” of the law. The possible confusion here stem#lied, but not stated, in the Appendix f@}—that Zipf's law
from the fact that Mandelbrd®] has shown that an inverse can be derived “without appeal to least effort, least cost,
power distribution of pseudoword frequencies can be gene[ﬂ.]aXimm information, or any branch of the calculus of varia-
ated from random text, although in contrast his earlier worklions.”
[3,4] aimed at information-theoretic models that might shed Physical scientists interested in Zipf's law through Man-
light on deeper properties of language or thought. A secongelbrot’'s work may be unaware of Miller's clarification,
point of confusion concerns Mandelbrot[&, see pp. 209— Probably because it was published in the psychology litera-
211] extended argument opposing the log-normal distributure. For example, Lf9] writes that “Miller did not give a
tion as a model for word frequency distributions, although aproof of his statement”—referring to a comment by Miller
version of his random text model has a natural underlyind10] that Zipf's law could be generated by random text—and
log-normal structure. The first issue, linguistic shallownessthen gives the same proof of the special equiprobable letters
was addressed decades ago by the prominent language f&se given by Millef6] and Miller and Chomsky7]. And
searchers Miller and Chomsk8,7]. It is the purpose of this recently Mantegnat al.[11] have come under criticisitsee
article to address the second issue, log-normal structure, Hyt2]) for arguing that noncoding DNA sequences may be
proving the previously unrecognized—but direct— transmitting biological information based on an analysis
connection between a version of Mandelbrot's monkey-atwhich they assert shows that noncoding DNA pseudoword
the-typewriter model and a special case of Anscompgls frequencies conform approximately to a Zipf-like law. They
important generalization of the central limit theorem. Wemight have been less likely to make such an argument had
also show that the upper tail of this |Og-norma| structure is aﬁhey been familiar with Miller’s clarification of Mandelbrot’s
approximate inverse power law and discuss asymptotic relesults.
sults from the classical “broken stick” problem that explain
why a log-log rank-size plot of the upper tail will tend to
have a slope close te1l under quite general conditions.
The confusion on both points—linguistic shallowness and  Unfortunately, Miller's simplified model is degenerate in
log-normal structure—is intertwined. Mathematically ori- the sense that it does not reveal the natural log-normal struc-
ented researchers in psychology and linguistics were at firgstire of word probabilities that exists for the caseuakqual
quite interested in Mandelbrot’s use of information theory toletter probabilities. For this case, Mandelbid, p. 217 did
derive Zipf's law, but then also realized the significance ofnote that the logarithmic probabilities of randomly generated
his derivation of an inverse power law using nothing but apseudowords of &éixed numbern of letters will be approxi-
Markov random text model. Millef6] and Miller and Chom- mately normal; however, he overlooked a stronger result,
following directly from Anscombe’s theorem on random
sums|[8], which shows that the logarithmic probabilities of
*Electronic address: rkper@acm.org all words of n or fewer lettersvill be approximately normal.

II. EXHIBITING LOG-NORMAL STRUCTURE
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Therefore the probabilities themselves will be approximately

log-normal. e
Mandelbrot's derivation of Zipf's law from his Markov 99.99

random text model is based on the ensemble of all the word ggég:

probabilities that can be generated by random sequences of C

all possible lengths, i.e., an infinite vocabulary. For proving II\JII 90

the log-normal structure, our analysis will be based on a P 75

scheme assumin@l) unequal and independent letter prob- E 50 -

abilities (i.e., we drop the Markov assumptipand (2) a (1% 26 -

maximum word length oh letters, although we study as- E 10 -

ymptotic behavior as— . ,Ii{
Assume an alphabet consistingkb£2 nonspace charac- 14

tersL,,L,,...,Lx and the space characteg , ;. Let the let- 14 .

ter keys be struck independently with probabilities 01 1 'f

a;,8,,...Ac+1, where 2% 'a;=1 and 0O<a;<1 for T

1<j<K+1. For the purposes of proving the log-normal -14-12-10 -8 -6 -4 -2 0

structure of the word probabilities, it is necessary to assume BASE VALUE (POWERS OF 10)

that a;#a; for at least one case whefe | andi,j<K.
Choose an integen and define a trial as the outcome after
n+1 or fewer letters have been selected. The outcome will FIG. 1. Log-normal probability plot of base values for the ran-
result in either(a) a “word” consisting of n or fewer non-  dom text model. The approximate linearity of the curve shows the
space characters plus the ending space charactép)am  approximate log-normality of the values.
“nonword” consisting ofn+1 consecutive nonspace char-
acters with no ending space character. As many trials are rugith finite variance. Anscombe’s theordi8] assures the as-
as desired, but each is limited to a maximumnef 1 char-  ymptotic normality of log Y, if it can be shown that the ratio
acters and ends when either outcotaeor (b) occurs. R./n converges in probability to a constant-0 asn— .

