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Driving and synchronizing by chaotic impulses
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For a class of dynamical systems driven by chaotic impulses we give conditions for the occurrence of chaos
locking. It is shown how the concept of time-discontinuous coupling of two chaotic systems may lead to
generalized synchronization. The method of synchronization is interpreted as a nonlinear analog of the sam-
pling theorem. Furthermore, we examine the effect of amplitude quantization of the driving signal on their
synchronization. Even though two time-discontinuously coupled dynamical systems are no more exactly syn-
chronized when the driving signal is digitized, their trajectories are close enough to allow correct transmission
of digital information signals between thef$1063-651X96)07708-2

PACS numbd(s): 42.81—i

Over the past few decades, there has been considerabi@ment the system is subject to an impu6€) such that
interest in the studies of chaos and its ubiquitous nature. Thithe firstm componentsy,x,, . .. X, of the state vectoxk
is due to two facts. First, the study of chaotic behavior inare replaced by;(T,xy)=s;(T). Put it another way, the dy-
almost all fields of science is essential for an appropriatemamical systenl) oscillates freely and independently from
description and modeling of various phenomena in natur¢he driving signals; except for the equidistant moments
[1]. Second, nonlinear phenomena may lead to new applica;,=nT when a parf{x;,X,, ... Xq] of its state vectok is
tions in engineering. For example, recently there has beeforced to a new valug(nT). Throughout the paper this kind
considerable interest in potential applications of synchroof driving will be called sporadic driving The concept of
nized chaotic systems in the areaasfalogcommunication sporadic driving can be easily applied to iterated maps. Here
[2—4]. However, almost exclusively today communicationswe focus only on time-continuous dynamical systems due to
are digital. Motivated by this challenge—digital the fact that circuit implementations of continuous systems
communications—we discuss in this paper the question ofre much easier than those of iterated maps, which is impor-
the exchange of digital information signals between two syniant when it comes to applications of sporadic driving in
chronizedcontinuouschaotic systems. engineering.

The paper is organized as follows. First we develop a In order to put the description @) and the influence of
general theory of drivingchaotig systems by chaotic im- chaotic impulses; in a more mathematical frame, we show
pulses. As a consequence, a criterion for the occurrence dfiat (1) can be described as follows. Let us decompose the

generalized synchronization in unidirectionally systemsstate vector of(1) into two partsu=[X;,Xs, ... Xy,] and
coupled at discrete times is given. Then we address som@=[X.,,1,Xm+2, ... Xy] and the vector fieldF into
questions related to synchronizing two identical systems by =[f,,f,, ... .f] andF,=[fs1,fme2, - -.,fn]. Then

chaotic impulses and finally we discuss the relevance of owye can rewrite(1) as
results to digital communication using chaos synchroniza-

tion. u=Fy(u,w)+ &r(t)(s—u), 2
Consider a driverN-dimensional chaotic dynamical sys- )
tem whose behavior is governed by w=F,(u,w), ()]
x=F(X,S7), (1)  where 6(t) denotes a periodic sequence of Dirac pulses

with period T, i.e., 81(t)==."_,8(t—nT). Integrating(1)
wherex is anN-dimensional vector ang; is a driving sig-  from timet=nT—¢ tonT+¢, we find in the limite—0 the
nal. We denote witlx(t,X) the trajectory of1) based on the following description of the dynamics d2) and (3). The
initial condition X, at t=0. The driving signals; is  dynamical systemi2) and(3) oscillates unforcedly and freely
a time sequence ofm-dimensional chaotic impulses: except for the equidistant moments=nT when u(t,) is
oo S(—2T),8(—T),8(0),8(2T), ... . Theimpulsess(nT) forced to a new valug(t,,). Using the concept of asymptotic
e R™ are produced through equidistant sampling of a chaotistability[5], the following theorem determines conditions for
trajectorys(t). The dynamics ofl) is influenced by the se- the occurrence of predictable oscillations(@f and(3).
guence of impulses; in the following way. Letx(T,Xxg) be Theorem 1Consider the systeit2) and(3). Assume that
the position of the trajectorx(t,x,) at timet=T. At this w=F,(s,w) is asymptotically stable when driven continu-

ously by s(t) and for initial conditionsw,e BCegRN™™.

