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Theory of random matrices with strong level confinement: Orthogonal polynomial approach
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Strongly non-Gaussian ensembles of large random matrices possessing unitary symmetry and logarithmic
level repulsion are studied both in the presence and the absence of a hard edge in their energy spectra.
Employing a theory of polynomials orthogonal with respect to exponential weights we calculate with an
asymptotic accuracy the two-point kernel over all distance scale, and show that in the limit of large dimensions
of random matrices the properly rescaled local eigenvalue correlations are independent of level confinement
while global smoothed connected correlations depend on confinement potential only through the end points of
the spectrum. We also obtain the exact expressions for density of levels, one- and two-point Green'’s functions,
and prove that a universal local relationship exists for the suitably normalized and rescaled connected two-
point Green'’s function. The connection between the structure of the $zegiion entering strong polynomial
asymptotics and mean-field equation is trad&1.063-651X96)00807-0

PACS numbds): 05.45:+b, 05.40:+]j

. INTRODUCTION P[H]d[H], one obtains the famous expression for the joint
probability density function of the eigenvalu¢s} of the
Statistical properties of complex physical systems cammatrix H
successfully be investigated within the framework of the
random-matrix theoryfRMT) [1]. It turned out to be quite
general and a powerful phenomenological approach to a de- P({x})=Z‘1exp{ -B
scription of the various phenomena in such diverse fields as
two-dimensional gravity[2], quantum chao$3], complex
nuclei[4], and mesoscopic physi¢s]. The level repulsion described by the logarithmic term is
In all the realms mentioned above the physical systemsriginated from the Jacobiafl;-;|x;—x;|? arising when
can be described with the help of different matrix modelspassing from the integration over independent elemelts
whose structures depend on physical properties of the sysf the HamiltonianH to the integration over a smaller space
tems involved. In the applications of the RMT to the com-of its n eigenvaluegx}. The confinement potential(x),
plex quantum-mechanical objects the real Hamiltonian isvhich determinesgtogether with the logarithmic law of level
rather intricate to be handled or simply unknown. In suchrepulsion the mean-level density, contains information
situations the integration of the exact equations is replacedbout correlations between the different matrix elements of a
by the study of the joint distribution functioR[H] of the = random HamiltoniarH. [Note that paramete8 is factored
matrix elements of the HamiltoniaH. If there is not pref- out from V[H] in Eqg. (1) to fix the density of levels in the
erential basis in the space of matrix elemédnts, the system random-matrix ensembles with the same confinement poten-
in question is “as random as possible,” and equal weight igtial but with different underlying symmetrigs.
given to all kinds of interactionsone has to require In the matrix formulation given above the eigenvalues
P[H]d[H] to be invariant under similarity transformation {x} of the HamiltonianH run from —o to +. Formally,
H—R 'HR, with R being orthogonal, unitary, or a sym- the same matrix model E¢R) appears in the so-called maxi-
plectic nXn matrix reflecting the fundamental symmetry of mum entropy models constructed to describe the transport
the underlying Hamiltonian. The general formPffH] com-  properties of mesoscopic systems. In this case there is an

2 V)= 2 Inxi =

]. 2

patible with invariance requirement is additional positivity constraint ofx}, x=0, that directly
follows from the unitarity of the scattering matri%,6] and
P[H]=2Z"Texp{— trV[H]}, 1) introduces the hard edge into the eigenvalue spectrum.

In the unitary casef=2), which applies to the physical
systems with broken time-reversal symmetry, the structure of
with arbitrary V[H] providing existence of the partition Eq. (2) allows one to represergxactlyall the global and
function Z. Introducing the matrixS, that diagonalizes the |ocal statistical characteristics of the physical system, such as
HamiltonianH, H=SngSB, and carrying out the integra- the averaged density of levels;point correlation functions,
tion over the orthogonal=1), unitary (3=2), or sym- level-spacing distribution function, etc., in terms of the poly-
plectic (8=4) group du(Ss) in the construction nomials orthogonal with respect to the weight function
w(x)=exp{—2V(xX)} on the whole real axiR (or onR " if
there is a hard edge in the eigenvalue spectrii@therwise,
"On leave from Institute for Low Temperature Physics and Engi-whenB=1 or =4 more complicated sets of skew orthogo-
neering, Kharkov 310164, Ukraine. nal polynomials should be introduc¢d].]
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Analytical calculation of the corresponding set of or- theory of polynomials orthogonal with respect to exponential
thogonal polynomials is a nontrivial problem. However, if weights onR. It applies to a very large class of confinement
the elementdd;; of the random-matrii are believed to be potentials which is much richer than that considered in Refs.
statistically independent from each other, one obtains thé7,20] and allows us also to treat the matrix models with
quadratic confinement potentisl(x) ~x? [8] leading to the positivity constraints on the eigenvalue spectrum. We con-
Gaussian invariant ensembles of random matrices. In suchgentrate on the calculations of the density of levels, one- and
case there are significant mathematical simplifications allow{Wo-point Green’s functions, the two-point kernel, and the
ing one to solve the matrix model E€L) completely[1]. conqected “densny—densny” correlation function over the

