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The influence of a nonlinear spring and nonlinearity in exchange integrals in molecular chains are theoreti-
cally investigated in the presence of intramolecular vibrations of two different types. Considering a cubic term
in the potential, we show that the anharmonic effect leads to a set of three coupled nonlinear equations~one
Boussinesq equation and two nonlinear Schro¨dinger equations! for which we propose an exact soliton solution.
The nonlinearity in the exchange integrals results in two coupled nonlinear Schro¨dinger equations with satu-
rable nonlinearity.@S1063-651X~96!00306-6#

PACS number~s!: 03.20.1i, 36.20.2r, 87.15.2v

I. INTRODUCTION

Interest in physical and mathematical modeling of the mo-
lecular systems has been steadily increasing during the last
30 years as it is noticed that solitary waves exist in such
system. It was shown that these solitary waves are bound
states of the intramolecular excitations~excitons! and the lat-
tice deformation@1,2#. We have proposed a model of two-
dimensional molecular crystals@3#. Here, a spatial soliton
with a sech profile has been derived in the continuum limit.
In a preceding work, the present authors@4# have also stud-
ied the influence of a nonlinear spring and nonlinearity in
exchange integrals on solitary excitations in one-dimensional
molecular chains, in the presence of only one intramolecular
coordinateAn for each molecule. If we were to think about
generalizing this model, we would needAn , Bn , Cn , . . .
and all these would need to be coupled with each other as
well as with the displacementsQn of the molecules from
their equilibrium positions. The purpose of this paper is to
extend the treatment of the preceding paper@4#, to the case
where there exist two different coordinatesAn andBn which
we can solve exactly and propose a soliton solution.

We considered a system wheren vibrational excitons be-
longing to two frequencies of the spectrum are created. In the
next section, we introduce an anharmonic cubic potential, we
present the basic equations governing the system, and we
derive an exact soliton solution. Considering a nonlinearity
in exchange integrals, we demonstrate in Sec. III that the
system can be described by two coupled nonlinear Schro¨-
dinger ~NLS! equations with saturable nonlinearity.

II. PHONONS ANHARMONICITY

The Hamiltonian for phonons and excitons interacting in
the crystal is given by@1–6#

H5Hph1(
n

JnAn
1An1(

n
J̃nBn

1Bn24I(
n

An
1AnBn

1Bn

1(
n

Mn21n~An
1An211H.c.!

1(
n

M̃n21n~Bn
1Bn211H.c.!. ~1!

In this representation,Jn and J̃n are the energies of the
two different types of the intramolecular vibrations~exci-
tons! at thenth molecule.Mn21n andM̃n21n characterize the
interaction between adjacent molecules, due to the two types
of excitons, respectively. Otherwise,An

1 (Bn
1) andAn (Bn)

denote the creation and annihilation operators of a quantum
of A type ~B type! excitons at thenth molecule. These op-
erators satisfy the Bose commutation relation.

Taking into account the dipole character of the interac-
tions, we expand the quantitiesJn , J̃n , Mn21n, andM̃n21n
as follows:

Jn>J02@J1L~Qn2Qn21!1J1R~Qn112Qn!#,

J1L[
2]Jn

]~Qn2Qn21!
, J1R[

2]Jn
]~Qn112Qn!

,

J̃n> J̃02@ J̃1L~Qn2Qn21!1 J̃1R~Qn112Qn!#, ~2a!

J̃1L[
2] J̃n

]~Qn2Qn21!
, J̃1R[

2] J̃n
]~Qn112Qn!

, ~2b!

Mnn21>M02M1~Qn2Qn21!, M1[
2]Mnn21

]~Qn2Qn21!
,

~2c!

M̃nn21>M̃02M̃1~Qn2Qn21!, M̃1[
2]M̃nn21

]~Qn2Qn21!
.

~2d!

The form of the Hamiltonian Eq.~1! gives an idea of the
behavior of the system. The physical system is a collection
of molecules in an orderly array, oscillating about equilib-
rium position with coordinateQn . This type of term gives
rise to acoustic modes in the excitation spectrum. In addition,
the molecules are capable of internal vibrations described by
the second quantized operatorsAn andBn . This second type
of motion gives rise to so-called optical modes in the spec-
trum. The two basic motions are then decorated with various
nonlinearities.

