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Nonlinear heat conduction in gases

R. E. Nettleton
Department of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa
(Received 21 February 1996

Terms in thermal conductivity that are quadratic in heat flukare estimated via Onsager reciprocity and
the maximum entropy formalism, which relate them to measurable coefficients. To observe these terms in Ar
at 0°C, 1 atm, one should require a temperature gradick@’ K/m. If density is reduced by a given factor,
the required temperature gradient is reduced by the same factor. Convergence problems arise at very low
densities[S1063-651X96)06108-9

PACS numbsgps): 44.10+i, 05.70.Ln

[. INTRODUCTION to the nonlinear case has been deriy&flvia a Grad-type
treatment of the Liouville equationp is a thermodynamic
In linear heat conduction obeying Fourier's law, the ther-force appearing in the Gibbs equation
mal conductivity\ in a pure gas depends only on number

densityn and temperaturg&. For large heat flux and large TdS=dU+PdV+ ¢-dJ. (3
temperature gradients, we should expect from the kinetic
theory of Grad 1] that Equations2a) and(3) assume no mass flow, so that the total
particle numberN in the system of volumeV, with
A=No(N,T)+X5(n,T)I?+0(IY, (1) n=N/V, is constant.

From the maximum entropy formalism of Jayri&s, we

whereJ=|J|. Standard kinetic theory will not yield a reliable 5, evaluatep and thereforer, and v, in (2d). This is done
estimate ofA, because it is based on the linearized Boltz-j, gec. 1. Rewriting(2d) in the form

mann equation and, in the case of Grad, it assumes an ap-
proximate solution to the Boltzmann equation, which ne- J=[vg = (v, /vA) T2+ 0(IM] ()
glects termsO(J?), which we have reason to believe, 0 0 '

discussed below, is of significance. Accordingly, we develope find[3] that the condition of positive definiteness of the

here a more phenomenological approach that uses the maxizeyersible entropy production calculated fra) requires
mum entropy formalism and Onsager reciprocity to relate they,q antisymmetric Onsager coupling

phenomenological coefficients of extended thermodynamics
[2] to quantities such as, that are accessible to experiment. _ -1 2\ 127 4 — _

Such a treatment has been givi8] for liquids, where VI=Vlvg "+ (v2 /v 1d= =74, ©
N\, was found to be negligible except for very largeThe where we drop th@©(J%) terms. From(5)
system was taken to be a macroscopically small subvolume
immersed in a large nonuniform liquid phase, which is also — yovo=V, (63)
the model we postulate in the present paper, except that here
we deal with a gas. A term coupling the system to its sur-
roundings was added to the Liouville equation and it was
assumed that, at high density, appreciable numbers of P&/e can thus determing, and , from v, and
ticles would not be exchanged with the surroundings during™ " steady-stat% forn?z(ﬁa) 0 2
the time 7 required forJ to approach a steady state. Such an '
assumption is not applicable to gases, since molecules can 2 2N 2r-1
freely enter and leave the system, and so we proceed here in (Lot Lad)(rot32093= = (70 %2JHT VT, (7)
a different way. ; - . ;

We suppose that relaxation dfto a steady state is given \(lii)m_p;\avwgweli gét(7) with the nonlinear - Fourier law
by a general, nonlinear Cattaneo-Verndtes] equation '

— YoV2— ¥2v0=0. (6b)

ddlgt=L p— yT VT, (23) No=—T 'yo/Lowo, (8a)
L=Lo+L,J?+0(J%, (2b) No=— (T y2/Lovo) +H{T yo/(Lovo)?H(Lowo+ Lon(g-b)
Y=ot ¥20°+0(3%), (20)

From (82 we can calculaté , from the experimental ; and
b= v+ 1,323+ 0(J4). (2d)  then from(8b) we can find\, if we can estimaté. ,.
In Sec. Il we discuss the calculation b$. This proceeds
The linearized form of28) has been extensively discussed from the phenomenological condition that¢p=— 1,
[2,6] and the possibility of generalization of such equationswhere 7 is the collision time and also the response time for
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J. We thus assume that a heat flux cannot be produced in v,=— 2033k T/{10V?m}. (13b)
response to an imposed temperature gradient in a time
We have The expansion if2d) is asymptotic and may not be useful
for very smalin, since higher terms in the expansion involve
=1/v, (9 increasingly negative powers af

To illustrate use of the distributiop(x), we predict the

wherel is the mean free path andthe rms speed. We can gytcome of a measurement of internal enetygiven that
calculatev in terms ofJ from the maximum entropy formal-  j is known. We have

ism, as we do in Sec. Ill, andfrom \y. Thus we findL,.

