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We present numerical results indicating that the application of a laminar shear flow to an autocatalytic
reaction front can lead to an enhanced rate of reaction. This is a result of the formation of a nonplanar wave
front propagating at a speed approaching that of the shear amplitude.@S1063-651X~96!02008-9#

PACS number~s!: 47.20.Ky, 82.40.Ck, 03.40.Kf

The isothermal autocatalytic reactions

A1nB→~n11!B, ~rate!5kabn,

wherek is the rate constant for the reaction anda andb are
the chemical concentrations, describe processes within a va-
riety of chemical systems. The most studied of these corre-
spond to quadratic (n51! or cubic (n52! autocatalysis or to
a mixture of these. Quadratic autocatalysis occurs, for ex-
ample, in the combustion of hydrogen in oxygen@1#, while
applications of the cubic autocatalytic process include the
iodate-arsenite reaction@2#.

One of the most striking phenomena associated with au-
tocatalytic reaction-diffusion systems is their capacity to
generate traveling wave fronts of uniform speed and constant
concentration profile@3#. The wave front is the transition
layer between a region containing only reactantA and a re-
gion where only the catalystB is present and advances as a
result ofB consumingA. If the diffusion coefficient of the
reactant is comparable with that of the autocatalyst, the
plane-wave-front solution is stable to perturbations@4#. Such
fronts can be readily observed experimentally@5#. If the re-
actant has a significantly larger diffusivity than the autocata-
lyst, then the planar fronts are no longer stable. Instead, non-
planar fronts occur, which, depending upon the parameter
values, can exhibit constant, oscillatory, or chaotic behavior
@4#. Nonplanar fronts can also occur as the result of convec-
tive effects associated with temperature and concentration
gradients, which arise when, for example, the front is travel-
ing up a vertical tube. It has been shown both theoretically
and experimentally that such a front is stable to perturbations
if the tube diameter is small enough@6#.

The effect of imposed shear flows on these autocatalytic
reactions appears to have received little attention. The theo-
retical studies have concentrated mostly upon the stability of
reaction-diffusion-advection systems@7#. In this paper we
examine the result of applying a shear flow to these wave
fronts. We show that, with the introduction of a shear flow,
stable nonaccelerating fronts of permanent form still occur.
As with the convective system, the wave fronts are nonpla-
nar. The most important feature is that their speed is of the
order of the maximum imposed flow velocity. This means
that in regions where the imposed velocity is zero or even
negative, the wave front still propagates at approximately the

shear velocity amplitude. For large shear amplitudes this be-
havior of the wave front results in an enormously enhanced
rate at which the reactant is consumed.

We focus upon the cubic autocatalytic reaction, although
our numerical work suggests that similar nonplanar wave
fronts are produced in the quadratic case. We consider a
two-dimensional region with boundaries aty56L. If a
laminar shear flowU5U(y) is applied and the effect of the
reaction on the flow is ignored, the system is governed by the
equations

]a

]t
1U

]a

]x
5DA¹2a2kab2,

~1!

]b

]t
1U

]b

]x
5DB¹2b1kab2.

Here we consider only the case of equal diffusion coeffi-
cients and an isotropic reactor. This is a good approximation
for isothermal chemical systems, although it is now techni-
cally possible, by suitable pretreatment of the reactor, to pro-
duce differences in diffusion coefficients of an order of mag-
nitude or greater, even for these simple systems. We employ
the dimensionless variablesa85a/a0 , b85b/a0 , x85x/L,
y85y/L, t85DAt/L

2, andU85U8(y8)5LU(Ly8)/DA and
introduce the dimensionless parameterm5a0

2L2k/DA ,
where a0 is the initial uniform concentration ofA in the
completely unreacted region. On adding equations~1! ~with
DA5DB) it can be seen that ifa1b51 everywhere at
t50, it will remain so for all time. For such initial condi-
tions, we therefore need consider only the concentration of
b, now given by the equation

bt1Ubx5bxx1byy1mb2~12b!, ~2!

in which the primes have been dropped for convenience. We
will be examining the effects of a linear shearU5uy and a
parabolic shear flow of the formU5u(12y2) for constant
u. We impose no-flux boundary conditions ony561 and
hence our model is for the laminar flow between two paral-
lel, extended plates.