A finite vocabulary model introduces the difficulty of the SinceP{R,=n—j}=K"//N,>(K—1)/K!*1, it is not dif-
K"*1 nonwords, which have a positive aggregate probabilityficult to show thatP{|R,/n—1|<j/n}>1— 1/KI*1, Letting

of occurrence on each trial oE(;a))""*=(1-ax.1)""".  j=[{n], the largest integer in/n, andn—= proves that
We exclude the nonwords and analyze the distributionaR /n converges in probability t@=1>0. Consequently,
characteristics of the probabilities for thg,=X=_oK' “le-  |og, Y, is asymptotically normal and 96, will be approxi-
gitimate” words. mately log-normal for sufficiently large.

It simplifies matters to factor oudy., and refer to the  The approximate log-normality of , is illustrated in the

resulting values abase valuesThe largest base value is approximately linear log-normal probability plot of Fig. 1,
always equal to 1, corresponding to the word of 0 nonspacghere we taken=5, K= 10, and use nonspace letter prob-
letters. LetB; denote the multisefi.e., a set that can contain abjlities a, through a;, with values 0.002 04, 0.0305,
repetitions of its element®f the K! base values for each of 0.0575, 0.06, 0.0668, 0.0715, 0.0837, 0.12, 0.144, and 0.148.
the words of exactly letters. LetU,=BoU---UB, be the Al the values inUs have been generated and plotted. The
multiset of all base values for words from O oletters. A points (x,y) plotted in the graph arex=log,b, and
generic element of the multiseBs andU,, will be writtenb.  y=® " 1[(N,—r+1)/(N,+1)] for 1<r<N,,, where® !is
Write the ranked values &, asb, , wherer represents rank  the inverse of the standard normal distribution function.
from the top. Define a probability space by by the natural
counting measure, i.e., each eleménrtU, is assigned an
atom of probability equal to N,,. Denote the random vari- . AN INVERSE POWER UPPER TAIL
able defined in this way a%,,. AND THE “BROKEN STICK” PROBLEM

By this definition,Y, can be represented as the product of
a random numbeR,, of independent and identically distrib- . . :

values inU, conforms approximately to an inverse power

uted random variablest,=X, X, - Xg,, where 0<Ry<n. |, oo can been seen in Fig. 2. This figure shows the same
EachX; is a multinomial random variable taking on the val- pase values previously displayed in Fig. 1 now represented
uesa;, 1=j=K, with equal probability. The casR,=0, i |og-log coordinates. The vertical axis representsing
whenY,=1, corresponds to the single O-letter word. Sinceanq the horizontal axis represents the logarithm of the asso-
there are&k! words of exactlyj letters, the probability thaf,  cjated rank, logr. The evident linearity of the graph over
will have the representatiol,=X;X, -~ X; involving ex-  most of the top range of base values is graphic proof of an
actly j factors isk!/N, . Therefore, letting®{ } be the prob-  approximate inverse power law in this range.
ability of the expression inside the braces, the probability * \andelbrot's[2] combinatorial proof explains this phe-
mass function oR, is P{R,=j}=KI//N, for j=0,1,...n. nomenon, but his derivation does not lead to an explicit for-
_Take logarithmgbaseK logarithms prove convenient; In 35 for the slope of the linear part of this graph. We obtain
will be used for natural logarithmsto obtain logY,  an asymptotic estimate for it here and show that it connects
=EJR21 logk X; . So log Y, is the sum of aandom numbeof  up in a natural way with the “broken stick” problem. Con-
independent and identically distributed random variablesider the least squares regression oklmgonto logr con-

Significantly, the upper tail of the distribution of base
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where the upper bound follows from the Cauchy-Schwartz
inequality and the lower follows from Chebychev's mono-
tonic inequality[13]. The latter is applicable here because

o~ MmO LIESEOY Z~ EC»< Hupw
|
-3
1

-114 . llogkb,| and logr are both monotonically increasing in
—-12 1 i After dividing through byEernllogﬁr in (1), the middle
-13 4 . expression in the chain of inequalities is ji8t Then, using
—14 - the asymptotic relations ilR3)—(R5), routine calculations
01234656 show that both the upper and lower boundggifare ~|u,].

Consequently, fon—c we must haves|~|u,|, as well. The
inequalities of(1) are also the crux of similar manipulations
that proveR? approaches 1 as a limit as— .

Empirical studies of natural language showing plots of

FIG. 2. Log-log plot of base values by rank for the random textword frequencied, against their rank in log-log coordi-
model. The linear trend is evident for approximately the top half ofnates almost always have slopes very nedr as a glance
the data. In the random text model, observed word frequenciethrough Zipf's work will show[14]. The value—1 has some
would be those of a sample drawn from a multinomial distributionsignificance for the slope estima~ (= JKzllogKaj)/K of
with probabilities proportional to these base values. Zipf's inversethis random text model through its connection to the classical
power law would tend to be observed because the bottom part of thgrob|em in probability theory concerned with the random
distribution (i.e., words of low probability would tend not to be  djvision of the unit interval. Consider the letter probabilities
represented in the sample data. a;,a,,...,ax+, as a random division of the intervg0,1].