In Sec. IV we are able to make numerical estimates of - 3
No/\o. Assuming a large valud~10° Wm~ 2, we find U:J p(X)H(X)dx=ZNKT
N2J%/Ng~10"3in Ar at 0 °C, 1 atm. Under conditions nor- X
mally found in the laboratory, the nonlinear effects will not = INKT[1+2mFP/{En*(«T)%}]+0(J%). (19

We shall discuss the statistical significance of these results i . _ :
om the operationally defined thermodynamic temperature

Sec. V and possible generalizations of the maximum entrop btained via th It has b hat if
calculation made in Sec. Il. Such generalizations could mak obtained via t ermometry. t has een 6.“9'@“'] that |
we could measure simultaneously an infinite number of mo-

N\, even smaller than the estimates made here. : . S
ments of the single-particle momentum-space distribution,
we should predicTc=T. This implies that theD(J?) term
in (14) is of the order of the uncertainty in the statistical
prediction. All theO(J?) contributions we calculate here are
To calculateg and thusyy and v, in (2d), we follow  Small and of the same order.
Jayned 8] in calculating the information-theoretic entropy

be seen and the linear Fourier law, Wht=o, will obtain. ghis result defines the kinetic temperatiie, which differs

II. STATISTICAL PREDICTION
VIA MAXIMUM ENTROPY

Ill. ESTIMATE OF L,

S= —KJ p(X)Inp(x)dx, (10 Since we can estimate, from A, using (8a), we have
only to obtainL, to calculate\, from (8b). As stated above,
where the integration is over phase space. Shenctional is ~ We impose the phenomenological condition théi)—0 if

maximized Subject to the Conditions w> ’7'71, Wh|Ch iS aChieVed by Settinb(b: - Tﬁl\]. T iS the
collision time given by(9). We postulate an expansion

- f p(x)3dx, (119 = agt a,d?+ 0(3%), (159

N Lovo= —ay, (15b)

Jx)=V 2 (pi /m)[(pZ/2m)—h], (11b LyvetLovae —ay. (150
h=3«T. (119 The mean free pathshould be the average of an operator

that depends on the atomic configuration and not appreciably
m is the atomic mass ankl the enthalpy per particle. The ©n particle momenta. I5(x) is used to calculate the average,
solution p(x) to this variation problem can be used as al Will not depend onJ. On the other hand,
phase-space distribution to predict the value of any operator 3 1
given the measured value af One obtains 2k Tk=z Mo (16)
p(x)=Z*1ex;{—ﬂ(l:|+¢~:])], (123 From (14) we have
=(3kT/M)Yq 1+ mFP/{5n%(«T)3} ]+ 0O(I%

=f exp(— BH)[1+1B%(-3)2+---1dx, (12b) = Dot 0,J2+0(3%). (17)

whereH is the Hamiltonian operator representing the kineticNOW’ from (15b),

energy in a dilute gas. —
¢ is a Lagrange multiplier determined to satidfi1a Lovo voll, (183

identically on substitution of12) into the latter equation. If —1_ _ i77)