Equations~1! were solved numerically using the alternat-
ing direction implicit method with the nonlinear terms
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treated explicitly. The accuracy of the method was verified
by using it to solve systems whose solutions are known. The
solutions were also found to converge on decreasing the tem-
poral and spatial step sizes. Typically we used a time step of
1024 and a spatial step size of 1/32. The domain size in the
x direction was made sufficiently large so that the boundaries
did not influence the solution in the central region of interest.
No-flux boundary conditions were applied at the ends of this
domain.

For our initial condition we used the cubic-Fisher planar
wave-front solution@3# to Eq.~2! whenU50 and there is no
y dependence, namely,

b5b0[
1

2 S 12tanh
c0x

2 D , ~3!

where c0[Am/2. It was found that the form of the wave
front evolved until the rate of increase of the total quantity of
B in the region became constant. This corresponded to the
front attaining its final permanent form and advancing at a
constant speed. This rate was therefore used to determine the
average velocity of the advancing front. The stationary char-
acter of the wave front was checked by feeding this velocity
back into the advection term in the calculations so that the
reference frame was moving at the same velocity. If this was
done continually during the calculation, it ensured that the
wave front stayed within the central region of the computa-
tional domain and so it was not necessary to use a mesh
much larger than the longitudinal extent of the front.

We found that, for whatever value of the shear amplitude
we chose, a stationary traveling wave front was eventually
formed both for a linear and parabolic shear and also for both
cubic and quadratic autocatalysis. The asymptotic velocity of
the wave frontc for both positive and negative values ofu
for the cubic autocatalytic system is shown in Fig. 1. The
calculations for quadratic autocatalysis required a much finer
grid in order to obtain accurate results and resources did not
permit the determination the front speed for many values of
the shear velocity. In the case of parabolic flow, for large and

positive shear amplitude, the wave-front velocity is approxi-
mately equal tou, although there is some indication that it
may be falling below this value for extremely large shears.
For large negativeu there also appears to be an approxi-
mately linear relation betweenc andu.

In Fig. 2 we show the evolution of a planar wave front
subjected to a linear shear. Byt51, the wave front has ac-
quired its final form. In Fig. 3 we see the asymptotic form of
the wave fronts in the presence of parabolic shears of equal
magnitude, but applied in an opposite sense. For both linear
and parabolic shears we have found that the wave fronts have
approximately the same shape for a range ofu, but increase
in length with increasing amplitude of the shear. In Fig. 4 we
show the effect of introducing a localized amount of auto-
catalyst into a background of reactant in a parabolic shear
flow. The autocatalyst initially generates a radially expand-

FIG. 1. Shear amplitude–wave-front velocity plot. The full
curve is for parabolic shear; the dash-dotted curve is for linear
shear. The inset shows the behavior for small-amplitude shears. The
broken line is the first-order result from the perturbation analysis for
a parabolic shear. The wave-front velocity for a linear shear is an
even function ofu. For clarity, the positiveu results reflected about
u50 are shown only in the inset.

FIG. 2. Contour plots ofb showing the evolution of a plane-
wave front in the presence of the linear shear flowU5100y at
times ta50, tb50.05, tc50.1, andtd51. The region containing
B only is on the left-hand side, and for this and subsequent figures,
the contour levels are at intervals of 0.1.

FIG. 3. Final forms of the wave fronts in the presence of
the parabolic shear flows:~a! U5100 (12y2) and ~b!
U52100 (12y2).
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ing front, which on reaching the boundaries forms an ex-
panding region ofB bordered by the two types of front
shown in Fig. 3. All the results presented are form5200.

