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Terms in thermal conductivityl that are quadratic in heat fluxJ are estimated via Onsager reciprocity and
the maximum entropy formalism, which relate them to measurable coefficients. To observe these terms in Ar
at 0 °C, 1 atm, one should require a temperature gradient*107 K/m. If density is reduced by a given factor,
the required temperature gradient is reduced by the same factor. Convergence problems arise at very low
densities.@S1063-651X~96!06108-9#

PACS number~s!: 44.10.1i, 05.70.Ln

I. INTRODUCTION

In linear heat conduction obeying Fourier’s law, the ther-
mal conductivityl in a pure gas depends only on number
densityn and temperatureT. For large heat fluxJ and large
temperature gradients, we should expect from the kinetic
theory of Grad@1# that

l5l0~n,T!1l2~n,T!J21O~J4!, ~1!

whereJ[uJu. Standard kinetic theory will not yield a reliable
estimate ofl2 because it is based on the linearized Boltz-
mann equation and, in the case of Grad, it assumes an ap-
proximate solution to the Boltzmann equation, which ne-
glects termsO(J2), which we have reason to believe,
discussed below, is of significance. Accordingly, we develop
here a more phenomenological approach that uses the maxi-
mum entropy formalism and Onsager reciprocity to relate the
phenomenological coefficients of extended thermodynamics
@2# to quantities such asl0 that are accessible to experiment.

Such a treatment has been given@3# for liquids, where
l2 was found to be negligible except for very largeJ. The
system was taken to be a macroscopically small subvolume
immersed in a large nonuniform liquid phase, which is also
the model we postulate in the present paper, except that here
we deal with a gas. A term coupling the system to its sur-
roundings was added to the Liouville equation and it was
assumed that, at high density, appreciable numbers of par-
ticles would not be exchanged with the surroundings during
the timet required forJ to approach a steady state. Such an
assumption is not applicable to gases, since molecules can
freely enter and leave the system, and so we proceed here in
a different way.

We suppose that relaxation ofJ to a steady state is given
by a general, nonlinear Cattaneo-Vernotte@4,5# equation

]J/]t5Lf2gT21
“T, ~2a!

L5L01L2J
21O~J4!, ~2b!

g5g01g2J
21O~J4!, ~2c!

f5n0J1n2J
2J1O~J4J!. ~2d!

The linearized form of~2a! has been extensively discussed
@2,6# and the possibility of generalization of such equations

to the nonlinear case has been derived@7# via a Grad-type
treatment of the Liouville equation.f is a thermodynamic
force appearing in the Gibbs equation

TdS5dU1PdV1f•dJ. ~3!

Equations~2a! and~3! assume no mass flow, so that the total
particle numberN in the system of volumeV, with
n[N/V, is constant.

From the maximum entropy formalism of Jaynes@8#, we
can evaluatef and thereforen0 andn2 in ~2d!. This is done
in Sec. II. Rewriting~2d! in the form

J5@n0
212~n2 /n0

2!J21O~J4!#f, ~4!

we find @3# that the condition of positive definiteness of the
irreversible entropy production calculated from~3! requires
the antisymmetric Onsager coupling

VJ5V@n0
211~n2 /n0

2!J2#f52gf, ~5!

where we drop theO(J4) terms. From~5!

2g0n05V, ~6a!

2g0n22g2n050. ~6b!

We can thus determineg0 andg2 from n0 andn2.
From the steady-state form of~2a!,

2~L01L2J
2!~n01n2J

2!J52~g01g2J
2!T21

“T. ~7!

Comparing Eq. ~7! with the nonlinear Fourier law
J52l¹T, we get

l052T21g0 /L0n0 , ~8a!

l252~T21g2 /L0n0!1$T21g0 /~L0n0!
2%~L2n01L0n2!.

~8b!

From ~8a! we can calculateL0 from the experimentall0 and
then from~8b! we can findl2 if we can estimateL2.

In Sec. III we discuss the calculation ofL2. This proceeds
from the phenomenological condition thatLf52t21J,
wheret is the collision time and also the response time for
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J. We thus assume that a heat flux cannot be produced in
response to an imposed temperature gradient in a time,t.
We have

t5 l /v, ~9!

wherel is the mean free path andv the rms speed. We can
calculatev in terms ofJ from the maximum entropy formal-
ism, as we do in Sec. III, andl from l0. Thus we findL2.

