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Multiscaled randomness: A possible source of 1/noise in biology
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We evaluate the possibility that thef lfluctuations observed in many biological time series result simply
from the fact that biological processes have many inputs with differing time scales. We present a stochastic
model whose output is the summation of multiple random ingiugs, different regulatory mechanismsVe
derive the conditions under which the model reproduces the complex fluctuationsfeswhllig observed in
biological systems. Simulations demonstrate that if model parameters are unconstrained, the likelihood of
generating 1f/ noise is quite small. Thus, while the model can be used to generdtendise with various
scaling exponents, it is unlikely that thef ldehavior observed in many biological systems is doky to the
fact that these systems are regulated by many different inputs acting on different time scales.
[S1063-651%96)04307-3

PACS numbes): 87.10+e, 05.40+]

The fractal nature of many biological systems has recentlgimple superposition of random components acting on mul-
received much attentiofil]. Self-similarity has been re- tiple time scales: multiscaled randomness?
ported in the spatial structuf] as well as in the temporal We study a generic but biologically motivated, simple
fluctuations of many biological processes including ion chanimodel. In many biological systems, the output is affected by
nel kinetics, auditory nerve firings, lung inflation, fetal semiautonomous systems operating at disparate time scales.
breathing, human cognition, walking, blood pressure, and~or example, heart rate is regulated on a beat-to-beat basis
heart ratg 3,4]. Many of these diverse biological processesby the autonomic system. Heart rate oscillations with a pe-
fluctuate like 1f noise[see Fig. 1a)] observed in certain riod of approximatel 4 s reflect vagally-mediated respira-
physical system$5]. With 1/f noise, there exists no well- tory influences while those with a period of 10 s have been
defined temporal scale for the correlation time and the autoattributed to baroreflex modulation of sinus node activity. In
correlation function decays as a power law. Thus, the power
spectrum, the Fourier transform of the correlation function,

exhibits power law behaviorS(f)~1/f4. This implies that 1.1 . A .

the current value of the biological signé.g., heart rafe 10 @ .
co-varies not only with its most recent value but also with its 1(k) ool ‘

long-term history in a scale-invariant, fractal manner. This 0.8 | a (. i
unexplained fractal feature makes the ubiquity df Béhav- 0.7 : ' ]

ior in biological time series especially intriguing. R :
A number of different mechanisms have been proposed
for the emergence of fi/noise in nature, e.g., intermittency

[6] and self-organized criticalitj7]. Some of these mecha- X,(k)
nisms clearly underlie the fl/behavior of certain physical % (k) |
systems. However, the origin offlhoise in many biological 2(k)

systems remains unknown. Given the widespread nature of X (k) J

1/f noise in complex and diverse biological systems, some 3

have suggested that the finding off ldehavior is only a

reflection of the fact that the final output is affected by many \

processes that act on different time scales. Indeed, it has been  y(k) | \ IRy Ll 1

shown[8,9] that certain distributions of time scales can lead ‘

to 1/ behavior. This suggests the possibility that the com- o 200 e PN

plex fluctuations and 1/scaling observed in many biological

systems does not reflect anything “special” about the

mechanism generating these dynamics. Could this behavior g\ 1. (a) Heartbeat time series of a healthy aduk) is the

merely be a result of the multiple system inputs? time (s) between heartbeats aridis the beat number(b) Model
Here we examine in detail one of the most simple cases ofmes series with 8 different noise componefasly 3 are shown

a stochastic process with multiple time scales to study th@ere. In this case, parameters of the inputs follow a simple scaling

conditions under which this type of system acts as a sourcglation: Rr=4 andR,=1 (see text Heartbeat and model time

for 1/f-like noise. Specifically, when canff/ noise of the  series both contain fluctuations on different time scales that lead to

type observed in biological systems be generated through the1f-type of noise(see Fig. 3.
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addition, hormonal system&.g., renin-angiotensin system

that regulates extracellular fluid volumprovide input with

a much longer time constant and posture, activity level,:
meals, the sleep-wake cycle, and circadian rhythm all influ- S2(f2)
ence heart rate over still longer time scales. As a first ap-
proximation, one can view these inputs as distinct random
processes. Each input will be associated with two param- g )
eters: ) The first parameter describes the characteristic time
scale, i.e., about how often this input changesT2e second
parameter quantifies the magnitude of influence of each input
to the whole system. For example, the effect of the sleep-i
wake input might take on on@pproximately constant value
during the day and it will most likely change value during :
the night. Thus, the probability of a transition might be set to
once every 1/2 day and its influence on heart rate may alsp,. . ot qashed lines are fd,(f) and S,(f). Thick solid line
have different magnitudes cor_npared to other_ _factors. Th?epresentssmt(f) and shows crossover from f2/ (brown) noise
final output, e.g., heart rate, is the superposition of thesgregion lll) to 1/fA-type of noise(region 1I) to white noise(region

random inputs. , _ ). As shown in Eq{( 1), the straightsolid) line going through the
The output of the model at any time stepy(k), is thus  ¢rossover points has a slope -of3.

