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A recurrent task in elementary particle physics involves building constituent models for particle families that
can account for the particles’ quantum numbers. We describe a systematic computerized approach to this task
based on artificial intelligence principles, and discuss the output of two implemented programs that find
constituent models of some standard families using additive quantum numbers. We also illustrate the capability
to search for alternative quark models for single exotic particles in terms of the standard quarks. Although
the current programs make use of very limited constraints on models, they serve as a foundation upon
which more elaborate model-building programs can be desid8d®63-651X96)11707-4

PACS numbsgs): 07.05.Mh, 12.39-x, 12.60—i, 12.90+b

[. INTRODUCTION with the prediction of() ™ in the baryon resonance family.
These programs, together with recent work on finding
The task of devising a constituent model for a family of phenomenological rules of conservation and new quantum
particles recurs in elementary particle physics. The most faproperties[1-3], illustrate the potential of heuristic search
miliar examples are quark structures for particle familiesprinciples and knowledge representation in artificial intelli-
such as baryons and mesons. gencd 4], applied to high energy physics. The scope of com-
The constituent model explains existing particles by posputing in high energy physics has been traditionally concen-
tulating their underlying constituents. The model also ex-trated on the early stages of interpreting accelerator data, and
plains particle properties by summation or some other comon numerical and symbolic mathematitsg., [5,6]). The
binational rule applied to the property values of thework we present helps to extend computer systems into the
constituents. The constituents should be as few as necessdgalm of model building and discovery. The present paper
and certainly much fewer than the members of the originafollows up on a preliminary report to an artificial intelligence
family to be explained. audience[7]. We use additional examples to show various
This article proposes an inferential mechanism for the deadvantages of the method in physics.
velopment(discovery of constituent models. We describe
computer programs that can find simple c.(_)nstltue.nt modgls Il. TASK FORMULATION
and we apply the programs to some familiar particle fami-
lies. Given a group of particleés described by their quantum The vast majority of discovery problems cannot be solved
numbers, the programs can postulate hidden constituentsy algorithms that directly lead to the goal. Discoverers ex-
their properties, and their combinations sufficient to explainplore possibilities which, from the perspective of eventually
G. The hidden constituents can be postulated from scratclgccepted solutions, can be called dead ends because they do
but some of them can also be given in the input. In the lattenot become parts of those solutions. A search typical of dis-
case, the programs make use of given constituents. If aovery programs is a process of gradual construction and
simple model cannot be found, the programs consider morevaluation of alternative hypotheses and models, which are
complex models by proposing additional constituents. generated by exploring alternative decisions at various
This paper will illustrate all these capabilities. We will choice points. In line with this discovery process, the states
show the inference of the standard quark model as well as that are reached are tested against the available data, back-
number of alternatives found by our programs: models forground theory, and constraints; the states that fail the tests
baryons and mesons, and models of quarks and leptons are abandoned. Some effort is usually made to apply tests as
terms of rishons. We will illustrate the incremental approachsoon as they become relevant, although some tests will be
to model building by feeding a program a sequence of parapplicable only to fully specified hypotheses. By the early
ticle families, one at a time, and using the quarks introduce@pplication of tests, the unpromising partial models can be
for the previous families to construct models for the newdiscarded, so that the overall search is substantially reduced,
ones. We will also show a construction of the simplest modeWwhich may be crucial in practice. Those partial models
of a specified particle in terms of the standard quarks. Fowhich pass the evaluation are further elaborated and tested so
example, we will use two excited particle statbexaquark that eventually some complete solutions may be generated.
dibaryon and diquoniuinto find their simplest models in This process of search within a problem spéaiso called
terms of known quarks. a search space or state spdtas been developed in artificial
A model may propose additional particles in addition tointelligence into a conceptual tool to enable a unified treat-
those provided in the input. We will illustrate this capability ment of problem solving and discovery processgS|.
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TABLE |. Strange baryon octdbmitting one particlg Two models generated byeLL-MANN.