. . ) We represent this in the standard way. Xgt X,,..., Xk be
strained to go through the origif0,0)=(log«1,log¢by). This 1 independently and identically distributed random variables
constrained, least squares regression line can be proven t0 §gfined on[0,1]. Write the corresponding order statistics as
a very good fit in the sense that tRé (coefficient of deter- X1y=X(y'** =X - The interval [0,1] is subdivided into
mination associated with the model approaches has<. k%7 mutually exclusive and exhaustive segments by the
Mkt e e e

; ' el =Xy~ Xj-1y-+» Dk+1=1=Xk)- Think of the letter
The following calculations show that the slopeof this line prot()Jz)abiIiti(Jesaj as realized values of the spacings.
is asymptotically equal toX logka)/K. _ Darling [15] has shown that for uniformly distributex
Let u; be the mean ana " the variance of the Ioga2r|thms andK—o, I }SllInDj has the asymptotic mean K In K.
of the 'éj base values 'nBJé ForKexampIe,Mozcrz(,:O, Blumenthal[16] has extended this result to a broader family
pa1=(Zj=1logea))/K, and o1=[>].,(logca;— 1) V/K. o nonuniform distributions. Dropping any single term, say
Write x,~y, whenever lim,_.x,/y,=1. The following re- |5 p,_ .. from the sum has no effect on this asymptotic re-

RANK OF BASE VALUE
(POWERS OF 10)

quired intermediate results are stated vgith.oug proof. sult, and replacing In with lqgwe see that¥ _ jlogcD;)/K
~ (RD The equationsu;=ju, and oj=joi hold for  m,st have the asymptotic mean K logK)/K=—1. The
j=0,1,...n. values ofa; used in the two figures of this paper were ob-

(R2) The least squares line of Iph, regressed onto yineqd by sampling th&; from the uniform distribution on
logkr and cNonstramed to pa,l“ss thrzough the origin has th‘fo,l] and computing the associated spacifiys For this
slope B=(Z, 1, logkby logkr)/Z 1, loggr. sample, £ {2,log,D;)/10= — 1.33, which is the slope of the

(R3)2(i) =1 jloggj~nlogen and (ii) 2}‘:1logﬁj asymptotic regression line graphed in Fig. 2.
~nlogg n. _

(RY) S ,j*KI~n*K""Y/(K—1) for a=0.

(RS (i) =™ [loge by ~|u K™ Y(K-1) and (i) IV. THE ROLE OF SIZE-BIASED SAMPLING
E?;‘ﬂOgﬁ by~ 12K (K~ 1). AND CONCLUSION

(R1) through(R4) are straightforward to prove, ang5) It is clear from visual inspection of Fig. 2 that the asymp-
follows from (R1) and (R4). totic regression line with slopg, does not fit the smallest

It is convenient to us| in our calculations, and we can base values well, and this will not change ras>e. How-
obtain an asymptotic estimate of it by giving an upper ancdever, for the toy model defined here, the observed word fre-
lower bound that are asymptotically equivalent. The key in-quencies of an experiment would be those of a sample drawn
equalities are from a multinomial parent distribution witiN, categories
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(wordg with probabilities proportional to the base valuescians[17] have remarked that this pervasive issue needs
plotted in Fig. 2. The smallest probability words would tend greater recognition and have developed analytic methods for
not to occur unless the sample size was very large. Consettacking it.
quently, an approximate inverse power law for the observed \We conclude with very brief pointers to related topics.
frequencies would be seefihe true log-normal structure of  Empirical, approximately log-normal distributions character-
the parent distribution would be obscured or distorted forjzed by upper tails with inverse power laws have been noted
most practical sample sizet fact, Li[9] carries out a sSimu-  numerous times in many phenomena, as discussed, for ex-
lation that demonstrates this phenomenon. One of his simuample, by Montroll and Shlesingét8,19 and Perling 20].
lations illustrates how Zipf's law can be generated in agmpirical and theoretical arguments in support of log-normal
sample of random text based on the independent, unequgajodels of word frequency distributions are given by Herdan
letter probability model with a maximum word lengtsee  [21]. (The similarity between our construction of, and the
his Fig. 2. However, he did not recognize that the underly-derivation of a hybrid lognormal-Pareto distribution in
ing parent distribution is actually approximately log- [18,19 should be notedl.The fractal character of the sef,
normal—not a power law. With a sufficiently large sample (as n—«) seems intuitively evident, and the expression
size, his sample power law would have to break down 3%2 r:1|ogKaj)/K pops up as what Evertsz and Mandelbrot
more and more of the low-probability random word se-[22] call the “most probable Fider exponent” of a multi-
quences appear. fractal. Finally, Gut[8] has shown the importance of
The significance oize-biaseampling in relation to this  Anscombe’s generalization of the central limit theorem for
problem and many others should be emphasized. To a rgnore realistic models of random walks, and we suggest that
markable extent, what we observe are extreme, upper tajl can be extended in many ways for applications to a great
events. We see the brightest stars, not the dimmest; Wgariety of phenomena.
record seismic occurrences only when they are sufficiently
large to be detected by our instruments; we collect and report
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