From the very beginning it was understog] that a re- aII_dlstanpe scaleThis allows us to reso_lve the problem of
quirement of the statistical independence of the matrix elelniversality for local and global correlations of the random-
mentsH;; is not motivated by the first principles, and, there- mz_itrlx eigenvalues and tQ establish a universal local relation-
fore, several attempts were undertaken to elucidate apnMiP for properly normalized and rescaled connected two-
influence of a particular form of confinement potential on theP0iNt Green's function. One of the interesting points we
predictions of the random-matrix theory developed forw_ould like to stress is that the mean-flelld approximation,
Gaussian ensembles. widely used in the theory of random matrices, naturally ap-

Two essentially different lines of inquiries of this problem P&ars in our treatment without any physical speculations and
can be distinguished. The first line lies in the framework oftUrns out to be closely allied with the structure of the Szego
the polynomial approach, while a second one consists of thfnction entering strong pointwise asymptotics of orthogonal
developing of a number of approximate methods. The mearR0lynomials. _ , _
field approximation proposed by Dysda0] allows us to Thg paper is organized as follows. Secthn Il contains a
calculate density of levels in a random-matrix ensembleShort introduction to the theory of polynomials orthogonal
This approach being combined with the method of the funcWith respect to the Freud weights. The asymptotic formula
tional derivative of Beenakkeil1,19 makes it possible to for the orthonormal “wave function” that we need in later
compute globalsmoothedl eigenvalue correlations in large S€ctions is given there. In Sec. Il we qalcula?e the two-point
random matrices. Smoothed correlations can also be otkernel and resolve the problem of universality of level sta-
tained by the diagrammatic approach of Breand Zed13] tistics. The densny_of levels and the one-point Green'’s func-
and by invoking the linear response arguments and macrdion are computed in Sec. IV. Connection between the struc-
scopic electrostatic§14]. We stress that all the methods ture of the Szegdunction and the mean-field equation is
mentioned above allow us to study correlations only in theesf[abllshed there as well. Section V is devoted_to the calcu-
long-range regimeand, in this sense, they are less informa-lation pf the 'two-pomt connecteq Gr_een_'s functlorj; a corre-
tive as compared with the method of orthogonal polynomialssPonding universal local expression is given. Section VI con-
[1]. It is worth pointing out the supersymmetry formalism talns_ generallzat_lons of the results obtame_d in the precepllng
[15], recently developed for matrix model E€L) with the sections fo_r a wider clgss of random matrlces characterized
non-Gaussian probability distribution functi® H], which Py an Erds-type confinement potential. In Sec. VIl we
is exceptional in that it allows us to investigdteal eigen-  Present a treatment of the maximum entropy models with a
value correlations and represents a powerful alternative ag@rd edge. Finally, in Sec. VIl we discuss the results ob-
proach to the classical method of orthogonal polynomials. t@ined.

In the framework of the polynomial approach there was a
number of studies to go beyond the Gaussian distribution Il. FREUD-TYPE CONFINEMENT POTENTIALS AND
P[H]. In Refs.[16—1§ it was found out that the unitary CORRESPONDING ORTHOGONAL POLYNOMIALS
random-matrix ensembles associated with classical orthogo-
nal polynomials exhibit Wigner-Dyson level statistid®r
corresponding ensembles with orthogonal and symplecti
symmetry see Ref[19]). Non-Gaussian unitary random-
matrix ensembles associated witkymmetrig strong con-
finement potentiald/(x) =x?+ yx* and V(x)==n—bax"
were treated in Ref$7] and[20], respectively(We note that
both potentials mentioned above are stronger than quadrati
and they do not refer to the maximum entropy models
far as these works have been based on diffecenfectures d2V/dx2
about the functional form of asymptotics of polynomials or- A<ld4X— < 3
thogonal with respect to a non-Gaussian measure, and the dV/dx
problem of the hard edge in the eigenvalue spectrum was out N
of their scope, the polynomial approach to the basic probholds for xe (0,+=), and also forx positive and large
lems of the random-matrix theory needs further and moré&nough
rigorous study. 3 3

The purpose of the present work is to show that the prob- X2 |d*V/dx’|
lem of non-Gaussian ensembles with unitary symmetry can dv/dx
be handled rigorously by the method of orthogonal polyno-
mials. Our treatment is exa¢te., it does not involve any The class of potentialg(x) satisfying all the above require-
conjectures and based on the recent results obtained in thenents is said to be of thEreud type[21]. The typical ex-