2103

Input family Output quarks
Particle Charge I3 Strangeness Model 1 Model 2
n 0 —-1/2 0 udd bcc
p +1 +1/2 0 uud acc
3T -1 -1 -1 dds bbc
30 0 0 -1 uds abc
3 +1 +1 -1 uus aac
= -1 -1/2 -2 dss abb
= 0 1/2 -2 uss aab
Output models
Model 1 Model 2
Quark Charge I3 Strangeness Quark Charge I3 Strangeness
a(u) +2/3 +1/2 0 a +1/3 +1/2 —2/3
b(d) -1/3 -1/2 0 b -2/3 -1/2 —2/3
c(s) -1/3 0 -1 c +1/3 0 +1/3

At this point, we recommend that the reader look at Table The above specification can lead to different problems of
| for a concrete example that will motivate the next sectionsmodel construction, depending on what aspects of a constitu-
on task formulation and program design. The input particleent model are given, and what other aspects are to be in-
family (strange baryon octet—upper left of the tahiéll be  ferred. For example, our computer programs, to be described
the input to our computer programs, which will output below, can at the same time postulate a set of quark constitu-
simple constituentgquarks—upper right and constituent €ntsT (item 1 above the number of quarks that constitute a

models of the particles in terms of these quaftksttom of given partic_le(the constraint in item)z property valges for
table. each quarkitem 5, and the mapping between particles and

bags of quarkgitem 7). These elements of the model are

derived from the seP of properties(item 3), from a family

of particles and their property values, from the additivity
By a constituent model of a particle family we will un- principle (item 6), and(optionally) from the admissible set of

derstand specification of the following: property values/; for each propertyP; (item 4).

1. A setT={ty, ... ty} of postulated constituents, repre-  One could devise further model-building tasks by focus-
sentingN different constituent types. ing on other properties of the input particles, on alternative
2. A set C of admissible macro-objects, each definedschemes for combining property valu@sg., vector additiv-

as a bag(multise) of constituents fromT. C={c|c ity), and on other constraints on admissible bags.
=[nyXty, ... ,nyXty] and o(nq,...,n\)}, where thet;
are drawn fromT, the n; are non-negative integefgach
n; states how many copies of are inc), and ¢(c) is a )
constraint on admi;/sibleIo bags{. For ins)tance, tr(1e) constraint '€ space of constituent models can be represented by the
Eimzlni:M states that each bag contains the same numb atrix equat|o_n in _F|g. 1,in wh|qh the_ contents of m_atrlces
M of postulated constituents. and P are filled in by a combinatorial search, while the

3. AsetP={P P} of properties for constituents in matrix equality enforces the additivity principle. This repre-
T ar;d macro-objle’c.té |ﬂ: K sentation has proved useful to describe the search space and

4. (Optionally) A setV; of admissible values that constitu- solution constraints of various model-building tasks in sci-

ents inT may have, for each proper; in P. ence[9].

e . The Z matrix contains the initial data, which consist of
5. Specific property values for each postulated constltuen&1e property values of a particle family. The propertiesy
and property,P;:T—V;,i=1,... K. That is, each postu- ' v

lated constituent iff has an admissible property value. Each
pair of constituents i should differ by at least one property

A. Constituent models

B. Search space

value. Slabec— P|P, ... Pk ZiP ... Px
6. For each property; in P, the relation between the a p

value of P; for each macro-objeat in C and the values of

P; for the constituents of from T. In this paper, we use the Q|(Fillin) X b (Filin) = Q| (Given)

additivity principle: For each objeatin C, and all constitu- : c :

entscy, ... Cy of ¢ from T, Pi(c) ==}, Pi(c;). W . -

7. A mapping from the input particle family onto the set
C of admissible macrostructures. This mapping assigns to

each particle a bag of constituents frdm FIG. 1. The search space for constituent models of particles.
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charge, isospin, etc., listed genericallyRg, ... ,Px) are  One measure of simplicity is the number of constituents,
represented by the columns Bf and the rows describe par- which normally starts at the smallest plausible value and is
ticles, depicted generically & Q, ... ,W. incremented as simpler models are rejected. As the number

TheS ma_ltrix describes how the known partiCI_eS are madeof constituents increases, both of the matriSendP in Fig.
up of constituents, the latter represented generically, @ 1 are successively enlarged along one of their dimensions:
¢, and so on. For example, an entry of 2 in the rBvand  the number of postulated constituents.
columnb means that the particle contains twob constitu- A second simplicity parameter is the number of constitu-
ents. Every entry i is a non-negative integer, and further ents per particle, e.g., the number of quarks that make up an
constraints can be imposed ¢h The programs described gjementary particle, which is assumed here to be equal for all
below postulate that every particle in a given family containsy,q particles in a family. This parameter is expressed as a

the same number of constituents, i.e., the sum of row ent”eéonstraint on the rows of the matr the sum of row entries

n ‘_Is_r'lsé %mrgoa:g:;oerx;\r/ggégvgﬁe property values for the Ccm_must equal an integer greater than 1. This second simplicity
stituents in a similar manner as the matgkdoes for the parameter is also subject to a search process, which starts

particles. from the value 2 and increments the parameter by 1 as sim-

In this paper, the additivity principle is an invariable con- pler models fail to turn up solutions.

