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Autocatalysis in a shear flow
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We present numerical results indicating that the application of a laminar shear flow to an autocatalytic
reaction front can lead to an enhanced rate of reaction. This is a result of the formation of a nonplanar wave
front propagating at a speed approaching that of the shear ampli8te63-651X96)02008-9

PACS numbe(s): 47.20.Ky, 82.40.Ck, 03.40.Kf

The isothermal autocatalytic reactions shear velocity amplitude. For large shear amplitudes this be-
havior of the wave front results in an enormously enhanced
A+nB—(n+1)B, (rate=kab", rate at which the reactant is consumed.

We focus upon the cubic autocatalytic reaction, although
wherek is the rate constant for the reaction améndb are ~ our numerical work suggests that similar nonplanar wave
the chemical concentrations, describe processes within a vionts are produced in the quadratic case. We consider a
riety of chemical systems. The most studied of these correlwo-dimensional region with boundaries gt==L. If a
spond to quadraticn(=1) or cubic (1=2) autocatalysis or to laminar shear flowJ =U(y) is applied and the effect of the
a mixture of these. Quadratic autocatalysis occurs, for exteaction on the flow is ignored, the system is governed by the
ample, in the combustion of hydrogen in oxyddn, while ~ equations
applications of the cubic autocatalytic process include the

; ; ; Ja Ja
iodate-arsenite reactu{r_ﬁ!]_. _ _ Z+U—=D,V2%a—kab?,
One of the most striking phenomena associated with au- at X
tocatalytic reaction-diffusion systems is their capacity to (1)
generate traveling wave fronts of uniform speed and constant
concentration profild3]. The wave front is the transition @+U@=D V2 + kak?
layer between a region containing only reactanand a re- ot X B '

gion where only the cataly® is present and advances as a

result of B consumingA. If the diffusion coefficient of the Here we consider only the case of equal diffusion coeffi-

reactant is comparable with that of the autocatalyst, theients and an isotropic reactor. This is a good approximation

plane-wave-front solution is stable to perturbatiphs Such  for isothermal chemical systems, although it is now techni-

fronts can be readily observed experiment@By. If the re-  cally possible, by suitable pretreatment of the reactor, to pro-

actant has a significantly larger diffusivity than the autocataduce differences in diffusion coefficients of an order of mag-

lyst, then the planar fronts are no longer stable. Instead, nomitude or greater, even for these simple systems. We employ

planar fronts occur, which, depending upon the parametehe dimensionless variables =a/a,, b’ =b/ay, x’ =x/L,

values, can exhibit constant, oscillatory, or chaotic behavioy’ =y/L, t'=D,t/L2, andU’'=U’(y’)=LU(Ly’)/D, and

[4]. Nonplanar fronts can also occur as the result of convecintroduce the dimensionless parametgr= aSLZk/DA,

tive effects associated with temperature and concentratiowhere a,, is the initial uniform concentration oA in the

gradients, which arise when, for example, the front is travelcompletely unreacted region. On adding equatidngwith

ing up a vertical tube. It has been shown both theoreticallyp ,=Dg) it can be seen that ih+b=1 everywhere at

and experimentally that such a front is stable to perturbations=0, it will remain so for all time. For such initial condi-

if the tube diameter is small enoug@]. tions, we therefore need consider only the concentration of
The effect of imposed shear flows on these autocatalyti¢y, now given by the equation

reactions appears to have received little attention. The theo-

retical studies have concentrated mostly upon the stability of b+ Ub,=by,+Dbyy+ ub?(1-b), 2

reaction-diffusion-advection systenj]. In this paper we

examine the result of applying a shear flow to these wavédn which the primes have been dropped for convenience. We

fronts. We show that, with the introduction of a shear flow,will be examining the effects of a linear shdar=uy and a

stable nonaccelerating fronts of permanent form still occurparabolic shear flow of the fortd =u(1—y?) for constant

As with the convective system, the wave fronts are nonplau. We impose no-flux boundary conditions g =1 and

nar. The most important feature is that their speed is of théaence our model is for the laminar flow between two paral-

order of the maximum imposed flow velocity. This meanslel, extended plates.

that in regions where the imposed velocity is zero or even Equations(1) were solved numerically using the alternat-

negative, the wave front still propagates at approximately théng direction implicit method with the nonlinear terms
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FIG. 1. Shear amplitude—wave-front velocity plot. The full -20

curve is for parabolic shear; the dash-dotted curve is for linear

shear. The inset shows the behavior for small-amplitude shears. The £ 2. contour plots ob showing the evolution of a plane-
broken line is the first-order result from the perturbation analysis for, 5ve front in the presence of the linear shear flow:100y at

a parabolic shear. The wave-front velocity for a linear shear is ag; a5 t,=0, t,=0.05, t,=0.1, andt,=1. The region containing
even function ol. For.clarity: the positives results reflected about g only is on the left-hand side, and for this and subsequent figures,
u=0 are shown only in the inset. the contour levels are at intervals of 0.1.

treate_d e_pr|C|tIy. The accuracy of the methOd was verifie ositive shear amplitude, the wave-front velocity is approxi-
by using it to solve systems whose solutions are known. Th ately equal tau, although there is some indication that it

solutions were also found to converge on decreasing the te hay be falling bélow this value for extremely large shears.
poral and spatial step sizes. Typically we used a time step or large negativel there also appears to be an approxi-
104 and a spatial step size of 1/32. The domain size in th‘?nately linear relation betweenandu