Let us consider a class of symmetf&ven confinement
gotentials V(x) supported on the whole real axig

€ (—,+0) which areof smooth polynomial growth at in-
finity and increase there at least &g (5 is an arbitrary
small positive number More precisely, we demand that
V(x) and d?V/dx? be continuous inxe (0,+%), and
gV/dx>O in the same domain of variable We also as-
sume that for som@&>1 andB>1 the inequality

<const. 4



212 V. FREILIKHER, E. KANZIEPER, AND |. YURKEVICH 54

amples of the Freud potentials af® V(x)=|x|* with 2 1

a>1, and(ii) V(x)=|x|*In?(y+x?) with «>1, BeR, and Pn(x)= ‘\/—aRG{ZnDZ(Fn;E) . Xe(—ap,tay).

v large enough. e (12)
Now it is convenient to introduce a set of polynomials

P,(x) orthogonal with respect to the Fre@don-Gaussian The Szegdunction D(g;ei g) may be represented §24]
measureda A X) = w.AX)dx=exq —2V(x)]dx,

i D(g:e'")=Vg(0)exdiT(g;0)], (13
J; Pn(X)Pm(X)deAX) = Sy, ) where
. . . . . 1 + —
for which the following basic result was obtained by Lubin- T'(9:0)= _f d co[( ‘P) In —Ina(o.
Sy 211 (9:0)= 5| _decot ——|[Ing(¢)~Ing(¢)]
(14)
) +1
lim f_l d)\[ Va,Py(an)) Making use of the representation of E¢$3) and(14), not-
n—e ing thatF,(—¢)=F.(¢) andT'(F,;— 8)=—T(F,;6), we
2\ 112 1\1)2 obtain
—(—) R{Z”D‘Z Fn;—) ] wHa,\)=0. (6)
o z 1 1
_ D( Fn: —) =exp( - —V(ancosﬁ)) |sing| /4
Here parametrization=e'’ and \ =cos¥ was used. z 2
The Szegdunction D(g;z), appearing in Eq(6), is of xexd —iT(F,:0)]. (15)
fundamental importance in the whole theory of orthogonal n
polynomials[22], and takes the form Then, Eqs(12) and (15) yield
1 (+7 1+ze'® exf V(a,cos)]
D(972)=9XD(EJﬁd<Pm|ng(<P) N Pn(ancosﬂ)z\/Z/Wanwz—coinaJrF(Fﬁ;e)],
(16)
The first argument of the Szédonction in Eq.(6) is
where

Fa(®)=exf —V(ascosp)]|sing|*, 8

1 [+ 60—
anda, is thenth Mhaskar-Rahmanov-Saff number being the T'(F7:6)= ELW de COf( T) [INFa(e)—InF(6)]
positive root of the integral equatid23]

1 T
2100 (01 o — o= | detinFz o) -2 0]
n: R
T J1I=x2\dx
0vV1—N\ X=a [ [(—q: [(‘9+<P}
X1{col ——| +cofl ——
(In what follows it will be seen thaa,, is none other than the 2 2
band edge for eigenvalues of the corresponding random- 1 (n
matrix ensemble. = —f de[InF2(@)—INF3(0)]—————.
Equation(6) may be rewritten in a different form passing 2mJo " "’ cosp—cosd
on to the integration ovex=a,\ (so that parametrization (17)

X=a,cos) takes placg
Introducing the new variable of integratiagh=a,cosp and

ra o |12 1112 : RN, <

Iimj ndX[Pn(X)—(Wa) Re{z”D2<Fn;E>H W  Using parametrization=a,cod (|x|<a,), we get
—ood —ap

" " ’)’n(x):F(Fﬁ;eﬂx:ancosa

1 (+a  (a3—x®)Y2h(&)—h(x)

=0. (10

2 (an xdx dV 11 with
"o Vo ax D

= — s 8

Analogously, Eq(9) reads 27) o YR — (18)
2
1- (i) } (19

Since from Eq.(11) it follows that lim,_,..a,# 0, we imme- an
diately conclude that the expression in the parentheses of E
(10) asymptotically tends to zero as—« on the interval of
integration|x|<a, . If one is not interested in the remainder +a, d¢
term, we arrive at the asymptotic formula for orthogonal p f =0 (20)
polynomials of the Freud type: —a, (§—x)(ag— &%)