straint on constituent models: the arithmetic product of th(ﬁ_ Thg quantum ”numbefrsf of glementgry particles are c.)fthen
matricesS and P equals the matrixz. imited to a small set of fractions and integers. We might

In all cases theZ entries will be input to our programs similarly limit the admissible property yalues for ponstitu-
and theS entries are to be filled in subject to constraints,€NtS. If the search for models is constrained to a given set of
whereas on different tasks various parts of fhenatrix are ~ admissible values for each propertyfm then this constraint
given while the remainder are to be filled in. Since the prop-Might be considered another simplicity criterion, especially
erty values inZ are rational numbers and the numbersSin  if the set of admissible values is expanded dynamically
are non-negative integers, the entriesArare also rational. Whenever no solutions are found using a smaller set. The
Furthermore, for fixed matrix dimensions and filleddrand ~ constraint on admissible values reduces the number of pos-
Z matrices, the equatioP= Z has in practice a unique sible P matrices, but this number is still potentially very
least-squares solution, because most rows @fill be dis- large. For three constituents, three properties, and seven pos-
tinct (few or no rows will be linearly dependentand the sible values for each property, the number of possible matri-
number of rowgparticles in S will much exceed the number ces is 7*3~4x10.
of columns (constituents Hence, the problem is over-

constrained, thus leading to a unique solution as implied by IIl. COMPUTER PROGRAMS

an elementary theorem of matrix algebf@f course, the

least-squares solution need not implyesactsolution to the Next we will describe two computer programs that search
equationSP= Z.) the space of constituent moddl$8]. Each model is con-

The number of rows P is not known whenever the structed gradually. The construction steps correspond to cat-
constituents need to be hypothesized from scratch; the arroegories 1-7 in our hidden structure definition in Sec. Il A.
notation (— and|) signals the dimensions along which the Each element of the definition is represented by operators
matrices grow, when new constituents are postulated. Thithat build the corresponding part of the model: a number of
inferential task is combinatorially the hardest because theonstituents are postulated, as are their properties, the com-
space of open possibilitigghe entireS and P matrice$ is,  binations of constituents into particle structures, and so forth.
by far, the largest. Alternative models are constructed by following alternative

A second task involves searching for alternative constitupaths that are enabled at the various choice points.
ent models made of known constituents for particles which
are already known to have at least one model. In this case, A. Search requirements
the matrixP is already filled in with the properties of known
constituents, and the task only involves searchingStmea-
trix, which makes this combinatorially the simplest task.

A third inferential task involves finding a constituent
model for a particle family, while making use of a given set
of constituents whichmight not be sufficientln this case,
new constituents may need to be postulated as well.
incrementalsearch mode arises typically when quarks foun
for a previous particle family are the starting point for ex-
plaining a new family. TheP matrix is partially filled in at
the start, but new rows can be added during the search. Thig
third task is of intermediate combinatorial difficulty.

These three different inferential tasks will be illustrated
below on concrete examples taken from physics practice.

Since model construction is a gradual process, the search
for hidden structure is actually conducted in the space of
partial models. This is very important for search efficiency
(consider an alternative approach that postulates complete
constituent models out of whole cloth: much material and
Thig’me will be wasted before a fit is fouhdPartial models are

valuated as early as possible by the available data and con-
straints, to prevent the furthéexponentigl elaboration of
failed models.

Another important requirement is that the search not over-
ok any solutions. Each possibility must be tried until it is
clear that it cannot be expanded into an acceptable model.
On the other hand, ideally no possibility should be tried more
than once, and isomorphic solutions should be excluded, that
is, solutions that can be mutually mapped by renaming the
constituent types inT. If possible, the model generator

The search for constituent models ordinarily involvesshould be isomorph-free, that is, only one model should be
finding the simplest model or the set of all simplest modelstried in each isomorphism class.

C. The role of simplicity
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The search carried out by our computer programs willseems a reasonable constraint. In conclusion, for a given
start with the simplest models and move to more complexN, the numbeM has a tight upper and lower limit, namely,
models only after an exhaustive search in the simpler classe¢lose integers that satisfy
fails to find any solutions. This strategy is called breadth-first
search. The two main simplicity parameters are the number
N of constituent typege.g., quarksand the numbeM of k=
constituents in each structufguarks per partiche

<3k.

