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Dynamical evolution of squeezing and antibunching effects in a quantum chaotic system:
The three-level Lipkin model
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Time evolution of squeezing and antibunching effects in a nuclear model known as the three-level Lipkin
model is analyzed. The two effects occur in the regime of classically regular motion, but disappear in the
regime of classically chaotic motion, which is similar to that obtained in a spin-boson rtadgher quantum
chaotic system [S1063-651X96)06207-1
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. INTRODUCTION H©=e,blb,+e,blb,
The recently gained increase of understanding of classical _ t \/ _ Tt \/ _ T
Hamiltonian systemgl], which are nonintegrable and there- ka| b2\ &2 Z brbibz /€2 Z PrbitH.C,

fore display chaotic dynamical behavior, has led to the natu-
ral question: what is the universality of the quantum proper-
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ties of such systems? During the past 15 years or so, studies
have focused largely on the statistical properties of energy ,_ T\/ B T T\/ _ T
levels[2-5] and wave function$2,6,7] of such systems. It v kl(bl 0 Z bibiby /2 Z brbi +H.c.

has been shown that for systems whose classical dynamics is

chaotic, the statistical fluctuations of energy spectra and thopta o .

wave functions are generally well described by the random bbbz \/ 2 Z bibi+H.c.

matrix theory. Also, it was discovered that when such sys-

tems are allowed to depend on a parameter, the correlation bIbsz /Q_Z bini+ H.c.), 3)
between spectra belonging to different values of the param- i

eter become universal upon an appropriate scaling of the

parameter(see, for example, Ref5]). Interestingly, Muc-  wherei=1,2. Letting particle numbef) become infinitely
ciolo et al.[6] have recently proposed a universal scaling forlarge and keeping the following parameters;= ¢,

all three Dyson ensembles, and Alhassid and Aftidshave €r=€,Q), ki:klﬂzy kézkzﬂz, Mizmﬂz, and
even established the universality of parametric correlation ohé: u,0? as constants, the classical counterpart of the
eigenfunctions in chaotic and weakly disorder systemsabove model is obtaindd.5]:

Apart from the above studies, increased attention has also

been paid to the universality of curvature distributi@9] H=HOt\Y (@)

and avoided crossing distributi¢n0,11]. In short, the avail- ¢ e e

able studies have indicated that systems which are classically ,

chaotic, show a wide degree of universality in their quantum H(O):E(p2+q2)+ 2(p2+q2)

properties. Then, the main purpose of this paper is to answer ¢ T FLTHUT 5 AF2 T H2
the question, what are the other quantum properties of clas-

!

sically chaotic systems? 12 2 pi+ai+p5+as
In a spin-boson model, which has been taken as “a physi- —ka(p2—92)| 1 2 ' ®)
cally quantum chaotic system[12], it was found that the
squeezing and antibunching effects disappear in the regime 2, 2, 2. o
of classically chaotic motiongl3]. In this paper we shall \, — —k’(pz—qz)(l— pl+q1+p2+q2)
report that such quantum features are also exposed in a e 2
nuclear model when its classical counterpart is fully chaotic. , —
The nuclear model, known as the three-level Lipkin +ﬂ[(p2—q2)p T 2pyae] \/ 1 PitditPata;
model[14], has been studied in the field of quantum chaos N 2H2H1 2
during recent yearfl5,16. The Hamiltonian corresponding I
to the boson representation has the form ; +qg5+p5+
T PR AN B i S Ak
V2 2
H=H@+\V, (1) (6)
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after transforming the boson creation and annihilation opera- 10
tors b/, b; to g; and p; with bf/=Q/2(q;—ip)), oL
b;=VQ/2(q;+ip;) (J=1,2). Taking ei=_30, €,=48, ok
ky=117,k;=189, u; =207, andu,=164.7, it can be regu- S)
lar or chaotic according to the choice of the parameter i
[15]: (a) the system corresponding o= 0 is regular;(b) the -30
system is strongly chaotic whenreaches 1. _ao |
Now we study the antibunching and squeezing effects in 140 F |
this classically chaotic quantum system. Throughout this 120 |
paper, we takeQ)=36 [note: the Hilbert space iM 100
=(Q+1)(Q+2)/2=703]. o
© 40 |
II. ANTIBUNCHING EFFECT 20 |
o+
In quantum optics and laser physics, high-order correla- oo L ,
tion of the radiation field should be investigated in order to :;’g I '
obtain further information and insight into the characteristics 100 | =
of resonance fluorescence. Experimentally, this is done using . sof
two detectors to measure the joint probability of detectinga © 60 |
photon at time& and a subsequent one at time 7. A usu- 40 -
ally measured quantity is the second-order correlation func- 20 e :
tion —28 : . .I B “1 ! 1 ! |v (C)
(2)_<aTaTaa> 7 -150 -100 -50 o} . 50 100 150 200
g= <aTa>2 ’ ( ) i
which is proportional to the joint probabilityaT anda are FIG. 1. C, versus the energy eigenvalt of the Hamiltonian