h(§)=—-2V(§)+ ;In

Since for|x|<a,
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2

(here P stands for principal value of an inte@r&lqg. (18) can 2 kpoq; 1 X
be rewritten in the form Kn(x,y)= ma k. y=x|| " \a
+a, (aﬁ_XZ)l/Z h(g) y 21) —1/4
X)=—P dé———55 —. 21 Y
Ya(X) =5 fan §(aﬁ_§2)m F—x (21 x| 1 (an) H [cosD,_1(x)cosb(y)
Then we obtain the following asymptotic formula for the —cosb,_,(y)cosb,(x)], (29
orthonormal “wave functions” ¢,(x) =P, (x)exd —V(X)]
that we need in what follows: where
X 21-1/4 X «
n(X) = V2lma, 1— a—n) cos{narcco%(ﬁ—n + Ya(X) |. @n(x)=yn(x)+narcco§a— . (25)
(22 n
We remind you that Eq22) is valid for |x| <a, in the limit  In Eq. (24) the fact was used that lin,..(a,—1/a,)=1. Re-
n—oo. ally, as was noted in the preceding section, the Freud-type
potentials exhibit a polynomial growth at infinity. Supposing
IIl. TWO-POINT KERNEL AND UNIVERSAL that at large positivex potential V(x) roughly behaves as
EIGENVALUE CORRELATIONS x? (p>1) we immediately obtain the estimdteee Eq(11)]

] ) a,—n* asn—o. Then, obviously, lim_..(a,_1/a,)=1.
The two-point kernel allowing us to calculate all the glo- Taking into account this limit and carrying out the changing
bal and local characteristics for the random-matrix en-of the integration variable’ = £a,/a,_ in Eq.(21) we eas-

sembles is determined 3| ily obtain that in the larger limit y,_1(Xx)= y,(x), and as a
conseguence
Kn—1 $n(Y) ¥n=100 = ¥n(X) Yn—a(y) a
Kn(X:Y): k _ 1 (23)
n y—X X
. . . <I>n_1(x)=d>n(x)—arcco€—). (26)
wherek, is the leading coefficient of the orthogonal polyno- an

mial P,(x). Substitution of Eq(22) into Eq. (23) yields in

the largen limit Now Egs.(24) and(26) give us
|
1 X 2 y 271) —1/4 X—y y 27172
Kn(x,y)=w(y_x){ “\an “\an ] {cosbn(x)cosbn(y) a —sind(y)cosb,(x) 1—(a—n) }
X 271/2
+sin<I>n(x)cosI>n(y)[1— = } 27
n

When deriving we have used the identity with dependence on the potent\(x) only through the end

lim,_ .k, /knan=1/2 proved in Ref[25]. We stress that point a, of the spectrum.

Eq. (27) is valid for arbitraryx andy lying within the band Now we turn to the local properties of the two-point ker-

(—an,+a,). nel. Assuming that in Eq(27) |[x—y|<a, and bothx and
Equation(27) allows us to determine smooth¢over the y stay away from thésoft) band edgea,, we obtain

rapid oscillationg connected correlations.(x,y) of the den-

sity of eigenvalues , (x) [12,20, SiN®(X)—P,(y)]

Kn(xy) = =255

(30

ve(X,Y) = (vn(X)vn(Y)) = (va(¥) X (va(y)) = —KR(x,Y),
where® ,(x) is defined by Eq(25). This two-point kernel
x£y (28) may be rewritten in locally universal form. Taking into ac-
count the integral representation

by averaging over interval\x| <a, and|Ay|<a, but still -

containing many eigenlevels. Direct calculations yield the ¢ (x)= Earcco%i) - fowa (6)dé+ —(2n—1),
simple universal relationship 2 an o " 4
3D

aZ—xy
27 (x—y)X(an—x*) A an—y")H*

X#Yy 2 [ &dE dV (ag—x)T?
29 wa (X)=—3 o @2 d¢ (a2 )12

VC(X!y)z

(32)
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proved in the Appendix, we see that E§0) may be rewrit- +an(vp(x’)) dv
ten as Pf = dX'Z&- (40)
~a,
: y d
K _ Slr[wfxwan(g) ¢l 33 Thus one can think that density of levels is a solution of the
n(X,y) = - 33 .
m(y—X) integral equation
The characteristic scale of the changing Ofan(f) is +a,
(w;nldwan/dg)*%an, so that forlx—y|<a, [that has been V(x)= Jan dx'(wa(x"NINx—=x"|+ 4, (4D)
supposed in Eq(30)] Eqg. (33) is reduced to the universal
form with u being the “chemical potential.” It is no more than
o the famous mean-field equation which, in our treatment, fi-
sifmvp(y—X)] nally follows from the asymptotic formula E¢12) for the

Kn(X,y)= ' (34) orthogonal polynomials. Quite surprisingly, the Szdgnoc-

tion Eq. (7) turns out to be closely related to the mean-field

with v,=w, 3(x+Y) playing the role of the local density of approximation by Dysof10].

levels. Correspondingly, the local two-level cluster functlontor’]\IOW we can easily calculate the one-point Green’s func-

being rewritten in rescaled variablssands’

m(y—X)