N+M—1)

SinceN<k, only a small finite set oN,M pairs will pass
B. From structure definition to search strategy those tests.

In response to the first item in our model definition, a For & fixed N,M simplicity class, our programs will
program proposes the numbrof constituents to consider. Séarch for acceptable models. If none is found, thers
It starts fromN=2, and increases the number by 1 if no incremented preferentially, n®, since it seems more im-
solution has been found for a givéh In terms of the ma- portant to minimize the number of constituents than the num-
trices in Fig. 1, each choice of corresponds to a particular P€r of constituents per particléOf course, one could run the
column dimension in matrix§ and row dimension in matrix Proegram under different priority schemes and compare the
P. At N=k, wherek is the number of particles in the input "eSults) If
family, many models always exist, including a trivial model,
which is the input family itself. Hence, the search stops after
N reachesk—1. If there is “pattern” in the input family,
then one expects to find a model that has much fewer con-
stituents than the trivial model. reaches R (or another such threshgldthen the search
The second item calls for creation of all admissible struc-should incremenN and reseM to its minimal value of 2.
tures. We use the constraint that requires the same numbgifter either M or N has been incremented, the search for
M of constituents for every particle in the input family. The acceptable models proceeds in the newer, more complex
initial value of M is 2, becausél =1 could only lead to a class.
trivial model. As is the case withl, M is increased by 1 if The constraint of uniforrM on admissible structures is
no model is found for a giveM. The constraint thaM is  ad hocand many alternative constraints are possible. In the
uniform over the entire input family is admittedyd hoc  future we plan to expand the search into the space of con-
Looser constraints on structure could be used, or alternastraints.
tively, a space of constraints, but that could lead to a much The third item in our model definition, the list of the
longer search. constituent properties, is taken directly from the input matrix
For a given numbeN of postulated constituents arM Z and forms the column dimension of the matfx That is,
constituents per particle, a formula from elementary combithe constituent properties exactly parallel the particle family

N+M—1)
M

natorics indicates that there are properties. The task of postulatimgew propertiesin con-
trast to new propertyalues is not addressed hefbut see
Ic|= N+M_1> [1] and[2,3,10). The Z matrix contains only the additive
M properties of elementary particles, due to the linear equation.

Other nonadditive properties could be handled within an ex-
different combinationgbags made up of constituentglu-  panded framework.
plicates are allowed in a bagrhese structural combinations ~ The fourth, fifth, and sixth items deal with assigning
are the only admissible candidates for the rows in e quantum numbergproperty valuesto constituents and test-
matrix. For example, iN=4, so there are four constituents ing the assignment by additivity. These steps are handled
a, b, ¢, andd, and if M=2, then there are 10 possible com- differently by the two programs to be described below.

binations: The seventh item involves search in the space of possible
mappings between particles and bags of constituents. Poten-
(aa ab bb ac bc cc ad bd cd dd tially, for k particles mapped te constituent combinations,
If the numberk of particles in the input family is less than N+M-1
S:
M 1
N+M-1
M ' the number of mappings &<s—1X---Xs—k+1. To illus-

trate, this number is 3:610° for the baryon decuplet mod-

(here, 10, then of course some of these combinations will beeled by three quarks in groups of 3. To reduce the combina-
left unused inS. torial overhead, our programs construct the mappings

We can impose further constraints NrandM, given the incrementally, in parallel with assigning property values to
size of the input particle family. FirstC| must be no less constituents.
than the number of patrticles in the family, or else some par- There is a potential for vastly redundant search if isomor-
ticles could not be accounted for. Second, if we want tophic solutions are not excluded. Suppose that the current
disallow too many potential combinations in addition to simplicity class involves four constituents in groups of two
those which explain thek input particles, thenC|<3k (N=4, M=2); let us consider the first assignment of con-
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stituents to a particle, i.e., the first row of tifematrix. One  rately and finding all partial solutions for that property alone.
possible assignment is the pais. Another assignmeriib is Clearly, not every partial solution will become part of an
equivalent toaa, since botha andb are mere interchangeable overall solution, S@GELL-MANN then tries to unify the partial
labels at this early stage; they become distinct after bis  solutions by successive merges.

assigned a property value, or afeeor b is assigned to the

components of a particle without yet committing to specific D. YuvAL : Search and equation solving

property values. However, the third optiab is not equiva-

lent toaa, since the former does not entail double occurrence,,
of a constituent. A good structure generator should attend tg
such subtleties and not generate redundant possibilities. FQ