the creation and annihilation operators of the radiation fieldWhen the system is initially prepared in the eigensiafeof the

respectively. Then, the following phenomena are defined. Hamiltonian(every point represents the resul_t at one _initial condi-
tion). (@ The regular case\=0; (b) the intermediate case,

(i) For g®>1, the probability of detecting a photon at A=0.2; (c) the strongly chaotic casa,= 1.
t+ 7 is increased after detecting a photort aand photons
tend to arrive in bunches rather than strictly at random. Thighe Hamiltonian(1). It is clear thatC,; does not change with
phenomenon is called the positive correlation or bunchinghe time. The numerical results are presented in Fig. 1. Fig-
effect. ure 1(a) tells us that fol. = 0, the classically regular case, the
(i) For g®<1, the probability of detecting a photon at antibunching effect occurs at almost all the initial staees
t+ 7 is decreased after detecting a photori,aand photons cept some states, at whi€y =0 and the noncorrelation ef-
tend to repel each other. This phenomenon is called the negéect appeans Moreover, with the increase of the parameter
tive correlation or antibunching effect. \, as shown in Fig. (b), the number of initial states which
(iii ) For g®=1, the probability of detecting a photon at can exhibit the antibunching effect is decreased greatly. Fur-
t+ 7 does not change after detecting a photoh, @nd pho- thermore, whem=1, as shown in Fig. (t), we find that
tons arrive at random. This phenomenon is called the nonalmost all the initial states produce the bunching effect rather
correlation effect. than the antibunching effect.
Then, in Fig. 2 we show the time evolution 6f, when

More details about them are given in REE7]. the system is initially in a coherent stdt]

Here we introduce a similar quantity?,
2 _(b/bbib;) |o)=exg S | zbI /-3 bib|{|0,0
Gi7= (bTo)? (8) i : T
iMi

in the three-level Lipkin model. For convenience in numeri- (i=1,2, (10

cal calculation, we define the function
whereZ;=7//Q, Z;=20.9, andZ;,=24.7. It is seen from

Ci=(b/b/bib;) —(bb;)2. (9 Fig. 2a) that the antibunching effect occurs at all the times
) . _in the classically regular case.€0). However, the anti-

Then, we also call it the bunching effect, the noncorrelatmnounching effect disappears gradually with the increase of
effect, and the antibunching effect f@(*>1 (C;>0), ). In particular, we find that in the strongly chaotic case, as
G®@=1 (C;=0), andG{®<1 (C;<0), respectively. Now shown in Fig. 2c), the antibunching effect disappears almost
we take the quantityC;=(b]blb;b;)—(blb;)? as an ex- entirely [except at the early time, see inset in Figc)2
ample. It has been shown that a regular pattern can be viewed as

First, we consider the case where the system is restricteal quantum effect of classically KoI'mogorov-Arnol’d-Moser
to the following initial condition: one of the eigenstates of (KAM) tori [3,18]. This conclusion is also reflected from
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FIG. 2. The time evolution o, when the system is initially
prepared in a coherent stat@ The regular case\=0; (b) the
intermediate casey,=0.2; (c) the strongly chaotic casa,= 1.