(129 is substituted intq10), the Gibbs equatiofB) is satis- ! Lovo/(3xT/m)™%, (18

fied provided¢ in (123 is identified with the thermody-

namic ¢ in (3) and provided3=1/«kT. We can obtain ap

expansion fod from the right-hand member 6113, which,  From (15¢ and (180,

on inversion, yields the expansion (&d). vy has previously

been calculatefd] and we add here the result fos: Lovg+ Lova=mLyry/{5n%(«T)%}, (19

a,=v,/l=—mlyry/{5n%(xT)3%. (189

vo=—2V?m/{5N(kT)?}, (139  where, from(8a),
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Lovo=—T Yyo/\o. (20 entropy formalism, which provides a statistical distribution
. p(x) in phase space, assuming that values df,J consti-
After some algebra(8b) predicts that tute all the information we have about the system. If we had

more information, thed(J?) terms would be altered. These
terms appear to be of the order of the small uncertainty in the
statistical prediction, whicH10] has been found to give
IV. NUMERICAL ESTIMATE OF A, Tx=T when maximum information is available. It is thus
not surprising thah =\, in both gases and liquids. In the

will provide an order-of-magnitude estimate that we Canapproaches of G“’Tm. and Chapman and Enskegl], one
readily extend to lower densities whexeg is proportional to takeSTK.:T by defm't.'on and neglects terms of the order of
the estimate we make here. We take- 6.6336< 102 kg the nonlinear co'rrec'tlons we have been ca]culatlng herg. To
and n=2.689< 107 m~3. If |T«—T|/T=0.001, we find the extent thaF klngtlc theory is successful in any domain _of
|3|=1.209x 10° J/m? s. This large value is of the order re- n and_ T that |s_be|ng studied, we could say that there is
quired to render barely observable all theJ?) terms we experimental evidence for the neglect of such terms and im-

No=AomZE/{5n?(kT)3}. (22)

Consider Ar at 0 °C, 1 atm. If this is not highly dilute, it

calculate from the distributiofl2a). poseT=T as an additional condition on the maximization
For this value of], we estimate from{21) of the S functional in(10). This would modify the predicted
J dependence of.
N2J%N\o=7.62¢103, (22 The most drastic assumption made here is embodied in

Eqg. (9). One might try to improve on this by substituting
p(X) in ({2a) into the Liouville equation, multiplying the
=7.3x 10" K/m, which we cannot readily realize in the labo- Iattgr by J(x), and,integrating over phase space. This. is
ratory. Steady states under such circumstances might Hefuivalent to Grad's approach to the Bolizmann equation.
simulated on a computer, but such simulations are normallyptch @ procedure leads (2e) with an explicit expression for
made at high density. Frort21), we see that,J%/\, is . However, this resulfc foL yields a\, that is not intensive.
proportional to §/n)2. If n were two orders of magnitude Therefore, the corrections that must be added to a Grad-type
Sma”er, we Shou'd Obta|@2) unchanged W|th atemperature ansatz to make |t a Solution to the LiOUVi”e equation must
gradient~10°—10°® K/m, which is still very large. The non- affect the higher-order contributions to transport coefficients.
linear contributions to Fourier's law will prove very difficult As observed above, we cannot expect to be able to estimate
to observe in steady heat conduction measurements in bothese contributions from Grad-type theories.

so that theD(J?) term does not affect the order of magnitude
of N. Then the temperature gradienftd/\|~|J/\g|

simple liquids and gases. _ The fo_regoing_ arguments all apply to simple gases obe_y-
ing classical statistics. We attempt here to counter the notion
V. DISCUSSION that, because second-order effects in gaseous transport are

proportional ton~2, they should be large enough to observe

In the foregoing sections we have extended work of earin gases if not in liquids. From the calculations made here, it
lier authors[9] by calculating the coefficient, of the  appears that possible observability requires changes in some
0(J?J) term in ¢ and estimating th©(J?) term inL. Al parameter other than density, e.g., in the mean freelpath
the O(J?) contributions toTx—T and to\ are of the same a Bloch model for electrons in a metal, the Pauli exclusion
order and very small except under circumstances where therinciple makes the mean free path much longer than the
number density is very small and higher-order termsJdn  interionic distance. Accordingly, electrical conductivity is a
are needed to approximate thelependence ofp and\. To  possible area in which to look for second-order transport
observe thel dependence ok, one must have very large effects. In that case, the remaining constants must be evalu-
temperature gradients and heat flows, which could noated quantum statistically and so they may have significantly
readily be achieved in the laboratory. different relative magnitudes from those of the simple rare-

To calculate¢p and Tx—T we have used the maximum gas model.
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