N.ZZ’MZZ' the only nonredundant mappings at the first 3Sthe search space for constituent models. Here we discuss
signment ar&a andab. . . only the main differences between the two programs.
Our_programs generate |som0rph-free_constltuent models The newer program does not attempt a divide-and-
according to tr_]ree P””C'P'?S tha_t govern mt_erchangeable Ia(Sonquer approach based on lists of possible property values
bels: (1) constituents are listed in alphabetic ordéZ) no inferred from theZ matrix, although both programs search

cogs;nuen:;sl.siq%pecm) a r;gxt C(t)r?suttl:]en(m qlphabeﬂcft the S matrix (recall that the rows of correspond to particles
oraen can be fisted no more imes than the previous constituz 4 e columns to constituentsThe search proceeds by

tgnt. For example, WQeN :s anddM;A(fj, only the %omk::;nfa- filling in a row at a time(i.e., building up a partial model
ions aaaa aaah aabh aabg andabcdare considered for S’). WhereasGELL-MANN tests combinations of admissible

theFflrst”patr)tK;Le. t all satisfact _— tvalues, YUVAL tests whether the matrix equation
inafly, both our programs report all Satistactory SInpieste, . p_ zv - in which P is the only unknown, is soluble. If

models by carrying out an exhaustive search; they do %he equation is soluble, theruvaL continues its search by
stop at the first model found within a simplicity class. Alter- considering a constituent model for the next partitile.,

natively, the programs can start with user-specified Paramy, .y in S) remaining to be considered, or stores the solution

etersN andM. if all particles were already considered. If the equation is
insoluble, then the program considers alternative constituent
C. GELL-MANN : Divide-and-conquer and trial-and-error models for the last row or rows added .

The process of solving the matrix equation yields the de-
ired property values of constituents, that is, Bhmatrix. Of
ourse, any calculate® is not a final solution unless all the
é:)darticles in the family were included i§'.

. Whenever the rank of the filled-in rows & equals the
number of columns(i.e., postulated constituentsand if
S'X'P=Z"is soluble, then the constituent property values in
P are unique for thisS’. In such cases, the values#hcan

l?e used to quickly test whether the available quark combina-
Yons for the remaining rowgparticles in S are acceptable.
The effect is a very large reduction in the search time on
larger particle families, since typically only rows will need

After GELL-MANN was implemented and applidd], a
cond programyuvAL, was written by the first author to
ply the concept of model building as search in matrix
ace$9]. This concept was used in Sec. Il B to characterize

GELL-MANN, the first program we describe, uses a divide-
and-conquer approach to handle the large combinatori
space spanned by the unknown entries in matriSesnd
P. The search is decomposed into parts that can be solv
separately, then the partial solutions are joined into an ove
all constituent model. FurtheGELL-MANN uses trial and er-
ror to find the right property values iR.

The third item in our model, the list of admissible values
for each property, is determined by the quantum numbers
input particles inZ [7]. For each property;, letv; be the
highest absolute value for thg column in Z, and letD; be
the set of all denommators among fractional values for thE{o be filled in to reach a rank df.
same column. The list; of admissible values then consists

. . . . YUVAL carries out an exhaustive search of &hjl) sim-
gf a"blgtt\?\,gg; ar;c?u;)roser g?ft;ggfagggeﬂsgaﬂggOtrr?énﬁ:g;? IBlicity class in the sense that, barring program bugs, it misses
i i ~Uj. , -

. o constituent model, even if it involves exotic fractional
mum value of strangeness is 2 for the hadron octet and aﬂ

values of strangeness are inte Table), the program alues; this feature is its principal advantage. However, em-
considers the ﬁst of valuey gésse_(z 10-1 2) gBe pirical comparisons betweesuUVAL and its predecessor
strange— \ &L,V L, &) -

cause the maximum value of isospin for the hadron octet iGELL'-I\'/IAN reveal that the latter is significantly fast'er due to
) ) . ; s divide-and-conquer strategy and use of small lists of val-

1, and 2 is the denominator in some fractional ValueSUeS.GELL-MANN may be able to tackle some problems that

Visospin=(1,1/2,0-1/2,—1). When the program cannot are beyond the combinatorial ability gtvaL, although the

find a solution for those values, it considers the fractlonq‘,mer program may find models that are outside the scope of
based on 1/M. Thus, i =3, andGELL-MANN cannot find a the former

model for the charge values 1,01, the program eventually
considers the values 1,2/3,1/3:a/3,— 2/3,— 1.