The shape of the wave front can, to some extent, be ac-
counted for by considering the eikonal equation for reaction-
diffusion fronts modified for the case of an underlying fluid
flow @8#, namely,

c5U1~c01Dk!secu, ~4!

where herec is thex component of the front velocity,c0 is
the speed of a plane front,k is the curvature of the front, and
u is the angle between the normal to the front and thex axis.
A positive k implies that the center of curvature lies within
the unreacted region. In order to arrive at a front speed that is
independent ofy, variations in the underlying fluid velocity
must be compensated for by the inclination of the front to the
flow and by the front curvature. At the center of the flow, the
curvature provides a negative contribution, as the center of
curvature is within the fully reacted region, while at the
boundaries where the underlying fluid velocity approaches
zero, the curvature is very large. In the region in between, a
significant contribution to the velocity is provided by the
very oblique motion of the front.

To investigate analytically the wave-front solutions to~2!
traveling at speedc, we transform to the coordinate system
x85x2ct. Since in this frame we are considering only time-
independent solutions, after dropping the primes we are left
with

bxx1byy1~c2U !bx1mb2~12b!50. ~5!

With no y dependence andU[0, this becomes the cubic-
Fisher equation with solution~3!. We attempt to find a per-
turbation solution to~5! for u!c0 by expanding the solution
aboutb0 andc0:

b5b01u (
n52`

`

bn
~1!einpy1u2 (

n52`

`

bn
~2!einpy1•••, ~6!

c5c01c1u1c2u
21•••. ~7!

After writing U as a Fourier series iny, we substitute the
expansions into Eq.~5!. To first order inu and forn50 we
obtain

b0,xx
~1! 1c0b0,x

~1!1c0
2~2b023b0

2!b0
~1!5~Y02c1!b0,x , ~8!

whereY0 is the zeroth Fourier coefficient ofU/u. It can be
seen thatb0,x is the complementary function for Eq.~8! that
satisfies homogeneous boundary conditions. To obtain a so-
lution to the full equation that satisfies all the required
boundary conditions a compatibility condition must be satis-
fied. This leads to choosingc15Y0 , which is the mean
value of the shear. Hence, for linear shear flowc150 and for
parabolic flow we havec152/3. Referring back to the nu-
merical results shown in the insert of Fig. 1, we see that for
u!10 the linear dependences predicted by our analysis are
obtained.

To conclude, in this article we have presented results that
show that a superimposed laminar shear flow can greatly
enhance the rate at which the reactant in an autocatalytic
scheme is consumed. This is a result of the occurrence of a
stable wave front of permanent form propagating with a ve-
locity comparable to that of the maximum of the shear ve-
locity.

@1# P. Gray, J.F. Griffiths, and S.K. Scott, Proc. R. Soc. London
Ser. A394, 243 ~1984!.

@2# A. Saul and K. Showalter, inOscillations and Travelling
Waves in Chemical Systems, edited by R.J. Field and M.
Burger ~Wiley, New York, 1984!.

@3# K. Showalter, Nonlin. Sci. Today4, 3 ~1995!; P. Gray and
S.K. Scott,Chemical Oscillations and Instabilities~Clarendon,
Oxford, 1990!; S.K. Scott and K. Showalter, J. Phys. Chem.
96, 8702~1992!.

@4# D. Horvath, V. Petrov, S.K. Scott, and K. Showalter, J. Chem.

Phys.98, 6332~1993!.
@5# A. Hanna, A. Saul, and K. Showalter, J. Am. Chem. Soc.104,

3838 ~1982!.
@6# J. Masere, D.A. Vasquez, B.F. Edwards, J.W. Wilder, and K.

Showalter, J. Phys. Chem.98, 6505~1994!.
@7# C. Doering and W. Horsthemke, Phys. Lett. A182, 227

~1993!; E.A. Spiegel and S. Zaleski, Phys. Lett.106A, 335
~1984!.

@8# B.F. Edwards, J.W. Wilder, and K. Showalter, Phys. Rev. A
43, 749 ~1991!.

FIG. 4. Evolution of the initial condition
b5exp@2100(x21y2)# subjected to the parabolic shear flow
U52100y2. ta50, tb50.1, tc50.2, andtd50.4.
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