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Nonlinear effects in molecular chains with two types of intramolecular vibrations
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The influence of a nonlinear spring and nonlinearity in exchange integrals in molecular chains are theoreti-
cally investigated in the presence of intramolecular vibrations of two different types. Considering a cubic term
in the potential, we show that the anharmonic effect leads to a set of three coupled nonlinear egoa¢éons
Boussinesq equation and two nonlinear Sdinrger equationsfor which we propose an exact soliton solution.

The nonlinearity in the exchange integrals results in two coupled nonlinear diiehen equations with satu-
rable nonlinearity[ S1063-651X96)00306-9

PACS numbgs): 03.20:+i, 36.20—r, 87.15-v

I. INTRODUCTION In this representation],, and J,, are the energies of the
two different types of the intramolecular vibratioriexci-
Interest in physical and mathematical modeling of the mo+tong at thenth moleculeM,_,,, andM,,_,, characterize the
lecular systems has been steadily increasing during the laBtteraction between adjacent molecules, due to the two types
30 years as it is noticed that solitary waves exist in suctof excitons, respectively. Otherwisa,; (B ) andA, (B,)
system. It was shown that these solitary waves are boundenote the creation and annihilation operators of a quantum
states of the intramolecular excitatiof@xcitons and the lat- of A type (B type) excitons at thenth molecule. These op-
tice deformation1,2]. We have proposed a model of two- erators satisfy the Bose commutation relation.
dimensional molecular crystals]. Here, a spatial soliton Taking into account the dipole_character of the interac-
with a sech profile has been derived in the continuum limit.tions, we expand the quantitidg, J,, M,,_1,, andM,_,
In a preceding work, the present authp4$ have also stud- as follows:
ied the influence of a nonlinear spring and nonlinearity in
exchange integrals on solitary excitations in one-dimensional In=Jo=[J1.(Qn=Qn-1) +J1r(Qn+1~Qn)],
molecular chains, in the presence of only one intramolecular

coordinateA, for each molecule. If we were to think about Jy = —dn Jip= —dn
generalizing this model, we would nedy,, B,,, C,,, ... IQn=Qn-1)’ d(Qn+1—Qn)’

and all these would need to be coupled with each other as o _

well as with the displacemen®®, of the molecules from Jn=Jo—[J1(Qn=Qn-1) +I1r(Qn+1—Qn)], (23
their equilibrium positions. The purpose of this paper is to - -

extend the treatment of the preceding paphr to the case ~ —4dJ, ~ —dJ,

where there exist two different coordinatés andB,, which Ju= 3(Qn—0Qn_1)’ Jir= d(Qns1—Qp)’ (2D)
we can solve exactly and propose a soliton solution.

We considered a system whevevibrational excitons be- — M -1
longing to two frequencies of the spectrum are created. In the Mnn-1=Mo=M1(Qy—Qp-1), M;= W00 1)’
next section, we introduce an anharmonic cubic potential, we noenot (20)
present the basic equations governing the system, and we
derive an exact soliton solution. Considering a nonlinearity - _(;|\7|nn71

in exchange integrals, we demonstrate in Sec. lll that the M,,-1=M¢—M(Q,—Qp-1), M= H0—0r 1
system can be described by two coupled nonlinear ‘Schro n “‘1(2d)
dinger (NLS) equations with saturable nonlinearity.
The form of the Hamiltonian Eq.1) gives an idea of the
Il. PHONONS ANHARMONICITY behavior of the system. The physical system is a collection
o ) ) .. of molecules in an orderly array, oscillating about equilib-
The Hamllto_man for phonons and excitons interacting ingjym position with coordinat®), . This type of term gives
the crystal is given by1-6] rise to acoustic modes in the excitation spectrum. In addition,
the molecules are capable of internal vibrations described by
_ + Thrtp _ + + the second quantized operatéts andB,, . This second type
: th+§n: Infhn An+§n: JnBn B4l ; An AnBn B of motion gives rise to so-calljd opticnal modes in the spec-
trum. The two basic motions are then decorated with various
+ nonlinearities.
+; Mn-1n(An An-1+ H.C Following Zolotaryuk, Spatschek, and Kluf@], we re-
strict ourselves _only to_the symmetric case when