GELL-MANN's choice of admissible values has been his-
torically motivated. For instance, initially the integer values Suppose an acceptable constituent model has been found
were considered admissible for charge and only reluctantljor one particle family, and a new family of particles pre-
have the fractional values of 1/3 and 2/3 been accepted. Thgents itself. One can then use the current constituents to find
values admissible for strangeness are still integers, while oua model for the new family, and this echoes the historical
programs find also models with values of 1/3 and 2/3. practice in physics.

GELL-MANN decomposes the search for the property val- Our programs can operate in this mode, in which e
ues of constituents by first considering each property sepanatrix is also an input, by only varyindyl during their

E. Incremental model construction
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search withinS [7]. If a model cannot be found, then the TABLE II. Constituent models for all eight baryons.
programs postulate novel constituents, exactly as described

earlier. In this latter case, the fin® matrix is only partially ~ Quark Model 1 Model 2 Model 3

. _The two famllles could be merged at the s_tart so that a , 12 12 -12 12 14 0 1 34 0
Jqlnt model is generated from .scratch. This m|ght. be unde- b 1/2 0 12 -12 -34 0 O -14 0
sirable, however, because nonincremental search in both Pro-. 4o 12 —12 —1/2 —-1/4 -1 -1 —3/4 -1

grams operates under the constraint that the number of con-
stituents per particle be uniform, whereas one might prefer to
allow differentM values for the different particle families.

—1/2 0 -32 12 34-1 0 14 -1

In each model, three possible quark combinations are in
surplus, i.e., are not assigned to any of the seven particles.
Each of these combinations consists of three identical

In the current programs, a particle’s properties are deterquarks, for instancegaa These surplus combinations can be
mined only by simple summation of the properties of itsyiewed as predictions of the model. The three extra particles
constituents. The programs do not take into account quantufiy  GeLL-MANN's first solution have properties equal to
numbers that are added as vectors, for instance, angular mparyon resonances =, A**, andQ~. We could not find

mentum and isospin. the particles predicted bgeLL-MANN’s second solution.

The current framework can be extended to express further \ve also used all eight baryons, includidg, which has
constraints on constituent models or property values. For eXhe same properties &° (A° and3.° are thus required to
ample, suppose that constituents must exist in complemenyossess distinct structural modelsELL-MANN could not
tary pairs, such that constituent quantum numbers are Gfnd any solutions in the categonNEM=3), but it pro-
equal magnitude but opposite sign to those of its anticongyced three quark solutions fot=4 andM =2, as shown
stituent. Then theP matrix will have an even number of in Table II. The first model predicts two extra particles. The
rows, and the complementarity can be expressed as a linegfoperties of one are identical with ~, whereas the other
constraint onP. Neither of the above capabilities has beenpas 3 charge of 1, an value of 0, and a strangeness of 1.
implemented within our computer programs, although incor-
porating them does not seem problematic.

Lastly, the programs confront a combinatorial explosion
with increases in the numbers of particles, constituents, and According to the standard model, each megpion) is
constituents per particle. This explosion should not be seefade up of one quark and one antiquafiable IIl). For
as defects of program design, but as inherent to exhaustiv@ost properties, including chargg strangeness, and iso-
search in combinatorial spaces. Further constraints on mo@pin |3, the value of the antiquark is opposite in sign but
els could reduce the combinatorics, but they may also elimiequal in magnitude to the corresponding quark.

F. Limitations

B. Meson octet

nate interesting solutions from the scope of the search. Surprisingly, for the meson family12,13 GELL-MANN
found a single solution for just four quarks in groups of two,
IV. APPLICATION TO PARTICLE FAMILIES presented as the first model in Table Il1. It can be interpreted