[ KExy) ) si[m(s—s))] Gp(x):<tr;_>
Ya(s,s )_(<Vn(x)><yn(y)> yX::;(((SS))_ [W(S—S')]z (35 Xx—H+ip0
proves the universal Wigner-Dyson level statistics in the uni- = j_a ndgmﬂw(f— H), (42

tary random-matrix ensemble with Freud-type confinement

potentials (here s=v,x and s'=v,y are the eigenvalues \herep==+1. The last integral can be rewritten as
measured in the IocaI mean-level spaging
a  (vn(§))

IV. DENSITY OF LEVELS AND ONE-POINT GREEN'S GP(x)= PJ "d¢ X—¢ —imp(vn(X)), (43
FUNCTION &n

whence we obtain by means of E¢89) and (40)

The expression for density of levels is defined as
2)1/2

(va(x))=(tré(x—H))=K(x,X), (36) Gp(x)_ V_2lp fan gdé dV (af—

gl dE @

immediately follows from Eq(30):
We would like to stress that both Eq89) and(44) have
) (37 been obtained within the framework of the theory of polyno-

mials orthogonal with respect to the Freud measure. This
comment equally pertains to the mean-field E4L).

1dd, 1
(r(x))=— = — "=

a dx m

n dyn
(aﬁ_XZ)lIZ dx

[see Eq(25)]. Using Egs.(13) and(18), and the parametri-

zationx=a,cos, we obtain the formula
V. TWO-POINT CONNECTED GREEN'S FUNCTION

{rn(x=ancos)) The two-point connected Green’s function is defined as

1 d
2V(a,cosp) i0 ) , 1 1 1
wan5|n0d9[arg3(e |sing|;€'%)+na], GRP (x,x) = tr———tr——— ) = { tr—
38 Xp—H X H Xp—H
which establishes the connection between the density of lev- X{ tr— ! , (45
els in the random-matrix ensemble with the Freud-type con- Xor =

finement potential and the Szedonction for the corre-
sponding set of orthogonal polynomials E@). wherexp—x+|p0 andx’ ,—x +ip'0 (p,p’==1). It can
Another representation of the level density can be obde rewritten in an |ntegral form
tained from Eqs(34) and (32):
dédn

2 ra, gd¢ dV (ai—x2)12 G (xx)= | T [(va(&)va(m))
<vn(x)>=?P o B2 dE (2= (39 f—an f—an(xp & (X, —1n)

—(wn(&))(va(m)]. (46)
This formula is rather interesting and deserves more at-
tention. Considering this expression as an equation foRecognizing that the quantity in  parentheses is
dV/dx one can resolve it invoking the theory of integral {vn(&) va(7))e=(vn(£))S8(é— 1) —K3(&,7), we obtain the
equations with a Cauchy kerng26: formula
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, +an  d&(vy(€)) 5 is the two-point correlation functiofthe notations of Ref.
GEP (x,x") f —— " —+ 7pp'K(x,x") [12] have been usedThen, taking into account Eq&51),
—an (Xp= &) (X =) (52), and(49), we obtain from Eq(47) after some transfor-
FimlpAX)+p AKX )] -A(xx),  matons

(47) GPP'(x,x')=m2pp’ K3(x,X') +im pPJj:nX,d—_gg Ko(&,X)

where the following notations were used:

+ay d&
+p’ Pf_ —Kal(EX)

A(x,x’>=Pf df "(X? (48) W
_pr f (= g)(x o) <el&m).
NOX,X') = Pf+aand§Aiéi); ) (49) (54)

Now we only have to calculate the integrals containihg
The two-point kerneK ,(x,x') entering Eqs(47) and(48) is The most proper way is to invoke the integral equafiba]

determined by Eq(27). +a, dé d
Pfﬁa 2 ()= V) (55
A. Smoothed connected two-point Green’s function
and definition Eq(53). Since Egs(53) and(55) yield iden-

Let us consider the first integral E@8). Substituting Eq. tity
(27) into Eqg. (48) and taking into account that terms of the
type sinb, (&), cosb,(&), and simb,(&)cosb, (&) oscillate +a, d& +a, d¢ ,
rapidly and, therefore, do not contribute into the integral over 17 pr X X —¢ Ka(&:x)+p’ Pf . XT§K2(§,X )
¢ in the leading order im>1, we have after some rearrange- "

ments pr f &)
. e e
A(x,x")= —_—
27 1=, - (56)
2 (Xp—Xp)
pr+an dé¢ 1 1 x& _ _ _ _
X =B (x—62 722t &2 we finally arrive at the expression for the two-point con-
an ( =" 1-¢ la, &n nected Green'’s function
(50 — 1 aZ—xx’
. . - GEP (x,x')=51pp’ N2 A2 _2\1I2 52 _ 1 2\112
providedx#x’. Formally, this integral is divergent thanks to 2 (x=x")%(ay—x%)"(ay—x"?)
the double pole of the integrandx— £) 2. It is easy to see
that this singularity is rather artificial and connected with the _ 1 (57)
fact that the conditiorx# ¢ was supposed to be fulfilled (xp—x;),)2

