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We evaluate the possibility that the 1/f fluctuations observed in many biological time series result simply
from the fact that biological processes have many inputs with differing time scales. We present a stochastic
model whose output is the summation of multiple random inputs~i.e., different regulatory mechanisms!. We
derive the conditions under which the model reproduces the complex fluctuations and 1/f scaling observed in
biological systems. Simulations demonstrate that if model parameters are unconstrained, the likelihood of
generating 1/f noise is quite small. Thus, while the model can be used to generate 1/f b noise with various
scaling exponents, it is unlikely that the 1/f behavior observed in many biological systems is dueonly to the
fact that these systems are regulated by many different inputs acting on different time scales.
@S1063-651X~96!04307-3#

PACS number~s!: 87.10.1e, 05.40.1j

The fractal nature of many biological systems has recently
received much attention@1#. Self-similarity has been re-
ported in the spatial structure@2# as well as in the temporal
fluctuations of many biological processes including ion chan-
nel kinetics, auditory nerve firings, lung inflation, fetal
breathing, human cognition, walking, blood pressure, and
heart rate@3,4#. Many of these diverse biological processes
fluctuate like 1/f noise @see Fig. 1~a!# observed in certain
physical systems@5#. With 1/f noise, there exists no well-
defined temporal scale for the correlation time and the auto-
correlation function decays as a power law. Thus, the power
spectrum, the Fourier transform of the correlation function,
exhibits power law behavior:S( f );1/f b. This implies that
the current value of the biological signal~e.g., heart rate!
co-varies not only with its most recent value but also with its
long-term history in a scale-invariant, fractal manner. This
unexplained fractal feature makes the ubiquity of 1/f behav-
ior in biological time series especially intriguing.

A number of different mechanisms have been proposed
for the emergence of 1/f noise in nature, e.g., intermittency
@6# and self-organized criticality@7#. Some of these mecha-
nisms clearly underlie the 1/f behavior of certain physical
systems. However, the origin of 1/f noise in many biological
systems remains unknown. Given the widespread nature of
1/f noise in complex and diverse biological systems, some
have suggested that the finding of 1/f behavior is only a
reflection of the fact that the final output is affected by many
processes that act on different time scales. Indeed, it has been
shown@8,9# that certain distributions of time scales can lead
to 1/f behavior. This suggests the possibility that the com-
plex fluctuations and 1/f scaling observed in many biological
systems does not reflect anything ‘‘special’’ about the
mechanism generating these dynamics. Could this behavior
merely be a result of the multiple system inputs?

Here we examine in detail one of the most simple cases of
a stochastic process with multiple time scales to study the
conditions under which this type of system acts as a source
for 1/f -like noise. Specifically, when can 1/f b noise of the
type observed in biological systems be generated through the

simple superposition of random components acting on mul-
tiple time scales: multiscaled randomness?

We study a generic but biologically motivated, simple
model. In many biological systems, the output is affected by
semiautonomous systems operating at disparate time scales.
For example, heart rate is regulated on a beat-to-beat basis
by the autonomic system. Heart rate oscillations with a pe-
riod of approximately 4 s reflect vagally-mediated respira-
tory influences while those with a period of 10 s have been
attributed to baroreflex modulation of sinus node activity. In

FIG. 1. ~a! Heartbeat time series of a healthy adult.I (k) is the
time ~s! between heartbeats andk is the beat number.~b! Model
times series with 8 different noise components~only 3 are shown
here!. In this case, parameters of the inputs follow a simple scaling
relation:RT54 andRA51 ~see text!. Heartbeat and model time
series both contain fluctuations on different time scales that lead to
a 1/f -type of noise~see Fig. 3!.
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addition, hormonal systems~e.g., renin-angiotensin system
that regulates extracellular fluid volume! provide input with
a much longer time constant and posture, activity level,
meals, the sleep-wake cycle, and circadian rhythm all influ-
ence heart rate over still longer time scales. As a first ap-
proximation, one can view these inputs as distinct random
processes. Each input will be associated with two param-
eters: 1! The first parameter describes the characteristic time
scale, i.e., about how often this input changes. 2! The second
parameter quantifies the magnitude of influence of each input
to the whole system. For example, the effect of the sleep-
wake input might take on one~approximately! constant value
during the day and it will most likely change value during
the night. Thus, the probability of a transition might be set to
once every 1/2 day and its influence on heart rate may also
have different magnitudes compared to other factors. The
final output, e.g., heart rate, is the superposition of these
random inputs.

The output of the model at any time stepk, y(k), is thus
the sum ofn random inputs,xi(k): y(k)5( i51

n Aixi(k).
Each inputxi takes on a Gaussian distributed random value
~the current state of this input! and is amplified by a constant
Ai that represents the relative effect of each input on the
output. At each time step, the state ofxi changes with prob-
ability 1/t i , wheret i is the time constant for inputxi @see
Fig. 1~b!#.

For each of the stochastic inputs,Aixi , the autocorrelation
function is C(t)5Ai

2exp(2t/ti). It follows that its power
spectrum is

Si~ f !5ReE
0

`

Ai
2exp~ i2p f t2t/t i !dt5

Ai
2t i

11~2p f t i !
2 .