the sum ofn random inputs,x;(k): y(k)==",Ax;(K).
Each inputx; takes on a Gaussian distributed random value . *
(the current state of this inpuand is amplified by a constant mgtcar;] be obsert\;]ed ovzr lan extenotled rzgltﬂl t(f<f1)' i
A; that represents the relative effect of each input on thé\IO €, nowever, he model parameters do not necessarily

: - bey the scaling relation defined Bt andR, . In general,
output. At each time step, the statexpfchanges with prob- 0 ; A
ability 1/7;, wherer; is the time constant for inpu; [see model output will depend on how; and7; are choseq10].
Fig. 1(b)]. To r_naKe a quantltat_lve comparison between_ the data
For each of the stochastic inpugs; , the autocorrelation shown in Fig. 1, we applied another scaling analysis to these

S e " ; data sets(in addition to power spectrum analysisThe
function is C(t)=Afexp(-t/7). It follows that its power method is termed detrended fluctuation analydid-A)

FIG. 2. Double-logarithmic plot of power spectrum density.

spectrum s [11,17. This method is a modified random walk analysis
. A2 [13] that makes use of the fact that a long-rafigewer-law
S(f)= Rej Alexpi2mft—t/r)dt= '—'2 correlated time series can be mapped to a self-similar process
o 1+(2mfr) by simple integratiof9]. The integrated time series is self-

similar if the fluctuation at different observation windows,
The power spectrum scaling exhibits a crossover from browr (1), scales as a power law with the window sizeTypi-
noise S(f)=A%(2nf)?r (for f>fF), to white noise cally, F(I) will increase with window sizé. A linear rela-
Si(f)=A?7 (for f<f*), wheref¥=(2m7) ! is the cross- tionship on a double logarithmic graph indicates that

over frequency. F(1)~1¢, where the scaling exponent is determined by cal-
For simplicity, first consider the case in which only two culating the slope of the line relating 16¢)) to logl [14].
processes are superimposed: one with parameieds; and Results from DFA and power spectrum analyses are

the other with parameters,,A,. Since there is no cross- shown in Fig. 3. Bothw and 8 indicate the presence offl/
correlation between these two processes, the overall poweoise for the biological data as well as for the model simu-
spectrum will be simply the sum of the individual power lation. Thus, a stochastic process with only 8 inputs can
spectra, i.e.Sui(f)=S;(f) +S,(f). Note thatS,,(f) can mimic 1/f behavior for about 4 decadésthe amplitudes of
have three different regions of behavior delineated byall inputs, A, are equivalent and each is properly chosen
ff=2nr) ! and f5=(27r,) ! (Fig. 2. Under certain
conditions(see below, in the regionf <f<f} (region Il of

Fig. 2, the power spectrum can be approximated by
S f)~1/f2, with B estimated from the two crossover ol
points, [fT,S;(f7)] and [f5,S,(f5)]. Let mp/7=Ry>1 <
andA,/A;=R,. Thus a |
o
©°
INS,(3)~InSy(f})  In(RARy)
= — = =1+ .
Inf% —Inf¥ InRy 1+2logrRa e —
() log,, log,, !

A simple extension of the above discussion is a process with £ 3. scaling analysis for heartbead's) and model(+'s)

n time scales, with each input following the same scalingata (part of which are shown in Fig.)lising (a) power spectrum
relation ~as defined by Ry and Ra, i€, (averaged over neighboring frequengiemd (b) DFA. Slopes of
Tlmy=13/1m=---=7,/mn_1=Ry and A;/A;=A3/A, best fit lines of heartbeat and model data aré.0 and 1.0 for
=...=A,/A,_1=R, [see Fig. W)]. Therefore, ¥ scal-  power spectrum and DFA analysis, respectively.
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FIG. 5. Estimation of probabilityp of obtaining 1f scaling

. . similar to that in heartbeat daf®.8<a<1.2 and SD&) <0.15|.
FIG. 4. Comparison of scaling exponents &nd 5) measured For each simulationn time scales are selected from a uniform

from model simulations and theoretical values. Solid lines show,. . . " I . 4
. . - logarithmi le in the ran f 1%1Th -
theoretical values based on Edql) and the relationship distribution on a logarithmic scale in the range o he pa

a=(B+1)/2 [11]. Open symbols represent estimaiedby DFA rametersA; associated with these inputs are chosen from a Gaussian

) distribution of mean 1 and standard deviatiwn For fixedn, the
and closed symbols represent estimate@ by power spectrum

. . . pper bound ofp comes from the case=0. This indicates that if
;neﬂ)rljlztaﬁoie(otr/es~e)1«):e”em agreement between simulation an e amplitude of the noise inputs are allowed to vary, then the

chance of obtaining 1/scaling is smaller.