when neglecting rapid oscillations if in the integrand of

Eq. (48). This is the reason why the integrand in E§0)  Here we have used Eg28) and(29). Equation(57) is valid
displays incorrect behavior in the vicinie= £. Actually, as  for arbitraryx#x’ lying within the band -a,, +a,). Uni-
can be verified, the integrand is finite fer= ¢, and the cor-  Versal relationships of this type were obtained in Raq).
responding integral is convergent. Moreover, direct compari-

son of Eq.(50) with results[12] shows that the equation in B. Local connected two-point Green's function

guestion can be rewritten in the form In the local regime, whetx—x'|<a,, one cannot disre-
gard oscillations of the integrands in Eq#8) and (49).
+ay, d¢ Since in this energy scale the density of stategx)) is a
A(x,x")= f mTz(s&,X), (51)  slowly varying function and the two-point kernig},(x,x’) is
~an universal Eq.(34) one obtains thai28]
where vy SiN 27wy, (X' —x
Ax’) = 21| - ST m01 g
_ X =X 27v,(X" —X)
T2(&,%) =Ka(&,X) +(vn(€)) 8(£—X) (52)
and

is the two-level cluster function, and
Sin[ g (x—x")]
AXX")=

5(vo(£)) (x=x")*
Ka(é, )_2 N 53 Then Eqs(59), (59), and(47) yield

(59
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GEP' (x,X') = 7wyl p—p’|8(x—X")
St mvp(x—x")]

(x—x")?

+[pp’ —1] +i(p'—p)
sin (X’ —x)]cod mrp(x' —x)]

(X' —x)?

(60)
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Polynomials orthogonal with respect to the Esdoeasure
dag=wg(x)dx=exd —2V(x)]dx (hereV is of Erdcs type
have the same asymptotif27] and, therefore, Eq22) re-
mains valid along with all the results obtained in Secs. lll,
IV, and V.

VIl. MATRIX MODELS WITH POSITIVITY

CONSTRAINTS ON EIGENVALUES

This equation only depends on the local mean-level spac-

ing v,, and therefore it can be written down in universal

In the random-matrix theory of quantum transp516]

form. Introducing the normalized and rescaled two-pointthe matrix model Eq(2) appears with positivity constraints

connected Green’s function

GPP'(x,x")

<Vn(X))<Vn(X’)>) x=x(s) ’ (61)

x'=x'(s")

gé’p'(s,s’)=<

wheres=v,x ands’ = v,x’ are the eigenvalues measured in
the local mean-level spacing, we obtain the following uni-
versal relationship:

PP'(s,8")=7?p—p'|8(s—s')

si m(s—s')]

gl m(s=s")signp—p’)
(s—s')?

+i(p—p’)

(62

on eigenvaluegx} (maximum entropy models The con-
straintx=0 is an essential feature of those models that fol-
lows directly from the unitarity of the scattering matrix and
imposes the presence of the hard edge in the energy spectrum
of the matrix model. To our knowledge there is no rigorous
treatment of such a matrix model with a strong enough con-
finement potentialV(x) within the method of orthogonal
polynomials except for the generalized Laguerre ensembles
of random matrice$30].

Below we show how the problems associated with the
maximum entropy model can be treated within the polyno-
mial approach in a very general case.

A. Polynomials orthogonal onx=0

Let the confinement potentidf(x) be of the Freud or

Note that an expression of this type was previously obtainedrdcs type defined on the whole real aXs that is,V is a
in Ref. [29] only for the Gaussian random-matrix ensemblemonotonous function behaving at least = *? (6>0) and

using supersymmetry formalism.

VI. EXTENSION FOR ERDO S-TYPE CONFINEMENT
POTENTIALS

All the results obtained above are valid for confinement

potentials exhibiting smooth polynomial growth at infinity
(see Sec. )l but they can be extended for dfrdos-type
confinement potential whicgrows faster than any polyno-
mial at infinity (see Ref[27], Ch. 2.