Following Zolotaryuk, Spatschek, and Kluth@7#, we re-
strict ourselves only to the symmetric case when
J1L5J1R5J1 and J̃1L5 J̃1R5 J̃1 .

Now, the Hamiltonian~1! takes the form
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H5Hph1Hex1H int , ~3!

with

Hex5(
n

~J0An
1An1 J̃0Bn

1Bn!1(
n

M0~An
1An111H.c.!

1(
n

M̃0~Bn
1Bn111H.c.!24IAn

1AnBn
1Bn , ~3a!

H int52J1(
n

~Qn112Qn21!An
1An1 J̃1~Qn112Qn21!

3Bn
1Bn2M1(

n
~Qn112Qn!~An

1An111H.c.!

2M̃1(
n

~Qn112Qn!~Bn
1Bn111H.c.!. ~3b!

Equation~3b! describes the interaction, coupling molecu-
lar center-of-mass motion and internal vibration ampli-
tudes: the termsQn(11)An andQn(11)Bn describe the mix-
ing of acoustic and optical modes. The terms
Qn(11)An

1An11 and Qn(11)Bn
1Bn11 are the higher order

terms which have the effect of changing propagation of in-
tramolecular excitations asQn amplitudes change. The term
An

1AnB n
1Bn in Eq. ~3b! describes the coupling between the

two coordinates.
In the anharmonic approximation, the energy of the mol-

ecules in the chain is

Hph5(
n

F pn22M
1
Mv0

2

2!
~Qn112Qn!

21
a0

3!
~Qn112Qn!

3G .
~3c!

Let us consider state vectors which are the products of a
normalized exciton state and a coherent phonon state

uC~ t !&5(
n

@cn~ t !An
11bn~ t !Bn

1#u0&exexp@2S~ t !#u0&ph,

~4!

with

S~ t !5
i

\ (
n

@un~ t !pn2pn~ t !Qn#. ~5!

The displacementsun(t) and the amplitudescn(t) and
bn(t) are determined from the Hamiltonian equations

i\
]cn~ t !

]t
5J0cn1M0~cn111cn21!2J1~un112un21!cn

2M1@~un112un!cn111~un2un21!cn21#

24Ibnbn*cn , ~6!

i\
]bn~ t !

]t
5 J̃0bn1M̃0~bn111bn21!2 J̃1~un112un21!bn

2M̃1@~un112un!bn111~un2un21!bn21#

24Icncn*bn , ~7!

M
]2un~ t !

]t2
5~un111un2122un!FMv0

21
a0

2

3~un112un21!G2M1@cn* ~cn112cn21!

1cn~cn11* 2cn21* !#2M̃1@bn* ~bn112bn21!

1bn~bn11* 2bn21* !#2J1@ ucn11u22ucn11u2#

2 J̃1@ ubn11u22ubn11u2#. ~8!

In the continuum limit, these Eqs.~6!–~8! are transformed
into

ic t52A0cxx2mc1guxc2lubu2c, ~9!

ib t52Ã0bxx2m̃b1g̃uxb2lucu2b, ~10!

utt5~C0 /M !uxx1~D0 /M !~ux
2!x1~E0 /M !u4x

1~g1 /M !~ ucu2!x1~ g̃1 /M !~ ubu2!x , ~11!

with

A052
M0a

2

\
, m52

~J012M0!

\
, g52

~M11J1!a

\
,

~12!

Ã052
M̃0a

2

\
, m̃52

~ J̃012M̃0!

\
, g̃52

~M̃11 J̃1!a

\
,

~13!

E05
Mv0

2a4

12
, D05

a0a3

2
, C05Mv0

2a2, ~14!

g1522~M11J1!a, g̃1522~M̃11 J̃1!a, l5
4I

\
.

~15!

Differentiating Eq.~11! once with respect tox, and substi-
tuting h5ux , one obtains the nonlinear master system of
equations

ic t52A0cxx2mc1ghc2lubu2c, ~16!

ib t52Ã0bxx2m̃b1g̃hb2lucu2b, ~17!

h tt5~C0 /M !hxx1~D0 /M !~h2!xx1~E0 /M !h4x

1~g1 /M !~ ucu2!xx1~ g̃1 /M !~ ubu2!xx . ~18!