+> M, 1,(B B, +H.c). 1) Ju=Jdir=JandJd; =Jip=1J;.
; n-1n(Bn Bn-s ) @ Now, the Hamiltonian(1) takes the form
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H=H_,+Hc+Hin, (3 9Bt ~ ~ ~
P e it (;t =JoBntMo(Bnt+1t Bn-1) —JI1(Un+1—Un-1) Bn
with ~
_Ml[(un+l_un)ﬁn+l+(un_unfl):8nfl]
_ —4l * 7
Hoi= S (JoAT Art JoB; By + S Mo(A] A1 +Hec) Intn B "
" " Fu,(t) , 0
~ M T:(Un+l+unfl_2un) Mw0+7
+> Mo(B/Bys1+H.c)—4IATAB/B,, (33
n
X(unJrl_un1)}_M1[¢:(¢n+1_¢n1)
Hin=—J —Qn_ DA AL+I —Qn- ~
=312 (Qrea= Quw)AnAnt 3i(Quea = Qn-a) F (W= Ve D1~ ML B (Baii— 1)
+Ba(Bhi 1= Br- 1= Il al?= [¥n4/]
XByBr=M1X (Qni1= Qu)(AqAn.y+H.c) e e ’
: = I1[IBn+al®=Bn+1l?]- (8)
-M, > (Qns1—Qn)(BiB,, 1 +H.C). (3p)  In the continuum limit, these Eqs6)—(8) are transformed
n into
H — _ _ 2
Equation(3b) describes the interaction, coupling molecu- H= = Aot mip+ GUh— MBI, ©)
lar center-of-mass motion and internal vibration ampli- O P e 2
tudes: the term®,,;1)A, andQ, . 1)B,, describe the mix- | Bi=~AoBrxx— B+ GUB— N YI°B, (10

ing of acoustic and optical modes. The terms _ 2
Qn(+1yAnAns1 and Qu,1)Bn B,y are the higher order U= (Co/M) Uyt (Do /M) (L)t (Eo /M) sy
terms which have the effect of changing propagation of in- + (g1 /M) ([ x+ (@1 IM) (| B]P)x 11
tramolecular excitations &,, amplitudes change. The term

AA.B/B, in Eq.(3b) describes the coupling between the with

two coordinates.

In the anharmonic approximation, the energy of the mol- , _ _ M a __ Qot+2My) 9= — (M;+Jpa
ecules in the chain is 0 no M h ’ h ’
(12
Pr , Mog 2, %0 3 Va2 To+ 20 Vi3
Hor= 2 [ 5p1 + 51 (Qnea=Qu)+ 37 (Qnea=Qu)®)- Rom - o ﬁ:_wﬁ_o), az_%,
(30 (13
Let us consider state vectors which are the products of a Mwza* *0a® 2.2
normalized exciton state and a coherent phonon state Eo=—35— Do=—5— Co=Mwpa’, (14)
+ + = M.+ 4l
W ()= 2 [¢a(D)A +Ba()B;1 1|0)exeXH — S(D)1|0)pn, gi=-2(Mi+d)a, Gi=-2(Mi+Jpa, A=
n
(4 (15
. Differentiating Eq(11) once with respect t&, and substi-
with tuting »=u,, one obtains the nonlinear master system of
equations
i .
S0 =7 2 [Un(t)Py = 7(1)Qn]. (5) == Aotho— pdrt gny—N APy, (16)
| Bi=—RAoBu— BB+ GnB—NY°B, (17)
The displacementsi,(t) and the amplitudeg,(t) and
B,(t) are determined from the Hamiltonian equations 74=(Co/M) st (Do /M) (7%) xxt (Eg /M) 74
) + (91 /M)([#1) 0+ (@MY (| B . (18)
. n
1 —2— = Jothn t Mo(¥nr 1t thn—1) = Ja(Uns 1= Un-1) Let us now look for a solution for this new system of
coupled equations. The solutions @6)—(18) are taken in
—My[(Uny1=Un) ¥nr1+(Up=Un_1) 1] the form

— 41 BnBy ¥n (6) P(x,1)= d(s)exd i (kx— wt)], (19)



54 NONLINEAR EFFECTS IN MOLECULAR CHAINS WITH TWOD . .. 2073

(x,t)=p(s)exdi(kx—at)], (20) 4 _ na
pru=peed : 203+ 5 pi=y 32
s=x—ut, (21
_ . _ . . n appears because the whole solitary formation consists of
wherev is the soliton velocity. Inserting Eq§19)—(21) into  jntramolecular excitations o andB types.
Egs.(16)-(18), we get The expression of the amplitude can be deduced from

b= —Aodest (A= )t gnd—rp?p, (29 o300 8NdE0

- _— 1(6A, _
@p=—Aopsst (Ack’~w)p+Tnp—Ng’p, (23 ¢§=X (FWN , (33
vz—& =(Do/M) 7?+(Eo/M) nsst (g1 /M) $? 2_1[2A0
YK 0 n 0 NssT (01 po=1 AT“'QN _ (34)
+(g./M)p?, 24 . _ _
(G/M)p 29 Combining(33), (34), and(32), we arrive at the following
2kAy—v=0 (25) value of the widthA:
Z‘R’/&O_U:O. (26) 2(%"'1%0)
w to be of the f A= )
e assumey to be of the form 8A, YT 2
s n\a-+ nz)\zaz—4 T+12AO T‘FZQN
7=N secﬁ(z) (27) 35
whereN is the amplitude of the pulse soliton addis its The expression ok, k, , @ are given by the Eqg25)
width. and(26) and (309 and(30b), respectively.
The solution is determined by substituting E87) into This solution occurs upon fulfillment of the inequalities
Egs.(22)—(24). We shall suppos#ly, J;, M4, Mg, J;, and 5 —~ ~
M, to be negative and restrict our considerations to excita- 2Ap+NgA“>0, 6A;+NgA“>0, N<O

tion states lying near the bottom of the vibrational exciton
band. We obtain, after some mathematical transformations
the following form of the solution:

8A,

and n?\%a?>4N 3

~ \(4
+12AO> ?g+2§). (36)

B S This solution is of a great interest for biological systems
¢ = dosec A (28) because it represents soliton of lattice contractigr<0).
Another possible solution is

) , (29

)

p= posecﬁ(

_ S
’ p_posec K ’

the profile remains the same, the only difference appears in
Ao the expression of the parameters of the solution.
o+ P—Aok2+ =0, (309 The energy which is transferred by a solit@8) and(29)
is expressed by

s
b= ¢Osecﬁ( A
with

47, —~ ~ — .
In the continuum limit, we have
2—A2°+gN—>\p§:o, (300 +0 dx
A Eph: fﬁ <\P(t)|th|\I,(t)> a’ (373
64, +GN—A@2=0 (300) + dx
E— g — — . o0
A® ° Eex= fﬁ <\I’(t)|Hex|\I’(t)> Ev (37b
On the other hand, the normalization condition
+oo dx
Eom | (WOIHY@) S @79

+a d
| Cauorsisonp Sen @

Substitution of(3a), (3b), (3c) and (4) into (373, (37b),
yields (370 yields
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M a2 a0 o Mg 3 at
Epn= fﬁ > (W awg) 7'+ —— | —@ it 5 M7
4
a a 3 dx
_ .2 _ 3,3__,4,2 _
+477x+6 any zaﬁﬂx)}a. (383

+oo ~ ~
Eex= J' [(Jot2Mo)|#°+ (Jo+2Mo)| B> = Moa?| ¢/

—0o0

~ dx
—Moa®| B*—14]%8]%] = (38b)

B My [2anlylP+ Gy sl

+

“[2a7]8]2

—

dx -~
+ %77x><|¢|2)] ;_Mlj

dx
+33(%{77(|ﬁ|2)x}x_ 77|:8x|2+ %77><X|:8|2)] ;

+o 3
_Jlf

a dx
a77| ¢|2+ E 7lxx| 'MZ)
~ [+
_Jlf

a

3

a dx
a77|ﬁ|2+ E 7/xx|,3|2)
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ecules which interact weakly with one another. Here are the
numerical values chosen in this situation when one consider
only one type of exciton8—10.

Jo=0.205 eV; My=-7.8 cm %

M;=—101%? N; J;=-34x10 1 N

M=114 m,; v=4.5x10° mis; vy=4.6x10° m/s

ap=—4.98 eV/A; N=-0.789 andD=45 A.

To our knowledge, the numerical values associated to the
bi-exciton as well as the coupling constant | of the two types
of the excitons have not yet been determined. We assume
that the parameters of the second coordiriiaiffer from
the first ones as follows:

Mi=My(1+ey),
J1=d1(1+e3), Jo=Jo(1+s4),

with ¢;<1, (i=1,2,3,4). The above relations avoid the hy-

pothesis of important fluctuations between both types of in-

tramolecular vibrations, and allow a better cohesion of the
system.

After integrating these expressions of the energies, we The solution(27)—(29) propagates along an alpha helix

arrive at
2 8«
- (2 2 2 2 7 o263
Eph 3a (v+a“wg) MNA+ 45a N°A

2
— —=x MN?a3wg,

45A (399

2 212 64 2 2
Eex:a J0+2M0_M0a k _1_5|Ap0 Ad)o

4 ~ N N 22 2 2 2
+ 5 [\]0+ ZMO_ Moa k ]Apo_ AL M0a¢0

3A
16|\7| 2 39h
~ 15a Moaro (39b
8 28
Ein=||3 a’k®— 3 A+ 258 a?|M;Ngj
(16 ~. 32 64
o A22_ a2 2
+_<15ak 15A+63Aa M;Npg
4 A 8 313,N g2
3287 78 NGO
16 A o4 31J;N 39
1_5a' 3ﬂa 1 pO ( C)

Let us now analyze this theory for realistic parameter val-

chain and assures the muscular contraction, jfe,, €3 and
the anharmonicity parameter | are subject to the constraint

4,5(291.642x 10°2+3.14436.48< 10~ 28— 230.52
X 10 ®£,)(49.8<10 3-8.54x 10*){s3+&,})) 2
+76.83 X 10'°—515.84< 10" 8+ 230.52¢ 10M¢ ; <0.