Namely, let V(x) be even and continuous irx
e(—o,+x), d?V/dx*> be continuous inxe (0,+x),
dV/dx be positive in the same domainxfind continuous at
x=0. Moreover, let

T(x)=1+ —dZV/dxz 63
(=1 X" 4V7dx ©3
be positive and increasing inxe(0,+) with
limy_, . oT(x)>0 while lim,_,,,T(x)=0°, and
T(x)=0((dV/dx)¥19) for x—w, (64)
d?v/dx? dV/dx d|d3V/dx3| dVv/dx)?
~ <
davidx v M Taviax O™t Vix
(65)

for x large enough. The class of potentigléx) satisfying all
the above requirements is said to be of Erelos type The
simple examples of Erdetype confinement potentials dii¢
V(x) =exp(|X%) with @>0 andk=1 (here exp denotes the
exponent iterated times; (i) V(x)=exgIn*(y+x?)] with
a>1, andvy large enough.

growing as or even faster than any polynomial at infinity,
and letP,(x) be a set of polynomials orthogonal &with
respect to the measuder(x) = exp{—2V(x)}dx[see Eq(5)].
Then polynomials

Sh(X)=Pan(VX) (66)
form a set of polynomials orthogonal dd* with the mea-
sure[31] dag(x) =exp[—2V¢(x)}dx,

| si08u00d@00=50m, 67
where the confinement potential
V(x)=V(x) + Inx (68)

is @ monotonous function that behaves at Ieastxq’séf”s
(6>0) and can grow even faster than any polynomial at
infinity.

Equation(66) allows us to write down large-asymptot-
ics for the introduced set of orthogonal polynomials. It is
straightforward to get from the results outlined in Sec. Il and
the Appendix the following asymptotic formulavhich is an
analogue of Eq(16)]:

1 ~
/b ]1/4COSDH(X)1
n

(69

——eXd V()]
S’I(X): (2/77) (an)1/4 [1_X

wherexe (0,b,), and
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Ky, 1 1
K, (y=x) (xy)"™{[b,—x][b,—y]}**

X[cosb,_,(x)cosb,(y)

~ 1 1 x
D, (x)= Earccoﬁx/x/bn)Jr ’77( n-— Z) - Wjo an(g)dg, Kn(X,y)= %
(70

1 by d?’] dVS \/bn_X _ _
Qo,(0)= 2 Pfo PRl AL el —cosB,_1(y)cosby(x)], (72)

Here the soft band edde,=a3,. The equations obtained if x andy lie within the band ((,). If at least one of the
above are the starting point of further analysis. arguments in the two-point kernel is negative, it is identically
zero (due to the presence of the hard edde Eq. (72) k,
stands for the leading coefficient 8f(x).

B. Two-point kernel and universal eigenvalue correlations . . )
Taking into account the large-dentity

The two-point kernel determined by E@23) can be

calculated provided “wave function”  ,(X) E)n,l(x) = ff)n(x) —2 arccosyx/b,), (73
=exgd —VsX)]S,(X). Substitution of Eq.(69 into Eq. (23
yields in the largea limit we obtain
|
o)=L - [ B o(x)COTBy(y) 2 — siriby(y) s"15<>(y)1/2(1 y)m
X, —— cosb,(x)co — i cosb, (x)| — -
Y R (y=%) (xy) P by—x][b,—yI 7“5 Y7, nYIEOFEIN b, b,
_ _ X 1/2 X 1/2
+sin®,(x)cosb,(y)| — (1—— . (79
bn bn

The smoothedover the rapid oscillationsconnected corr- 1 by dyp dVs( 7 12 \/m
elator v¢(x,y) of the density of eigenvalues E(®8) (vp(x))= —P o 7—x W(; s (77)
ba(x+y)/2—xy L . . .
Y o oy b Xy Y Gan resolve if26] arting 1o the mean-field equation by

(75 Dyson

manifests dependence on the potentig{x) only through b

the soft edged, of the spectrum. _ _ Vs(X)Zf ndx’(vn(x’)>ln|x—x’|+,u, (79)
The local properties of the two-point kernel are obtained 0

by assuming that in Eq.74) |x—y|<b, and bothx andy

stay away from the hard edge=0 and soft edgec=by, where integration runs over e (0,b,)). We once more stress

that the mean-field equation is a direct consequence of the
sinfm[3Qyp (£)dé] point-wise asymptotics for the corresponding orthogonal
7(y—X) . (76) ponnomiaI;Sn(x) which involve the Szegdunction as a
starting point.
Correspondingly, the one-point Green’s function

Kn(xvy) =

The characteristic scale of the changing(bgn(g) is of the
order ofb,,, so that forlx—y|<b, Eq.(76) is reduced to the

— H 1/2 _
universal form Eq(34) with v,= 0, (3(x+y)) playing the GP(x) = dvs ip = b d7_ st(Z) Vb —x _
role of the local density of levels. Correspondingly, the local dx @ Jo n=xdn\x] b~y
two-level cluster functionY,(s,s’) being rewritten in re- (79)

scaled variables ands’ follows the universal form Eq.35)
that proves the universal Wigner-Dyson level statistics in the
bulk of the spectrum for unitary random-matrix ensembles
with confinement potential§/((x). In the maximum entropy models the smoothed connected
two-point Green’s function can be calculated in the same
way as was done in Sec. V. The only difference is that the
integrals in Eqs(47)—(49) and (54) now run from 0O tob,,.