Let us now look for a solution for this new system of
coupled equations. The solutions of~16!–~18! are taken in
the form

c~x,t !5f~s!exp@ i ~kx2vt !#, ~19!
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b~x,t !5r~s!exp@ i ~ k̃x2ṽt !#, ~20!

s5x2vt, ~21!

wherev is the soliton velocity. Inserting Eqs.~19!–~21! into
Eqs.~16!–~18!, we get

vf52A0fss1~A0k
22m!f1ghf2lr2f, ~22!

ṽr52Ã0rss1~Ã0k̃
22m̃ !r1g̃hr2lf2r, ~23!

S v22 C0

M Dh5~D0 /M !h21~E0 /M !hss1~g1 /M !f2

1~ g̃1 /M !r2, ~24!

2kA02v50, ~25!

2k̃Ã02v50. ~26!

We assumeh to be of the form

h5N sech2S sD D ~27!

whereN is the amplitude of the pulse soliton andD is its
width.

The solution is determined by substituting Eq.~27! into
Eqs.~22!–~24!. We shall supposeM0, J1, M1, M̃0, J̃1, and
M̃1 to be negative and restrict our considerations to excita-
tion states lying near the bottom of the vibrational exciton
band. We obtain, after some mathematical transformations
the following form of the solution:

f5f0sechS sD D , ~28!

r5r0sech
2S sD D , ~29!

with

v1
A0

D22A0k
21m50, ~30a!

ṽ1
4Ã0

D2 2Ã0k̃
21m̃50, ~30b!

2A0

D2 1gN2lr0
250, ~30c!

6Ã0

D2 1g̃N2lf0
250. ~30d!

On the other hand, the normalization condition

E
2`

1`

~ uc~x,t !u21ub~x,t !u2!
dx

a
5n ~31!

yields

2f0
21

4

3
r0
25

na

D
, ~32!

n appears because the whole solitary formation consists ofn
intramolecular excitations ofA andB types.

The expression of the amplitude can be deduced from
Eqs.~30c! and ~30d!

f0
25

1

l
S 6Ã0

D2 1g̃ND , ~33!

r0
25

1

l S 2A0

D2 1gND . ~34!

Combining~33!, ~34!, and~32!, we arrive at the following
value of the widthD:

D5

2S 8A0

3
112Ã0D

nla1Fn2l2a224S 8A0

3
112Ã0D S 4gN

3
12g̃ND G 1/2.

~35!

The expression ofk, k̃, v, ṽ are given by the Eqs.~25!
and ~26! and ~30a! and ~30b!, respectively.

This solution occurs upon fulfillment of the inequalities

2A01NgD2.0, 6Ã01Ng̃D2.0, N,0

and n2l2a2.4NS 8A0

3
112Ã0D S 4g3 12g̃D . ~36!

This solution is of a great interest for biological systems
because it represents soliton of lattice contraction~h,0!.
Another possible solution is

f5f0sech
2S sD D , r5r0sechS sD D ,

the profile remains the same, the only difference appears in
the expression of the parameters of the solution.

The energy which is transferred by a soliton~28! and~29!
is expressed by

E5Eph1Eint1Eex. ~37!

In the continuum limit, we have

Eph5E
2`

1`

^C~ t !uHphuC~ t !&
dx

a
, ~37a!

Eex5E
2`

1`

^C~ t !uHexuC~ t !&
dx

a
, ~37b!

Eint5E
2`

1`

^C~ t !uH intuC~ t !&
dx

a
. ~37c!

Substitution of~3a!, ~3b!, ~3c! and ~4! into ~37a!, ~37b!,
~37c! yields
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Eph5E
2`

1`FM2 ~v21a2v0
2!h21

Mv0
2

2 S 2a3hhx1
a4

3
hhxx

1
a4

4
hx
2D 1

a

6 S a3h32
3

2
a4h2hxD G dxa , ~38a!

Eex5E
2`

1`

@~J012M0!ucu21~ J̃012M̃0!ubu22M0a
2ucxu2

2M̃0a
2ubxu22I ucu2ubu2#

dx

a
, ~38b!

Eint52M1E
2`

1`

@2ahucu21a3~ 1
2 $h~ ucu2!x%x2hucxu2

1 1
3hxxucu2!#

dx

a
2M̃1E

2`

1`

@2ahubu2

1a3~ 1
2 $h~ ubu2!x%x2hubxu21

1
3hxxubu2!#

dx

a

2J1E
2`

1`Fahucu21
a3

6
hxxucu2)G dxa

2 J̃1E
2`

1`Fahubu21
a3

6
hxxubu2)G dxa . ~38c!