In Sec. IV we are able to make numerical estimates of
l2 /l0. Assuming a large valueJ;106 W m22, we find
l2J

2/l0;1023 in Ar at 0 °C, 1 atm. Under conditions nor-
mally found in the laboratory, the nonlinear effects will not
be seen and the linear Fourier law, withl>l0, will obtain.
We shall discuss the statistical significance of these results in
Sec. V and possible generalizations of the maximum entropy
calculation made in Sec. II. Such generalizations could make
l2 even smaller than the estimates made here.

II. STATISTICAL PREDICTION
VIA MAXIMUM ENTROPY

To calculatef and thusn0 and n2 in ~2d!, we follow
Jaynes@8# in calculating the information-theoretic entropy

S52kE r~x!lnr~x!dx, ~10!

where the integration is over phase space. TheS functional is
maximized subject to the conditions

J5E r~x!Ĵdx, ~11a!

Ĵ~x![V21(
i51

N

~pi /m!@~pi
2/2m!2h#, ~11b!

h5 5
2kT. ~11c!

m is the atomic mass andh the enthalpy per particle. The
solution r(x) to this variation problem can be used as a
phase-space distribution to predict the value of any operator
given the measured value ofJ. One obtains

r~x!5Z21exp@2b~Ĥ1f• Ĵ!#, ~12a!

Z5E exp~2bĤ !@11 1
2b2~f• Ĵ!21•••#dx, ~12b!

whereĤ is the Hamiltonian operator representing the kinetic
energy in a dilute gas.

f is a Lagrange multiplier determined to satisfy~11a!
identically on substitution of~12! into the latter equation. If
~12a! is substituted into~10!, the Gibbs equation~3! is satis-
fied providedf in ~12a! is identified with the thermody-
namicf in ~3! and providedb51/kT. We can obtain af
expansion forJ from the right-hand member of~11a!, which,
on inversion, yields the expansion in~2d!. n0 has previously
been calculated@9# and we add here the result forn2:

n0522V2m/$5N~kT!2%, ~13a!

n252203n0
3kT/$10V2m%. ~13b!

The expansion in~2d! is asymptotic and may not be useful
for very smalln, since higher terms in the expansion involve
increasingly negative powers ofn.

To illustrate use of the distributionr(x), we predict the
outcome of a measurement of internal energyU, given that
J is known. We have

U5E r~x!Ĥ~x!dx[ 3
2NkTK

5 3
2NkT@112mJ2/$5n2~kT!3%#1O~J4!. ~14!

This result defines the kinetic temperatureTK , which differs
from the operationally defined thermodynamic temperature
T obtained via thermometry. It has been argued@10# that if
we could measure simultaneously an infinite number of mo-
ments of the single-particle momentum-space distribution,
we should predictTK5T. This implies that theO(J2) term
in ~14! is of the order of the uncertainty in the statistical
prediction. All theO(J2) contributions we calculate here are
small and of the same order.

III. ESTIMATE OF L 2

Since we can estimateL0 from l0, using ~8a!, we have
only to obtainL2 to calculatel2 from ~8b!. As stated above,
we impose the phenomenological condition thatl(v)→0 if
v@t21, which is achieved by settingLf52t21J. t is the
collision time given by~9!. We postulate an expansion

t215a01a2J
21O~J4!, ~15a!

L0n052a0 , ~15b!

L2n01L0n252a2 . ~15c!

The mean free pathl should be the average of an operator
that depends on the atomic configuration and not appreciably
on particle momenta. Ifr(x) is used to calculate the average,
l will not depend onJ. On the other hand,

3
2kTK5 1

2mv
2. ~16!

From ~14! we have

v5~3kT/m!1/2@11mJ2/$5n2~kT!3%#1O~J4!

5v01v2J
21O~J4!. ~17!

Now, from ~15b!,

L0n052n0 / l , ~18a!

l2152L0n0 /~3kT/m!1/2, ~18b!

a25v2 / l52mL0n0 /$5n
2~kT!3%. ~18c!