Figure 4 shows the theoretical and simulated values @hd  {,re on the time scale€This is in marked contrast to the

B as afunction oR,, Ry, and the number of inputs Thus  previous situation.Now, time scales are chosen from a uni-
far we have demonstrated that under certain conditions thgm distribution withlogarithmic time. At the limit n—c,
multiscaled randomness model can produdetyipe noise. the distribution of time scales will converge to a type that
Next, we study the sensitivity of the model to these con-can lead to 1/ time series as described [i8]. The question
straints and the likelihood that thef lhehavior of biological we ask here is as follows: if there are only a finite number of
signals results from the summation of random processes adiputs (as is the case in many biological procegseghat

ing on different time scales. To this end, we need a quantihappens to the scaling behavior? As before, we study a va-
tative measure of how “good” the scaling is. Normally, the riety of parameter combinations. Results are summarized in
regression coefficient is a reasonable metric. However, wgig. 5. Although the chance of obtainingf Hcaling behavior
use a measure more sensitive to the stability of the scaling nonzero even fon=2, a largen value (approximately 4
exponent, namely, the standard deviati®D) of the local  time scales per decadé5)) is needed to ensure consistent
slopes,ajqc,((1), as a function of the scaling regionlif there  (probability close to L 1/f scaling like that observed in the

is consistent scaling over an extended range, theactual heartbeat data.

SD(@)~0. In contrast, if gradually crosses over from one  We have shown that there are conditions under which
value to another, then SR will be significantly larger than multiscaled randomness can produce behavior that is indis-
0. When we perform this calculation on the heartbeat intervatinguishable(at least in terms of self-similarityfrom real
time seriege.g., shown in Fig. Jl we find that for a group of ~ world biological fluctuations. However, if all parameters of
10 healthy subjectéreported in[4]), the SD) are all less  the model are free, then it is very unlikely that a system
than 0.15 and 0s8«<1.2 in the scaling region would by chance choose the “proper”’ parameters necessary
8<1<<1024[15]. We use these quantitative measurements at consistently generate filike noise. Nevertheless, model

a reference for evaluating the presence or absencefahl/ simulations suggest that perhaps some relatively simple pro-
model simulations. We first examine the case in which cesses are responsible for this puzzling behavior. Given this
time scales are chosen at random from a uniform distribupossibility, we believe that it is essential to perform similar
tion. In this situation, no assumptions are made about théypes of analysis for biological data that exhibit fractal scal-
time scales, i.e., every time scale is equally weighted. Wéng behavior. In particular, for any biological time series
check different configurations af, amplitude @) distribu-  with a 1f# power spectrum, one needs to examine how
tion, and time-scale distributiofall vary over a wide range  many reasonable time scales are involved in the specific pro-
For each configuration of time scales and amplitudes, weess, the approximate values for those time scales, and the
generated TVrealizations with each data set containing 2 relative magnitudes of each influence.

points (same length as in the heart beat time series stiidied  Simulations similar to those described above should be
The a exponent was then calculated together with the goodelone to examine the likelihood that observed scaling proper-
ness of scaling behavigSD(«)]. We observe TF scaling ties are due to known inputs and time scales. For example, to
in less than 2% of of these simulatiofis5]. As expected, study the 1f scaling of heartbeat time series, we assume, as
increasingn decreasedhe likelihood of findinga different  a first approximation, that heart rate is predominantly regu-
from 0.5. This indicates that random inclusion of additionallated by 8 inputge.g., respiration, blood pressuféd5]. We

time scales to the system is not sufficient to generate 1/ find that the probability of obtaining fliscaling is very high
Next we study the model when we priori impose struc- if the amplitude of each noise input is identical. However,
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when the amplitude of each noise input is allowed to varyfor the organization of these time scalél) what happens

1/f scaling is no longer obtained consistently. This suggestajnder pathologic conditions, ar{d) how do biological sys-

at least for the model, that in addition to the multiple timetems with 1f behavior differ from ones without this behav-
scales in the system, thealance between different noise ior? From a practical point of view, this model of multiscaled
inputs is also crucial to 1/scaling. These results are of randomness provides a fast algorithm for the generation of
interest in light of recent findings on the alteration of heart-time series that can mimic 14 noise with 6s3<2. Com-
beat scaling behavior in diseased subj¢t®. Perhaps this pared to other existing algorithms, this simple algorithm is
reflects the imbalance between different noise inputs due teelatively easy to understand and computationally efficient.
the selective dropoff or domination of certain time scalesFrom a biological perspective, the model can produce output
under pathologic conditions. In general, Fig. 5 suggests atrikingly reminiscent of the complex, 1 fluctuations seen
possible explanation for the ubiquity of fLscaling in di- in biological data. Further study will determine the role of
verse biological systems. If the time scales of the inputs afmultiscaled randomness in theflldehavior of many biologi-
fecting a biological system are “structured” and if there arecal processes.

a large number of inputs, then it is very likely that the output

will be self-similar, even if individual input amplitudes and ~ The authors thank A.L. Goldberger, L. Glass, J.Y. Wei,
time scales are loosely “assigned.” If it turns out that manyJ.J. Collins, and H.E. Stanley for valuable discussions. This
biological systems that exhibit 1/scaling fulfill these crite- work was supported in part by NIH Grant Nos. AG-08812
ria, then it would be interesting to examine the followitg: ~ and MH-54081(CKP). We are also grateful for support from

if there is any plausible underlying mechanisms responsibl¢he Mathers Charitable Foundation.
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