The power spectrum scaling exhibits a crossover from brown
noise Si( f )5Ai

2/(2p f )2t i ~for f@ f i* ), to white noise
Si( f )5Ai

2t i ~for f! f i* ), where f i*5(2pt i)
21 is the cross-

over frequency.
For simplicity, first consider the case in which only two

processes are superimposed: one with parameterst1 ,A1 and
the other with parameterst2 ,A2 . Since there is no cross-
correlation between these two processes, the overall power
spectrum will be simply the sum of the individual power
spectra, i.e.,Stot( f )5S1( f )1S2( f ). Note thatS tot( f ) can
have three different regions of behavior delineated by
f 1*5(2pt1)

21 and f 2*5(2pt2)
21 ~Fig. 2!. Under certain

conditions~see below!, in the regionf 2*, f, f 1* ~region II of
Fig. 2!, the power spectrum can be approximated by
Stot( f );1/f b, with b estimated from the two crossover
points, @ f 1* ,S1( f 1* )# and @ f 2* ,S2( f 2* )#. Let t2 /t15RT.1
andA2 /A15RA . Thus

b52
lnS2~ f 2* !2 lnS1~ f 1* !

lnf 2*2 lnf 1*
5
ln~RA

2RT!

lnRT
5112logRTRA .

~1!

A simple extension of the above discussion is a process with
n time scales, with each input following the same scaling
relation as defined by RT and RA , i.e.,
t2 /t15t3 /t25•••5tn /tn215RT and A2 /A15A3 /A2
5•••5An /An215RA @see Fig. 1~b!#. Therefore, 1/f b scal-

ing can be observed over an extended region (f n*, f, f 1* ).
Note, however, the model parameters do not necessarily
obey the scaling relation defined byRT andRA . In general,
model output will depend on howAi andt i are chosen@10#.

To make a quantitative comparison between the data
shown in Fig. 1, we applied another scaling analysis to these
data sets~in addition to power spectrum analysis!. The
method is termed detrended fluctuation analysis~DFA!
@11,12#. This method is a modified random walk analysis
@13# that makes use of the fact that a long-range~power-law!
correlated time series can be mapped to a self-similar process
by simple integration@9#. The integrated time series is self-
similar if the fluctuation at different observation windows,
F( l ), scales as a power law with the window sizel . Typi-
cally, F( l ) will increase with window sizel . A linear rela-
tionship on a double logarithmic graph indicates that
F( l ); l a, where the scaling exponent is determined by cal-
culating the slope of the line relating logF(l) to logl @14#.

Results from DFA and power spectrum analyses are
shown in Fig. 3. Botha andb indicate the presence of 1/f
noise for the biological data as well as for the model simu-
lation. Thus, a stochastic process with only 8 inputs can
mimic 1/f behavior for about 4 decadesif the amplitudes of
all inputs, Ai , are equivalent and eacht i is properly chosen.

FIG. 2. Double-logarithmic plot of power spectrum density.
Thick dot-dashed lines are forS1( f ) andS2( f ). Thick solid line
representsStot( f ) and shows crossover from 1/f 2 ~brown! noise
~region III! to 1/f b-type of noise~region II! to white noise~region
I!. As shown in Eq.~ 1!, the straight~solid! line going through the
crossover points has a slope of2b.

FIG. 3. Scaling analysis for heartbeat (s ’s! and model~1’s!
data~part of which are shown in Fig. 1! using ~a! power spectrum
~averaged over neighboring frequencies! and ~b! DFA. Slopes of
best fit lines of heartbeat and model data are21.0 and 1.0 for
power spectrum and DFA analysis, respectively.
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Figure 4 shows the theoretical and simulated values ofa and
b as a function ofRA , RT , and the number of inputsn. Thus
far we have demonstrated that under certain conditions the
multiscaled randomness model can produce 1/f -type noise.
Next, we study the sensitivity of the model to these con-
straints and the likelihood that the 1/f behavior of biological
signals results from the summation of random processes act-
ing on different time scales. To this end, we need a quanti-
tative measure of how ‘‘good’’ the scaling is. Normally, the
regression coefficient is a reasonable metric. However, we
use a measure more sensitive to the stability of the scaling
exponent, namely, the standard deviation~SD! of the local
slopes,a local( l ), as a function of the scaling regionl . If there
is consistent scaling over an extended range, then
SD(a)'0. In contrast, ifa gradually crosses over from one
value to another, then SD(a) will be significantly larger than
0. When we perform this calculation on the heartbeat interval
time series~e.g., shown in Fig. 1!, we find that for a group of
10 healthy subjects~reported in@4#!, the SD(a) are all less
than 0.15 and 0.8<a<1.2 in the scaling region
8, l,1024@15#. We use these quantitative measurements as
a reference for evaluating the presence or absence of 1/f in
model simulations. We first examine the case in whichn
time scales are chosen at random from a uniform distribu-
tion. In this situation, no assumptions are made about the
time scales, i.e., every time scale is equally weighted. We
check different configurations ofn, amplitude (A) distribu-
tion, and time-scale distribution~all vary over a wide range!.
For each configuration of time scales and amplitudes, we
generated 103 realizations with each data set containing 215