Then for the given drive signa; there exists a valu@y

:Electronic address: tonci@cerera.etf.ukim.edu.mk such that for allT<Ty system(2) is asymptotically stable.
Electronic address: Ikocarev@cerera.etf.ukim.edu.mk Asymptotic stability of (2) means the following: the
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100 ' The theorem can also be related to the notion of general-
0 s, [P ¥0) - ¥ 30)| ized synchronizatioiGS) [7]. Two systems are said to have
" the property of GS if a functional relation exists between the
1 \\k states of both systems and the synchronized manifold defined
01 " with this relation is an attractor. Consider the class of unidi-
001 \ rectionally coupled systems
0.001 \K«“% x=f(x), y=9(y.9), (6)
0.0001 ;Y where s=h(x) is an m-dimensional vector function ox.
0.00001 : | 4 : : Recently, a general criterion for the occurrence of G&in
0 2 4 6 H] 10 12 has been proposd@]. This criterion can be generalized as
follows.

FIG. 1. Difference between two trajectories(@j based on two Corollary 1. Assume that the second system(@) is as-
o_lifferent initial cgnditic_)nsyo andyy . The driving signak is iden- ymptotically stable when driven bs(t). Then there exists a
tical for both trajectoriesI =0.2. value Ty, such that for allT<T, two systems
Xo) as time goes on and in the limit-o its dynamics is x=f(x), y=g(y,sr), (7)

completely determined by the driving sigrsgl. In this case ) o .
we say that the behavior ¢f) is lockedto the chaotic signal Wheresr is produced through equidistant samplingsofiave

sr. In the special case when a limit cycle behavior is forcecdthe property of GS. _ _

by a periodic sequence of impulses, phase locking occurs. In other words, if GS occurs iri6), then sporadically
Clearly, when(1) exhibitschaos lockinghen its behavior is ~ coupled systemé?7) have also the property of GS.
predictable: driving with the same sigrelalways results in In the remaining part of this paper we address the case
the same response @f). The proof of the theorem, which Whensy is produced by sampling projections of solutions
follows from the analytical arguments §8], and the ex- ©f an autonomous copy @) and(3)

amples of chaos locking in other systems are planned to be
addressed in an extended version of this wdrk

We illustrate the theorem through an example. In this ex-In thi the theorem i neralization of the svnchro-
ample a driving sequencg of one-dimensional chaotic im- S case, e theorem 1S a generalization of the Sy

pulses is produced through equidistant sampling of e nization method of Pecora and Cariid] and may be rewrit-

; - . . ten as follows.
variable of a chaotic trajectory of the Bsler system Corollary 2. Consider system (8). Assume that

w=F,(u,w) is asymptotically stable when driven hyt)
and for initial conditionswye BCRN™™. Then there exists a
value Ty such that for allT<Ty sporadic driving of a copy
of (8)

u=Fy(u,w), w=F,(u,w). (8)

x=R(x), (4)