After integrating these expressions of the energies, we
arrive at

Eph5
2

3a
~v21a2v0

2!MN2D1
8a

45
a2N3D

2
2

45D
MN2a3v0

2, ~39a!

Eex5
2

a FJ012M02M0a
2k22

64

15
IDr0

2GDf0
2

1
4

3a
@ J̃012M̃02M̃0a

2k̃ 2#Dr0
22

2

3D
M0af0

2

2
16

15D
M̃0ar0

2, ~39b!

Eint5F S 43 a2k22
8

3DD1
28

45D
a2GM1Nf0

2

1F S 1615 a2k̃ 22 32

15DD1
64

63D
a2GM̃1Nr0

2

2F43 aD2
8

45D
a3GJ1Nf0

2

2F1615 aD2
64

31D
a3G J̃1Nr0

2. ~39c!

Let us now analyze this theory for realistic parameter val-
ues. Alpha helix proteins are examples of one-dimensional
molecular systems consisting of periodically repeated mol-

ecules which interact weakly with one another. Here are the
numerical values chosen in this situation when one consider
only one type of exciton@8–10#.

J050.205 eV; M0527.8 cm21;

M15210212 N; J1523.4310211 N

M5114 mp ; v54.53103 m/s; v054.63103 m/s

a0524.98 eV/Å3; N520.789 andD54.5 Å.

To our knowledge, the numerical values associated to the
bi-exciton as well as the coupling constant I of the two types
of the excitons have not yet been determined. We assume
that the parameters of the second coordinateBn differ from
the first ones as follows:

M̃05M0~11«1!, M̃15M1~11«2!,

J̃15J1~11«3!, J̃05J0~11«4!,

with « i!1, (i51,2,3,4). The above relations avoid the hy-
pothesis of important fluctuations between both types of in-
tramolecular vibrations, and allow a better cohesion of the
system.

The solution~27!–~29! propagates along an alpha helix
chain and assures the muscular contraction, if«1, «2, «3 and
the anharmonicity parameter I are subject to the constraint

4,5„291.64I 23103213.14~436.483102282230.52

31026«1!~49.831023328.543104!$«31«2%)…
1/2

176.85I310162515.84310281230.5231014«1!0.

This condition arises from the requirement of the continuum
approximation~D@D!.

III. NONLINEARITY IN EXCHANGE INTEGRALS

Now we consider nonlinear effects due to the following
expansion of the resonance interactions:

Mnn21>M02M1~Qn2Qn21!1M2~Qn2Qn21!
2,

M1[
2]Mnn21

]~Qn2Qn21!
, M2[

1

2

]2Mnn21

]~Qn2Qn21!
2 , ~40!

M̃nn21>M̃02M̃1~Qn2Qn21!1M̃2~Qn2Qn21!
2,

M̃1[
2]M̃nn21

]~Qn2Qn21!
, M̃2[

1

2

]2M̃nn21

]~Qn2Qn21!
2 . ~41!

To underline clearly the effects of this type of nonlinear-
ity, we consider a harmonic potential. The equations of mo-
tion for the operatorscn , bn andun become
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i\
]cn~ t !

]t
5J0cn1M0~cn211cn11!24Ibn*bncn

2J1cn~un112un21!2M1@~un112un!cn11

1~un2un21!cn21#2M2@~un112un!
2cn11

1~un2un21!
2cn21#, ~42!

i\
]bn~ t !

]t
5 J̃0bn1M̃0~bn211bn11!24Icn*cnbn

2 J̃1bn~un112un21!2M̃1@~un112un!bn11

1~un2un21!bn21#2M̃2@~un112un!
2bn11

1~un2un21!
2bn21#, ~43!

M
]2un~ t !

]t2
5Mv0

2~un111un2122un!2M1@cn* ~cn11

2cn21!1c.c.#2M̃1@bn* ~bn112bn21!1c.c.#

2J1@ ucn11u22ucn21u2#2 J̃1@ ubn11u2

2ubn21u2#22M2@~un2un21!~cncn21* 1c.c.!