FIG. 3. F, versus the energy eigenval& when the system is
initially prepared in the eigenstaig, of the Hamiltonian.(a) The
regular case\=0; (b) the intermediate casey\=0.2; (c) the
Fig. 1. In Fig. 1a), since[H®,blb;]=0, the systenH(® strongly chactic case, =1
has two independent conservative quantities, the energy anfe three-level Lipkin modefanother quantum chaotic sys-
C;. Then, as predicted in RefE3,18], they form a regular  tem). For this, we define two Hermitian quadrature operators
pattern. However, wheh grows from 0, the regular pattern
shown in Fig. 1a) is distorted. Figure (b) shows the inter- 1 + 1 +
mediate caseN=0.2): the points are distributed randomly in Q :E(bi +bp), Py :E(bj —bj). (1D
the middle region, while at two bottom sides a regular pat-
tern is still observed. Furthermore, Figclshows that the The above operators obey the commutation relation
irregular region expands to the whole area whkes close to

1. 1
Ill. SQUEEZING EFFECT Correspondingly, the Heisenberg uncertainty relation is
Creating quantum states known as squeezed states, which
fulfill the uncertainty relation and give a reduced uncertainty (AQ\)2(AP;)2= i (13)
in the measurement of a particular observable at the expense I J 16
of increased uncertainty in the measurement of a second non-
commuting observable, has been an interesting topic for thé is convenient to define the functions
past 15 years or so. Interest in such states is stimulated by its
potential applicatior[19] in gravity wave detection, high- F,=(AQ)2— 1 = =(AP-)2—E (14)
resolution spectroscopy, quantum nondemolition experi- ! ] 4’ 2 ! 4’
ments, quantum communications, and low-light-level mi-
croscopy. In order to reduce the effect of quantumThen, the quantum fluctuations @; (or P;) are squeezed if
fluctuations, many techniqug®0] have been suggested. =~ F1<0 (or F,<0). In what follows, we take the quantum
Recently, Zyczkowsk[21] has analyzed the time evolu- fluctuations inQ;= 3(b]+b,) as an example.
tion of squeezed states in a quantum kicked rotator model, Figure 3 presents the numerical results when the system is
which has been taken as a quantum chaotic system. He fourikitially prepared in one of the eigenstates of the Hamiltonian
that squeezing influences the shape of quantum revivals ol¢l). It can be seen from Fig.(8 that for A =0, the regular
tained in the regime of classically regular motion, but doescase, the quantum fluctuations @, can be squeezed at
not facilitate the diffusion in angular momentum in the re-some initial states. Then, whex=0.2, the intermediate
gime of classically chaotic motion. case, we find from Fig. ®) that the number of the initial
In this paper we investigate the squeezing properties istates, which can produce reduced quantum fluctuations, is
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decreased. Especially, when=1, the classically chaotic model(a quantum chaotic systgnThe above numerical ex-
case, as shown in Fig(®, only three states can produce the periments have shown that the two effects occur in the re-
squeezing effect. gime of classically regular motion, but disappear in the re-
Finally, we have examined the case where the system igime of classically chaotic motion. This conclusion is similar
initially prepared in a coherent state given by Eq€). The to that[13] obtained in a spin-boson modainother quantum
numerical results have shown that the squeezing effect ochaotic system Is it universal in all quantum chaotic sys-
curs in the regime of classically regular motion, but disap-tems? We cannot give an answer. However, as far as the two
pears in the regime of classically chaotic motion. It should bemodels we have investigated are concerned, the answer
mentioned here that in the classically chaotic case, weseems likely to be yes.
have also examined the quantum fluctuations in Analytical explanation of the physical origin would be
P,=1/2i (bl—bD, but they cannot be squeezed. interesting and we plan to study this further.
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