whereR(X) =[2+X(X,—4),—X;— X3,X5+0.45¢3].
Sequencesy drives the Lorenz system
u'=F,(w,u")+ () (u—u’), w'=F,(w',u") (9
y=L(y)+[0,57(t) (X2—Y>).0l, 5 oD W) ©
results in synchronization betwee8) and (9), i.e.,
whereL(y)=[o(y2—Y1).Y1¥st pY1—Y2.Y1Y2~ Bys] with  [x—x'| -0 whent—.
0=10.0,p=28, andB=2.66. In this example we perform In other words, if two dynamical systems synchronize for
one directionaltime-discontinuouscoupling between two a particular Pecora-Carroll decompositid] then there ex-
different time-continuouslynamic system$4) and(5). The ists a nonzero valu&y such that sporadic coupling between
term 81(t) (x,—y») in (5) leads toy,(t,) being forced to a the two systems leads to their synchronization for all
new valuex,(t,). In the time intervals between two succes-T<Ty.
sive kicks, the Lorenz systertb) behaves chaotically and The synchronization in the systerf® and(9) was con-
independently from(4). Denotingw=[y,,y3] andu=[y,], sidered by Amritkar and Gup{@]. Corollary 2 might show
one can readily see the compatibility @) and(5) with (2) its usefulness in various scientific disciplines. A promising
and(3). It is well known that thew=[y,,ys] subsystem of area of application is communications because all proposed
the Lorenz system is asymptotically stable. Therefore Theoeommunications systems based on synchronized chaos so far
rem 1 ensures the existence Bf,. Numerically we have consisted of pairs oidentical dynamical systems. Now we
found out that (5) is asymptotically stable for will illustrate Corollary 2 through an example based on the
T<Tx=0.31. The asymptotic stability ¢b) is illustrated in  Lorenz system. The driven system is again defined 3y
Fig. 1, where the differenciy(t,yo) —y(t,y,)| is shown for  while the driving chain of one-dimensional chaotic impulses
T=0.2. Herey(t,yo) andy(t,y;) denote two trajectories of r(t)Xx(t) is obtained from a copy of the Lorenz system
(5) based on two different initial conditiorys andyg, while  identical to(5) [without the termér(t) (x2—Y,)]. From the
the driving terms; is identical for both trajectories. The Stability of the §/1,y3) subsystem of the Lorenz system and
difference between the two trajectories vanishes as time god&’m Corollary 2 it follows that there exists a maximal pe-
to infinity, which means tha5) forgets its initial conditions ~ fiod Ty of &7, (t) that still allows the two Lorenz systems to
and followssr. synchronize. Figure 2 shows the largest conditional
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FIG. 2. Dependence of the largest CLE (@ on the coupling
period T. The driving signalst is obtained from an identical copy

of the Lorenz system.

Lyapunov exponentCLE) [7] of (5) versusT. All CLEs of
(5) are negative folT<T,=0.45. The differenflT values
for the sporadically coupled Reler-Lorenz and Lorenz-
Lorenz systems are due to the fact tiat depends on the
driving signalsy. Through numerical simulations we have
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FIG. 4. IrJformation signal (solid line) and recovered informa-
tion signal i (dashed ling for systems(11) and (12) when
q=128,T=0.04, andQ;={4A(2k+1)|k=—8,...,7.

PXz(f), it is possible to interpolate the samplesxg{t) be-

cause they are generated by deterministic ordinary differen-
tial equations(ODEg that areknown at the response. The
sampling theorem proves that interpolation of the sampled
signal can be performed by passing it through an itirebr

checked the synchronization between the two Lorenz sydew-pass filter with limit frequency 1/2 Therefore, Corol-

tems for different values of parametersp, 3. For every set
of parameterso,p,B there exists a maximal distance be-
tween samples of,(t) that still allows synchronized motion
of the two Lorenz systems.

lary 2 is a counterpart of sampling theorem for chaotic sig-
nals: when one applies sporadic coupling then the sampled
signalst should be processatnlinearlywith (5) in order to
interpolate it between the samples. There is another interest-

There is another possible interpretation of the synchroniing consequence of the previous discussion. The valye
zation between the two Lorenz systems. The responding Ladetermines the minimum frequency bandwidth of the com-

renz system interpolates the samples and pro-
duces an interpolated signal,(t). If T<T, then the
interpolation is successful ang,(t)=x,(t), which means
that x,(t) is completely described by its samples
e Xo(—2T) X (= T),%5(0) ,X5(T) ,X2(2T), . ... Accord-
ing to thesampling theorermany function of timef(t) that is
band limitedto B (cycles/setis completely described by its

sample values everys sec, the samples extending through-

out time domaif11]. One might wrongly draw the conclu-
sion that the power spectrum(z(f) of X,(t) is band limited

to fTH:j_/ZTH_ However, power spectra of chaotic signals value of the amplitude quantum to which the input signal

are exponentially decreasind0] and thus withinfinite
width. Figure 3 shows the power spectrum »f(t). Fre-
quencyfTH= 1.11 is denoted in Fig. 3. A significant percent-

age (30% of the power ofx,(t) is contained out of the
frequency rangef>1.11. Despite the infinite width of

B(f)
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FIG. 3. Power spectrum of,(t) normalized with its maximum
value.

munication channel modeled as an ideal low-pass fflffﬁr

that connects two chaotic systems and synchronizes them
through the concept of sporadic coupling.