2~un112un!~cncn11* 1c.c.!#

22M̃2@~un2un21!~bnbn21* 1c.c.!

2~un112un!~bnbn11* 1c.c.!#. ~44!

The continuum equations of motion (n→x) take the form

ic t52A0cxx2mc1guxc1g2~ux!
2c2lubu2c, ~45!

ib t52Ã0bxx2m̃b1g̃uxb1g̃2~ux!
2b2lucu2b, ~46!

Mutt5C0uxx1g1~ ucu2!x1g̃1~ ubu2!x1g3~uxucu2!x

1g̃3~uxubu2!x , ~47!

where

g25
2M2a

2

\
, g354M2a

2,

g̃25
2M̃2a

2

\
, g̃354M̃2a

2. ~48!

Other parameters are the same as in Sec. II.
In the quasistationary limit, Eqs.~45!–~47! can be re-

duced to two coupled nonlinear Schro¨dinger equations with
saturable nonlinearity

ic t52A0cxx2mc2
~ducu21d0ubu2!c
11a1ucu21ã1ubu2

, ~49!

ib t52Ã0bxx2m̃b2
~ d̃ubu21d̃0ucu2!b
11a1ucu21ã1ubu2

, ~50!

with

d5
gg1
C0

, d05l1
gg̃1
C0

, a15
g3
C0

, ~51!

d̃5
g̃ g̃1
C0

, d̃05l1
g̃g1
C0

, ã15
g̃3
C0

. ~52!

Numerical and analytical resolution of the system of Eqs.
~49! and~50! should probably bring different types of soliton
solutions. This aspect of the problem is under consideration
and will be done in a forthcoming paper.

IV. CONCLUDING REMARKS

Solitary excitations play an important role in molecular
mechanisms that take place in biological systems. In such
systems, where the degrees of freedom are numerous,
coupled and influenced by the environment in which the
molecule sits, the problem of solving the equations of mo-
lecular motion, becomes intractable. The most feasible way
is to isolate the ‘‘dominating coordinates’’ and investigate
the coupling between these coordinates. This method has
been applied to alpha helical proteins by Davydov, where he
considered essentially two degrees of freedom.

The present model is an extension of a previous work
where we have also considered only two degrees of freedom
~one displacement coordinate and one exciton coordinate!.
Indeed, there exist more than one type of intramolecular vi-
brations in a real physical nonlinear system. The intramo-
lecular nuclear vibrations are obviously very significant for
the explanation of the energy spectrum of the molecular
crystals. Thus we have studied in this paper the crucial prob-
lem of nonlinearities when two types of excitons belonging
to two different frequencies of the spectrum are created. The
results obtained here bring important modifications in the
equations governing the dynamics of the system. It should be
very interesting to propose an exact soliton solution for the
coupled NLS equations with saturable nonlinearities~49! and
~50!, so, the work is still opened.

ACKNOWLEDGMENT

The authors are grateful to Professor Michel Peyrard
~E.N.S. Lyon, France! for stimulating discussions.

@1# A. S. Davydov and N. I. Kislukha, Phys. Status Solidi B59,
465 ~1973!.

@2# W. Weidlich and W. Heudorfer, Z Phys.268, 133
~1974!.

@3# E. Simo and T. C. Kofane´, Phys. Lett. A192, 33 ~1994!.
@4# E. Simo and T. C. Kofane´, Phys. Scr.49, 543 ~1994!.
@5# V. M. Agranovich, Fiz. Tverd. Tela~Leningrad! 12, 562

~1970!.

54 2075NONLINEAR EFFECTS IN MOLECULAR CHAINS WITH TWO . . .



@6# M. T. Primatarova, Phys. Status Solidi B138, 101 ~1986!.
@7# A. V. Zolotaryuk, K. H. Spatschek, and O. Kluth, Phys. Rev. B

47, 7827~1993!.
@8# A. F. Lawrence, J. C. McDaniel, D. B. Chang, B. M. Pierce,

and R. R. Birge, Phys. Rev. A33, 1188~1986!.
@9# M. J. Skrinjar, D. V. Kapor, and S. D. Stojanovic, Phys. Scr.

29, 658 ~1989!.
@10# S. Yomosa, Phys. Rev. A32, 1752~1985!.

2076 54ELIE SIMO AND TIMOLÉON C. KOFANÉ