From ~15c! and ~18c!,

L2n01L0n25mL0n0 /$5n
2~kT!3%, ~19!

where, from~8a!,
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L0n052T21g0 /l0 . ~20!

After some algebra,~8b! predicts that

l25l0m
381
25 /$5n

2~kT!3%. ~21!

IV. NUMERICAL ESTIMATE OF l2

Consider Ar at 0 °C, 1 atm. If this is not highly dilute, it
will provide an order-of-magnitude estimate that we can
readily extend to lower densities wherel2 is proportional to
the estimate we make here. We takem56.6336310226 kg
and n52.68931025 m23. If uTK2Tu/T50.001, we find
uJu51.2093106 J/m2 s. This large value is of the order re-
quired to render barely observable all theO(J2) terms we
calculate from the distribution~12a!.

For this value ofJ, we estimate from~21!

l2J
2/l057.6231023, ~22!

so that theO(J2) term does not affect the order of magnitude
of l. Then the temperature gradientuJ/lu;uJ/l0u
57.33107 K/m, which we cannot readily realize in the labo-
ratory. Steady states under such circumstances might be
simulated on a computer, but such simulations are normally
made at high density. From~21!, we see thatl2J

2/l0 is
proportional to (J/n)2. If n were two orders of magnitude
smaller, we should obtain~22! unchanged with a temperature
gradient;105–106 K/m, which is still very large. The non-
linear contributions to Fourier’s law will prove very difficult
to observe in steady heat conduction measurements in both
simple liquids and gases.

V. DISCUSSION

In the foregoing sections we have extended work of ear-
lier authors @9# by calculating the coefficientn2 of the
O(J2J) term inf and estimating theO(J2) term in L. All
theO(J2) contributions toTK2T and tol are of the same
order and very small except under circumstances where the
number densityn is very small and higher-order terms inJ
are needed to approximate theJ dependence off andl. To
observe theJ dependence ofl, one must have very large
temperature gradients and heat flows, which could not
readily be achieved in the laboratory.

To calculatef andTK2T we have used the maximum

entropy formalism, which provides a statistical distribution
r(x) in phase space, assuming that values ofn,T,J consti-
tute all the information we have about the system. If we had
more information, theO(J2) terms would be altered. These
terms appear to be of the order of the small uncertainty in the
statistical prediction, which@10# has been found to give
TK5T when maximum information is available. It is thus
not surprising thatl>l0 in both gases and liquids. In the
approaches of Grad@1# and Chapman and Enskog@11#, one
takesTK5T by definition and neglects terms of the order of
the nonlinear corrections we have been calculating here. To
the extent that kinetic theory is successful in any domain of
n and T that is being studied, we could say that there is
experimental evidence for the neglect of such terms and im-
poseTK5T as an additional condition on the maximization
of theS functional in~10!. This would modify the predicted
J dependence ofl.

The most drastic assumption made here is embodied in
Eq. ~9!. One might try to improve on this by substituting
r(x) in ~12a! into the Liouville equation, multiplying the
latter by Ĵ(x), and integrating over phase space. This is
equivalent to Grad’s approach to the Boltzmann equation.
Such a procedure leads to~2a! with an explicit expression for
L. However, this result forL yields al2 that is not intensive.
Therefore, the corrections that must be added to a Grad-type
ansatz to make it a solution to the Liouville equation must
affect the higher-order contributions to transport coefficients.
As observed above, we cannot expect to be able to estimate
these contributions from Grad-type theories.

The foregoing arguments all apply to simple gases obey-
ing classical statistics. We attempt here to counter the notion
that, because second-order effects in gaseous transport are
proportional ton22, they should be large enough to observe
in gases if not in liquids. From the calculations made here, it
appears that possible observability requires changes in some
parameter other than density, e.g., in the mean free pathl . In
a Bloch model for electrons in a metal, the Pauli exclusion
principle makes the mean free path much longer than the
interionic distance. Accordingly, electrical conductivity is a
possible area in which to look for second-order transport
effects. In that case, the remaining constants must be evalu-
ated quantum statistically and so they may have significantly
different relative magnitudes from those of the simple rare-
gas model.
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