é.g'reiﬂ.oﬂ was mtr;l‘de SLljfft[C|entl){r:arge sto 'lthat Fhe b?pr;dam:s In Fig. 2 we show the evolution of a planar wave front
Id notinfluence the solution in the centrai région of INteres 'subjected to a linear shear. By1, the wave front has ac-

No-flu_x boundary conditions were applied at the ends of thisquired its final form. In Fig. 3 we see the asymptotic form of
domain. I . _— the wave fronts in the presence of parabolic shears of equal
For our |n|t|all condition we used the CUbIC-FISheI" planarmagnitude, but applied in an opposite sense. For both linear
wave-front solutiori 3] to Eq.(2) whenU=0 and there is no and parabolic shears we have found that the wave fronts have
y dependence, namely, approximately the same shape for a range,0but increase
in length with increasing amplitude of the shear. In Fig. 4 we
(3  show the effect of introducing a localized amount of auto-
catalyst into a background of reactant in a parabolic shear
flow. The autocatalyst initially generates a radially expand-

1 CoX
b:boE E 1—tanh7 s

where co=u/2. It was found that the form of the wave
front evolved until the rate of increase of the total quantity of
B in the region became constant. This corresponded to the 1.0
front attaining its final permanent form and advancing at a

constant speed. This rate was therefore used to determine the
average velocity of the advancing front. The stationary char-
acter of the wave front was checked by feeding this velocity
back into the advection term in the calculations so that the
reference frame was moving at the same velocity. If this was
done continually during the calculation, it ensured that the

wave front stayed within the central region of the computa- 1.0

tional domain and so it was not necessary to use a mesh st

much larger than the longitudinal extent of the front. '
We found that, for whatever value of the shear amplitude y ¢gt

we chose, a stationary traveling wave front was eventually

formed both for a linear and parabolic shear and also for both  -0.5¢

cubic and quadratic autocatalysis. The asymptotic velocity of 10

the wave frontc for both positive and negative values wf
for the cubic autocatalytic system is shown in Fig. 1. The
calculations for quadratic autocatalysis required a much finer

grid in order to obtain accurate results and resources did not FIG. 3. Final forms of the wave fronts in the presence of
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permit the determination the front speed for many values ofhe parabolic shear flows:(a U=100 (1-y?) and (b)
the shear velocity. In the case of parabolic flow, for large andy=—-100 (1-y?).
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| To investigate analytically the wave-front solutions(®)
@ traveling at speed, we transform to the coordinate system
or ' x"=x—ct. Since in this frame we are considering only time-
-1 . independent solutions, after dropping the primes we are left
1 ‘ ' with

(b)

byxtbyy+(c—U)b,+ub?(1-b)=0. (5)

© With no y dependence and =0, this becomes the cubic-
Fisher equation with solutiofB8). We attempt to find a per-
turbation solution td5) for u<cg by expanding the solution

aboutby andcy:

(@

b=bo+u >, BlIe+u2 X g+ .. (f)
n=—wx

n=—ow

-15 -10

X

condition

initial
b=exd —100(x>+y?)] subjected to the parabolic shear flow
U=-100y?. t,=0,t,=0.1, t,=0.2, andty=0.4.

FIG. Evolution of the

4.

C=Co+Cu+cu?+---. (7
After writing U as a Fourier series iy, we substitute the

ing front, which on reaching the boundaries forms an ex-expansions into E(5). To first order inu and forn=0 we

panding region ofB bordered by the two types of front obtain

shown in Fig. 3. All the results presented are for 200.

The shape of the wave front can, to some extent, be ac-
counted for by considering the eikonal equation for reaction-
diffusion fronts modified for the case of an underlying fluid
flow [8], namely,

Boi+ CoBby +C5(2bo—305) B5 = (Yo—C1)box, (8)

whereY is the zeroth Fourier coefficient &f/u. It can be
seen thab,, is the complementary function for E¢(B) that
satisfies homogeneous boundary conditions. To obtain a so-
lution to the full equation that satisfies all the required
boundary conditions a compatibility condition must be satis-
the speed of a plane frong,is the curvature of the front, and fied. This leads to choosing;=Y,, which is the mean

0 is the angle between the normal to the front andxlaeis.  value of the shear. Hence, for linear shear flow: 0 and for

A positive « implies that the center of curvature lies within parabolic flow we have,=2/3. Referring back to the nu-
the unreacted region. In order to arrive at a front speed that imerical results shown in the insert of Fig. 1, we see that for
independent of/, variations in the underlying fluid velocity u<<10 the linear dependences predicted by our analysis are
must be compensated for by the inclination of the front to theobtained.

flow and by the front curvature. At the center of the flow, the To conclude, in this article we have presented results that
curvature provides a negative contribution, as the center cshow that a superimposed laminar shear flow can greatly
curvature is within the fully reacted region, while at the enhance the rate at which the reactant in an autocatalytic
boundaries where the underlying fluid velocity approachescheme is consumed. This is a result of the occurrence of a
zero, the curvature is very large. In the region in between, stable wave front of permanent form propagating with a ve-
significant contribution to the velocity is provided by the locity comparable to that of the maximum of the shear ve-

c=U+(cy+Dk)sed, (4

where herec is thex component of the front velocityg, is

very oblique motion of the front.

locity.
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