Next we address the effect of amplitude quantization of
the driving signal on the synchronization of two chaotic sys-
tems. Here we will restrict our investigations to the simplest
guantizer(certainly not the best according to many critgria
a uniform scalar quantizer that divides the amplitude range
of the input signal intoq equal amplitude quanta each of
lengthA. The quantizer output signal is equal to the medium

belongs. The amplitude range of the quantizer is
(—Ag,*TAg). The quantized signal will be denoted as
X2q(1) =Q(xx(1)), whereQ() denotes the operation of the
qguantizer. In what follows, once again we time-
discontinuously couple two identical Lorenz systems. The
driving sequence of chaotic impulses is produced by equidis-
tant sampling of the quantized signgl,(t) = Q(xx(t)). The
response system is
y=L(y)+[0,67(t)(X2q—Y2),0]. (10
Infinite couplings at times$,,=nT force y,(t,) to the value
X2q(tn), Which is almost never equal t(t,). Thus, at the
coupling moments,,, X, andy, are not forced to be equal to
each other, but rather their difference is kept within the range
(—A/2,+A/2). As a consequence, the two Lorenz systems
never synchronize exactly, but their differerjge-y| is not
significant and is small enough not to preclude digital com-
munication applications. We have numerically solved ODEs
defining the two Lorenz systems and we have computed the
difference betweenxyq(tn) and yq(tn) =Q(y2(t,)) in
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100 000 sampling intervals féko=25. An extended version tion signali. Let the information signai take values from
of the results obtained is planned to be presented somewhettge finite alphabef);={4A(2k+1)|k=—8,...,7, that is,
else[6]. As an example, numerical integrations have showrdistance between the symbols from the alph&bes at least
that the differencexaq(tn) —yaq(tn)| is always smaller than - 5(44). If g=128 andT=0.04, theri =i after afinite period
4A when =128 andT=0.04. Such a closeness betweenqring which (12) sufficiently approaches the state of the
X2q(tn) andyaq(ty) enables us to construct the digital cOm- griving Lorenz system(11). Figure 4 illustrates thexact
munication system recovery of the information signal after a finite period

x=L(x)+[0,61(t)(5—x,),0], t=0.56. We stress here that alternatively one could also use
Sq in the first equation of the transmitter insteadsofThis
S=Xp+i(modAy), (12) leads to perfect synchronization, but it may also turn the
chaotic dynamics of the transmitter into a periodic motion. In
So=Q(s) (transmittey such cases a new set of parameter values has to be found
] with chaotic dynamics. We will discuss this equation also in
y=L(y)+[0,61(t)(Sg—Y2).0l, [6].
Let us briefly summarize the results presented in this pa-
Y2q=Q(Y2), (12) per. We have proposed the concept of sporadic driving and

have given conditions for the occurrence of chaos locking
and generalized synchronization. We have shown finae

wheresg is the transmitted signal anidis the information discretizationof the driving signal(sporadic couplingdoes
signal. We emphasize that botip andi are discrete-time not destroy the synchronized motion Qf two chaotic systems.
digital signals taking values from finite alphabets To a certain extent the synchronization is also robust with
O={(A2)(2k+1-q)|k=0,1,...,g—1} and();, respec- respect to themplitude discretizatioriguantization of the
tively. A new digit of the information signal is generated at driving signal. Through the concept of sporadic coupling one
timesnT. The last equation ii12) denotes the operation of can synchronize chaotic systems connecting them with a
a slicerSg() that chooses a digit from the alphalégtthatis  band-limited channel. The robustness of the synchronization
closest tos;—Yoq(mModAg). to the quantization of the driving signal is large enough to

The result [xpq(tn) —Yaq(tn)|<4A when q=128 and allow digital transmission of a digital information signal be-
T=0.04 is still valid even after the insertion of the informa- tween two chaotic systems.

i= Se[So—Y2q(modAg)]  (receiver,
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