as two quarkg a andb) and their two antiquarksa( and
GELL-MANN andYUVAL can be viewed as convenient tools b). None of these quarks is recognized in physics. This
to propose underlying constituent models for various groupsnodel predicts the particldsb (q=1, 13=0, S=2) andbb
of particles, including particle families. We will now con- (q=-1,1,=0, S=-2).
sider various applications of the programs, and highlight es- yyvaL found two additional models of four quarks in
pecially the exotic results that differ from the standardgroups of two(models 2 and 3 in Table Il These also
model. The run times for the two programs, both of whichconsist of two quarks and their antiquarks, but the magni-
are written in Common Lisp, vary from seconds to overnightiudes ofl ; are 1/4 and 3/4. Both of these models also predict
on a workstation. two extra particle bb andbb in model 2, anchaandaa in
model 3.
When we removed mesap (input identical tor®), GELL-
MANN discovered two modelsN=M = 3) analogous to the
Our first family is commonly referred to as the strangemodels discovered for seven barydasgd 1/3 to the strange-
baryon octet or hadron octet and consists of seven uniqueess value of each quark in Table |
particles. An eighth particle has the same quantum numbers In the absence of additional constraints on quark models,
as one of the seven particles and is not considered here. Thtevould be difficult for GELL-MANN or YUVAL to discover the
input [11] and the results are summarized in Table 1. standard six-quark model for mesons, for the following rea-
The first hypothesis foN and M that leads to at least son. When we forcedELL-MANN to search for five-quark
seven quark combinations is three quarks in groups of thremodels(instead of the simplest modglghe program found
(N=M=3). GELL-MANN arrived at the two solutions shown hundreds of solutions wittM =2, and it would find many
in Table I. The first solution corresponds exactly to the quarkmore six-quark models. This result illustrates the underdeter-
model developed by Gell-Mann. The second model usemination of models by observational data that occurs when
strangeness values that are multiples of 1/3, like the chargadditional hidden objects are permitted beyond the available
values in the first model. minimum. Even if the standard six-quark model

A. Strange baryon octet
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TABLE Ill. Meson octet: Three models generated &stLL-MANN.

Input family Output models
Particle Charge I3 Strangeness Standard model Model 1 Model 2 Model 3
" +1 +1 0 ud aa ab ab
7 -1 -1 0 ud aa ab ab
0 0 0 0 uu dd ss @ aa aa
K* +1 +1/2 +1 us ab aa ab
KO 0 ~1/2 +1 ds ba ab bb
KO 0 +1/2 -1 us EY ba bb
K- -1 -1/2 -1 ds ab aa ba
7 0 0 0 uuddss th bb bb

Output quarks

Model 1 Model 2 Model 3
Quark Charge 15 Strangeness Charge 15 Strangeness Charge 15 Strangeness

a +1/2 +1/2 0 +1/2  +1/4 +1/2 +1 +3/4 +1/2
b +1/2 0 1 +1/2  +3/4 -1/2 0 +1/4 —1/2
a -12  -1/2 0 -1/2  -1/4 12 -1 -3/4 —-1/2
b —1/2 0 -1 —-1/2 —-3/4 +1/2 0 —1/4 +1/2
could be generated, it would be one of many, so there would D. Baryon resonance family

be no groqnds to claim that it had been discovered. However, ko the decuplet of baryon resonances, both programs find
next we will show that the standard model for mesons can bgpy the standard model of three quarks in combinations of

discovered by incremental model building. three. The second modékith fractional strangeness of 1/3
and 2/3 for the baryon octet, which was expandable to the
C. Incremental search: Baryons followed by mesons meson octet, cannot by itself explain the full decuplet of
As already stated, our programs can consider particlaryon resonances.

families incrementally, such that the constituents developed
for one family become a starting point for a second family. E. Rishons

When GELL-MANN is run on the baryon octet, it finds two Harari[14] and Shupd16] postulated a hidden layer of

models involving three quarks, which were presented instructure beneath the four quarksu, d, d and four leptons
Table |. ThenGELL-MANN is given the meson octet as the ~— % = S Harari called the:m’rishons while Shupe
) e e-

. . , €
next input. The program tries to use the three quarks fronﬁamed them quips. The only additive property used in both
models is charge. Both models postulate two subqu@k8

model 1 (Table ) to explain the mesons, but fails. As a
result, GELL-MANN postulates a newfourth) quark, but still and 1/3 charge and their two antiparticles. Our programs
found N=3, M=3 models and verified that no simpler

fails to find an acceptable model, so it introduces a fifth
Structures exist for the qguarks and leptons. It turns out that

old and three neWGELL-MANN finds two models, including three distinct sets of three subquarks possessing the charge

the standard model of three quarks and three antiqueks.