The density of levels is obtained from E@6) in the limit  Carrying out this integration with the two-point kernel
y—X: K,L(X,y) given by Eq.(74) we arrive at the universal formula

D. Connected two-point Green'’s function

C. Density of levels and one-point Green’s function
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APPENDIX: INTEGRAL REPRESENTATION OF @, (x)

In contrast to the smoothed connected two-point Green's 10 Prove Eq.(31) let us calculate the first derivative of
function the local one is determined by the same formulag/n(X) (the calculations are similar to those done in RRET],
Eqs. (60)—(62) providedx andy are far from both edges. ~ Ch- 1. From Eq.(21) we obtain

dn 1 X f*an h(§)dé

VIll. CONCLUSION dx 27 (@2-xR)T ), (al- ) ¢-x)
We have presented rigorous analytical consideration of 1 i [T h(¢)dé
the matrix model given by the non-Gaussian distribution +E(an_x ) PJ (a2— ) Z(E—x)?"
function P({x}) Eqg.(2) with a very general class of confine- ~8n 1%n

ment potentials V(x) within the framework of the (A1)
orthogonal-polynomials technique. Our treatment is equally

applied to the random-matrix models with the presence an#hence

absence of the hard edge in the eigenvalue spectrum. We d

have calculated with asymptotic accuracy the density of IeV( aﬁ_x2)1/2ﬂ

els, the one-point Green’s function, the two-point kernel, the dx
“density-density” correlator, and the two-point Green'’s T
function over the all distance scale. 1 nj”nh(g)dg 3 (an—¢&9)
It was established that the two-point correlators in consid- 2w )., €-x | (a3—¢H)1? E—X
ered random-matrix model possess a high degree of univer-
sality. In the absence of the hard edge the universality is +ap d (aﬁ—gz)llz
observed for a very wide class of monotonous confinement =~ ﬂpf_a h(f)dfd_g TEx (A2)
potentialsV(x) which behave at least 4s|1*¢ (6>0) and "
can grow as or even faster than any polynomial at infinity After integration by parts we have
(the case of the border level confinement wN&m) ~|x| as
|x|—o has been treated in RéB2]). In the presence of the dy, 1 a, (a2—¢»)Y2 dh
hard edge in the eigenvalue spectrum the universality holds X m@ )™ PJo df_gz__xz_fd—g- (A3)

for the monotonous confinement potenti®lgx) which be-
have at least dx|*/?*? (6>0) andcan grow faster than any - sypstituting Eq(19) into Eq. (A3) and using identity
polynomial at infinity.

We have shown that in those unitary non-Gaussian an dé 1
random-matrix models the density of levels and the one- P 72 (a2_§2)1/2:0 (A4)
point Green’s function essentially depend on the measure, 0 n
i.e., on the explicit form of the confinement potential. In
contrast (connecteyl the two-point characteristics of the
spectrum(“density-density” correlator, two-point Green's dy, a, (a§_§2)1/2 dv
function) are rather universal. Indeed, we have observed glo- == ——>—5p Pf dé—%——>¢—
bal universality of smoothed two-point connected correlators dx m(a,—X%) 0 &x d¢
and local universality of those without smoothing over rapid 1
oscillations. In both cases the correlators were shown to de-
pend on the measure only through the end points of the spec-
trum (global universality or through the local density of
levels (local universality.

Rigorous polynomial analysis enabled us to recover the
results obtained before by different approximate methode
and to extend previously known results for a much wider Jo
class of random-matrix ensembles with strong confinement

we obtain

2@ -

The integral in Eq(A5) may be handled as follows:

a, (aﬁ_§2)l/2 dv
e ta

potentials irrespective of the presence or absence of a hard a, &d¢é dV (a2—x?)Y2 1

edge. We have also established a local universal relationship =P 0 X2 dE (a2-)  (aZ—x?)12

for the normalized and rescaled connected two-point Green’s

function gﬁ’p/(s,s’) [see Eq(62)]. Finally, an interesting and fan §d¢  dv (A6)
quite surprising intimate connection between the structure of o (a2—¢)Y2 d¢’

the Szegdunction and the mean-field equation that has been
revealed in the proposed formalism is worthy of notice. Bearing in mind Eq(11) and introducing the function
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2 (an &d¢ dV (aZi—-x?)?

X)= - A7
B Ay
the derivativedy,/dx can be rewritten as
Ay _ + L A8
dx ——Wwan(X) n—z W ( )

Further, noting from Eq(21) that y,(0)=0, we obtain the

integral representation

1
-3

el
arcsi e (A9)

n

W= f:waﬂ(f)da

or, equivalently{see Eq.(25)],

1 X X T
D (x)= Earcco%a—n) - Wfo wan(g)d§+ Z(Zn— 1).
(A10)
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