This condition arises from the requirement of the continuum
approximation(A>D).

IIl. NONLINEARITY IN EXCHANGE INTEGRALS

Now we consider nonlinear effects due to the following
expansion of the resonance interactions:

Mnn,leo— Ml(Qn_anl)"' Mz(Qn_anl)za

M EM M EE—ZaZM””_l (40)
! &(Qn_anl)’ 2 Za(Qn_anl) '

Mo 1=Mo—My(Qn—Qn_1)+ Ma(Qn—Qn_1)?,

‘92'\7|nn—1
&(Qn_anl)z.

_aMnn—l

Oy’ (4

~ ~ 1
M]_E MZ E

To underline clearly the effects of this type of nonlinear-

ues. Alpha helix proteins are examples of one-dimensionaty, we consider a harmonic potential. The equations of mo-
molecular systems consisting of periodically repeated moltion for the operators,, 8, andu,, become
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. 9P(t) .
ih ot :JO‘pn‘HVlO(wnfl_"¢n+1)_4|:8nﬁn¢n
_Jl’vzln(un-%—l_un—l)_Ml[(un+l_un)lr/fn+1
+(un_un—1)¢n—1]_MZ[(un+1_un)2¢n+l
+(un_un71)2¢nfl]v (42)
Bt ~ X
ih ot =JoBntMo(Bn-1F Bnr1) =41 47 ¥nBn
_jlﬁn(un+1_unfl)_Ml[(unJrl_un),BnJrl
+(un_un—1)ﬂn—1]_MZ[(un+l_un)ZBn+l
+(un_un—1)zﬂn—1]: (43)
Pun(t) -, .
M—b5 =Maog(Upt1tUn—1—=2Up) =M1 [ 7 (P11

—Yn-1)+C.C1=Mi[ B5 (Bnr1— Bn-1) +C.C]
=31l 1= 1901121 = 3l Bosal?
=[Bn-1/?1=2Ma[ (Uy=Un 1) (i1 FC.C)
—=(Unt1=Up) (i1 +C.C)]
—2M [ (Up—Un_1)(BnfBr-_1+C.C)
—(Unt1=Up)(BnBrs1t+C.C)].
The continuum equations of motion-&-x) take the form
=~ Aot wibt Ut go(U) 29— N| Bl (45)
i Bi=—AoBu— BB+TUB+Ta(U)?B— N Y28, (46)

M U= Couxx+ gl(| ¢|2)x+§l(|:8|2)x+ gB(ux| ¢|2)x

(44)

+T3(uyl B« (47)
where
2M,a?
2= P 93:4M23-21
_ 2M,a®  _ -~ )
9= gz=4Mya“. (48)

Other parameters are the same as in Sec. Il.

In the quasistationary limit, Eq945)—(47) can be re-
duced to two coupled nonlinear Schinger equations with
saturable nonlinearity

2075
. (d]y]?+do| BI?) ¢
i =—A — — — s 49
1/ oxx— MY l+a1|z//|2+a1|,8|2 (49
. ~  _ (dB2+dolydB
i B;=—ApByy— 1B— s , 50
,Bt OBxx upB 1+a1|¢|2+a1|,3|2 ( )
with
g% g0 93
d——CO , dO_H_Co Mg (52)
~ 901 ~ 0991 - _%
d= . do—>\+—CO, =g (52)

Numerical and analytical resolution of the system of Egs.
(49) and(50) should probably bring different types of soliton
solutions. This aspect of the problem is under consideration
and will be done in a forthcoming paper.

IV. CONCLUDING REMARKS

Solitary excitations play an important role in molecular
mechanisms that take place in biological systems. In such
systems, where the degrees of freedom are numerous,
coupled and influenced by the environment in which the
molecule sits, the problem of solving the equations of mo-
lecular motion, becomes intractable. The most feasible way
is to isolate the “dominating coordinates” and investigate
the coupling between these coordinates. This method has
been applied to alpha helical proteins by Davydov, where he
considered essentially two degrees of freedom.

The present model is an extension of a previous work
where we have also considered only two degrees of freedom
(one displacement coordinate and one exciton coordinate
Indeed, there exist more than one type of intramolecular vi-
brations in a real physical nonlinear system. The intramo-
lecular nuclear vibrations are obviously very significant for
the explanation of the energy spectrum of the molecular
crystals. Thus we have studied in this paper the crucial prob-
lem of nonlinearities when two types of excitons belonging
to two different frequencies of the spectrum are created. The
results obtained here bring important modifications in the
equations governing the dynamics of the system. It should be
very interesting to propose an exact soliton solution for the
coupled NLS equations with saturable nonlinearit&® and
(50), so, the work is still opened.
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