tually, the number of models is larger because each of the TABLE IV. Subquark constituent model.
mesons7® and 7 can be explained by three pairs of quark-
antiguark made from the same quajké/hen GELL-MANN Quark  Charge I3 Strangeness ~ Charm  Model

begins with model ZTable ), it again augments it with three

new quarks, resulting in two models of six quarks in combi- d —1/3 — L2 0 0 VX
nations of two. u 213 12 0 0 Wy
yuvAL followed a slightly different path. It tried models —13 0 -1 0 wzz
for N=5, M=3, which GELL-MANN skipped because the © 2/3 0 0 1 wvz
number of candidate particles, that is, 35, exceeded threed 13 1/2 0 0 vyz
times the number of input particles. Starting with either u~ —2/3 -1/2 0 0 WXz
model 1 or model 2,yuvaL found 42 extended models, s -1/3 0 1 0 Xyz
many of them using different combinations of the same ¢ —2/3 0 0 -1 WXy
quarks to represent meson$ and 7. v 1/3 0 0 1/3
If one imposes a further constraint, that the quarks come w -1/3 0 -1 -2/3
in complementary pairs, then six quarks are neeseslAL X -1/3 —-1/2 1 1/3
then finds a unique set of quark-antiquarks for each of the y 0 1/2 0 —2/3
two original baryon models, which of course includes the 0 0 0 1/3

standard model.
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TABLE V. Quark models of four diquonium states.

Particle Baryon number Charge (Total) Isospin Strangeness Models
D1 0 1 3/2 -1 usdd
D2 0 0 3/2 -1 dsdd or usud
D3 0 -1 3/2 -1 dsud or usiu
D4 0 -2 3/2 -1 dsuu
values(—1/3, 0, 1/3, (—1/3, 0, 2/3, and(—2/3, 0, 1/3, can In both examplesyuvAL ruled out the possibility of al-

be arranged in 12 structural models. When one uses the progernative quark models, which seems difficult to guarantee

erty I3 in addition to charge, the programs find the simplestwithout an exhaustive computerized search.

models aN=4, M=3, all involving the unusual charge de-

nominator of 9. A search ai=4, M=4 turned up 407

models. None of these models consisted of rishon-antirishon V. CONCLUSION

airs.

P This paper has analyzed the task of postulating constituent
models for particle families, and has described two sepa-
rately developed computer programs capable of performing

F. Other subquark models the task. We have used these programs to infer constituent
We ranYUVAL on the set of quarks shown in the first models for the baryon and several other families, for quarks,

eight rows of Table IV. The program failed to find any con- and for individual exotic particles. In some cases, the pro-

stituent models for four subquark constituents, despite allowgrams detected several alternative models, in addition to the
ing models having as many as six constituents per quarigtandard model, that might be of potential interest in the

However, when five constituents were allowed, the progranPhenomenology of elementary particles.

did find 40 different models having three constituents per The approach may also be useful to explore subquark
quark(a smallerM did not turn up any modelsFrom these Models and models for exotic particles in terms of the stan-

40 models, the last five rows of Table IV show one of thedard quarks, as was done on the hexaquark dibaryon and
four models(v, w, X, y, 2) that involve no denominator larger diquonium states. In principle, the same approach works on

than 3. None of the 40 models involved strictly constituent-particles™ at both higher and lower levels of aggregation
anticonstituent pairs. than elementary particles and quarks, as long as additive

properties are involved. For example, one could describe the

large spectrum of atomic nuclei in terms of proton and neu-

tron constituents. The same approach as used for a dibaryon

] ] ] would work on any single nucleus. However, the constraint

_ As final examples, we applietdUvAL to the task of find- on equal number of constituents might lead to strange results

ing constituent models of individual particlésr various of i the case of several joint nuclei.

their excited statgswhile drawing on the standard quarks,  From the physics perspective, probably the most signifi-

and not postulating further constituents. In the notation Ofcant result is that an exhaustive search in the space of quark

Fig. 1,7 and Z are given, and onlS is to be filled in. As models for the baryons followed by the mesgBgc. IV O

examples, we consider the cases of the exotic particlegyeals that the standard quark model stands out nearly

hexaquark dibaryofil5] and diquonium statefsi7]. uniquely as the simplest, when the constraint of complemen-
The first exampléthe hexaquark dibaryomas the prop-  tary pairs is imposed. It would be difficult to arrive at such

erties of zero charge, a baryon number of 2, strangeness gbnclusions without the aid of the computer. Finally, we

—2, and has a proposed quark structudsuds[15]. The  have laid a foundation for future discovery tools that can

program was given this particle as a singleton particle familytake account of a wider array of constraints and background

(the Z matrix), together with the six quarks, d, sand their  theory than was addressed here.

antiquarks, with the standard quantum numbers of charge,

baryon number, and strangeness. The program confirmed

that the six-quark modelidsudswas the simplest, in the

sense of requiring the fewest numliezerg of new constitu- ACKNOWLEDGMENTS

ents, and the fewest number of constituents per particle.
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