points ~same length as in the heart beat time series studied!.
Thea exponent was then calculated together with the good-
ness of scaling behavior@SD(a)#. We observe 1/f b scaling
in less than 2% of of these simulations@15#. As expected,
increasingn decreasedthe likelihood of findinga different
from 0.5. This indicates that random inclusion of additional
time scales to the system is not sufficient to generate 1/f .
Next we study the model when wea priori impose struc-

ture on the time scales.~This is in marked contrast to the
previous situation.! Now, time scales are chosen from a uni-
form distribution withlogarithmic time. At the limit n→`,
the distribution of time scales will converge to a type that
can lead to 1/f time series as described in@8#. The question
we ask here is as follows: if there are only a finite number of
inputs ~as is the case in many biological processes!, what
happens to the scaling behavior? As before, we study a va-
riety of parameter combinations. Results are summarized in
Fig. 5. Although the chance of obtaining 1/f scaling behavior
is nonzero even forn52, a largen value ~approximately 4
time scales per decade@15#! is needed to ensure consistent
~probability close to 1! 1/f scaling like that observed in the
actual heartbeat data.

We have shown that there are conditions under which
multiscaled randomness can produce behavior that is indis-
tinguishable~at least in terms of self-similarity! from real
world biological fluctuations. However, if all parameters of
the model are free, then it is very unlikely that a system
would by chance choose the ‘‘proper’’ parameters necessary
to consistently generate 1/f -like noise. Nevertheless, model
simulations suggest that perhaps some relatively simple pro-
cesses are responsible for this puzzling behavior. Given this
possibility, we believe that it is essential to perform similar
types of analysis for biological data that exhibit fractal scal-
ing behavior. In particular, for any biological time series
with a 1/f b power spectrum, one needs to examine how
many reasonable time scales are involved in the specific pro-
cess, the approximate values for those time scales, and the
relative magnitudes of each influence.

Simulations similar to those described above should be
done to examine the likelihood that observed scaling proper-
ties are due to known inputs and time scales. For example, to
study the 1/f scaling of heartbeat time series, we assume, as
a first approximation, that heart rate is predominantly regu-
lated by 8 inputs~e.g., respiration, blood pressure! @15#. We
find that the probability of obtaining 1/f scaling is very high
if the amplitude of each noise input is identical. However,

FIG. 4. Comparison of scaling exponents (a andb) measured
from model simulations and theoretical values. Solid lines show
theoretical values based on Eq.~1! and the relationship
a5(b11)/2 @11#. Open symbols represent estimateda by DFA
and closed symbols represent estimated2b by power spectrum
analysis. Note the excellent agreement between simulation and
theory ata'1 ~or b'1).

FIG. 5. Estimation of probabilityp of obtaining 1/f scaling
similar to that in heartbeat data@0.8<a<1.2 and SD(a) ,0.15#.
For each simulation,n time scales are selected from a uniform
distribution on a logarithmic scale in the range of 1–104. The pa-
rametersAi associated with these inputs are chosen from a Gaussian
distribution of mean 1 and standard deviationw. For fixedn, the
upper bound ofp comes from the casew50. This indicates that if
the amplitude of the noise inputs are allowed to vary, then the
chance of obtaining 1/f scaling is smaller.
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when the amplitude of each noise input is allowed to vary,
1/f scaling is no longer obtained consistently. This suggests,
at least for the model, that in addition to the multiple time
scales in the system, thebalancebetween different noise
inputs is also crucial to 1/f scaling. These results are of
interest in light of recent findings on the alteration of heart-
beat scaling behavior in diseased subjects@12#. Perhaps this
reflects the imbalance between different noise inputs due to
the selective dropoff or domination of certain time scales
under pathologic conditions. In general, Fig. 5 suggests a
possible explanation for the ubiquity of 1/f scaling in di-
verse biological systems. If the time scales of the inputs af-
fecting a biological system are ‘‘structured’’ and if there are
a large number of inputs, then it is very likely that the output
will be self-similar, even if individual input amplitudes and
time scales are loosely ‘‘assigned.’’ If it turns out that many
biological systems that exhibit 1/f scaling fulfill these crite-
ria, then it would be interesting to examine the following:~a!
if there is any plausible underlying mechanisms responsible

for the organization of these time scales,~b! what happens
under pathologic conditions, and~c! how do biological sys-
tems with 1/f behavior differ from ones without this behav-
ior? From a practical point of view, this model of multiscaled
randomness provides a fast algorithm for the generation of
time series that can mimic 1/f b noise with 0<b<2. Com-
pared to other existing algorithms, this simple algorithm is
relatively easy to understand and computationally efficient.
From a biological perspective, the model can produce output
strikingly reminiscent of the complex, 1/f fluctuations seen
in biological data. Further study will determine the role of
multiscaled randomness in the 1/f behavior of many biologi-
cal processes.
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