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Coupled-mode theory for light propagation through deep nonlinear gratings
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In ordinary coupled-mode theory, the standard tool to analyze optical grating structures in both linear and
nonlinear regimes, the grating is usually assumed to be shallow. Here we generalize this theory in a systematic
way to include deep gratings. We do so by expanding in the exact eigenfunctions of the linear sttheture
Bloch function$ rather than simply in the forward and backward propagating modes. We show that the
resulting equations for deep gratings are qualitatively similar to those for shallow ones, except that the value of
some of the coefficients is different and that some additional nonlinear terms arise. We also discuss solutions
to these equations and point out differences from solutions of the conventional theory.
[S1063-651%96)06208-3
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I. INTRODUCTION with slowly varying electric-field envelope functions rather
than with the electric and magnetic fields themselves; such
Though periodic structures have been studied for manwpproaches are numerically more efficient and can give more
years, recent advances in grating fabrication in optical fiberphysical insight. The coupled-mode equations are usually de-
have renewed the interest in this area. In the structures comived heuristically, assuming the grating to &leallow; form-
sidered here, the light propagates through the grating in ang a weak modulation superimposed on a uniform back-
direction perpendicular to the rulings. While most applica-ground [17]. This assumption allows one to expand the
tions of fiber gratings, such as filters and dispersion comperelectric field simply in terms of the so-called forward and
sators, make use of tHmear properties of Bragg gratings, backward propagating modes of the uniform structure, each
theoretical work on the nonlinear properties of these strucwith a slowly varying amplitude induced by the grating.
tures(see, e.g[1-8]), as well as initial experimen{®-13, For deep gratings, i.e., gratings for which the modulation
has resulted in significant insights. depth of the grating is a substantial fraction of the average
The experiments by Eggletoat al. [13] most closely refractive index, the approach sketched in the paragraph
match the theory described in this paper. In these experiabove can no longer be applied so easily. There are two
ments short intense pulses from a Nd:YLF laser are incidemteasons for this. The first of these is that if the grating is
on a grating written in the core of an optical fiber, while the deep, then it is possible that the mode profiles of the struc-
light transmitted by the grating is monitored. Among theture are significantly affected by it; this would lead to a
observations in these experiments is that of pulse narrowingreakdown of the one-dimensional treatment. However, suf-
upon propagation through the grating. This is explained irficiently far from cutoff modal profiles often do not change
terms of the formation of grating solitons: pulses that carmuch, even if the refractive indices change considerably. The
propagate through the grating structure undistorted by balsecond reason is more fundamental: if the grating is deep
ancing the dispersion introduced by the grating with the nonthen a standard coupled-mode approach applied naively
linearity. would lead to envelope functions that are not slowly varying,
While periodic structures are, of course, three dimendnvalidating the assumptions. This is clearly an indication
sional, it is often possible to avoid explicit reference to thethat the forward and backward propagating modes of the
dimensions perpendicular to the direction of propagationuniform structure are no longer appropriate expansion func-
Typically, the argument leading to this approximation referstions.
to the transverse modes of the structie example, the Conventional coupled-mode theory can be applied to al-
bound modes of an optical fidesind assumes that the modal most all fiber gratings, including those used in the experi-
profiles are essentially unaffected by the periodicity; undements of Eggletoret al, where the refractive index modula-
this assumption the problem becomes one dimensiondion is of order 10“. However, it should be noted that in
[14,15. Though it is straightforward to calculate the optical fiber geometries refractive index changes as large as 0.04
properties of a one-dimensional periodic structure exactly bynave been reporteld8]. With such changes the validity of
integrating the Maxwell equatior[46], it is often advanta- the shallow grating assumption is no longer guaranteed.
geous to use a coupled-mode formalism, in which one work#lore markedly, in periodic semiconductor structures con-
taining, say, GaAs and AlAs, with refractive indices 3.59 and
2.98, respectively, the shallow grating assumption is clearly
“Present address: Department of Physics, Cornell University, Ithsuspicious, while in proposed semiconductor-polymer sys-
aca, NY 14853. tems, with refractive index ratios of over 2, conventional
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coupled-mode theory must fail. We also note that in the deriThen, in Sec. IX we present some of the solutions to these
vation of conventional coupled-mode theory only the aver-equations. Finally, we discuss our results in Sec. X.
age value of the nonlinearity over a period is included; any
spatial variations of the nonlinearity on the scale of a single  II. LINEAR EQUATIONS AND BASIS FUNCTIONS
period is neglected. Conventional coupled-mode theory is . . . . ) .
thus not expected to be applicable to gratings in which one of As <|j|scus_se(? In Se;:_. : we_ldliahze ourtrf:_elds gs dep(tahndmg
the constituents is, say, much more nonlinear than the othef" ONYY a singie spatial variable, say, is reduces the

s w - problem to a one-dimensional analysis. We then write for the
In this paper we use the phrase “deep grating” to refer to

. . . : . electric and magnetic fields, respectively,
gratings where the linear index of refraction varies over a g P y

significant fraction of its average value, as well as to shallow E(r,t)=XE(z1),

nonlinear gratings where the nonlinearity varies over the 1)
scale of a single period. We show below that these effects

have comparable consequences on the description of the H(r,t)=yH(zt).

propagation of light through the grating structure.

As sketched above, for deep gratings one can identify twdVe neglect any magnetic effects, assume that any frequency
different problems in identifying coupled-mode theory. In dependence of the dielectric constate) may be neglected,
this paper we assume from the outset that the transverse d@nd ignore for the moment any nonlinearity in the optical
mensions have been properly integrated out; in effect, theréesponse. The Maxwell equations then simplify to
fore, we model the periodic structure as a thin-film stack. We

address the second, more fundamental point listed above, ﬁ:_iﬁ

namely, that the forward and backward propagating modes ot Mo 9Z°

of the uniform medium are inappropriate expansion func- 2)
tions for the electromagnetic field. One might expect that in

such a case one would have to revert to the full Maxwell k1 H

equations. While this is of course possible, we show here at en¥(z) dz’

that, somewhat surprisingly, in certain regimes it is possible

to describe deep gratings with a set of coupled-mode equavhereuq andeg are the permeability and permittivity of free
tions very similar to the well-known coupled-mode equationsspace, respectively. We have introduced the spatially varying
for shallow gratings. Thus a whole body of formalism andindex of refractiom(z) =[ e(z)/e,]"? which we take here to
insights can be carried over directly to problems involvingbe purely real, neglecting any extinction due to absorption or
deep gratings. The key to constructing such a generalizatiogcattering. In applications dealing with a guiding structure,
is to rely on the Bloch functions of the linear periodic me-n(z) should be taken as the effective index of refracfibd.
dium [19-21] to identify the appropriate expansion func- Instead of working with the field&(z,t) andH(z,t), it is
tions. Since the Bloch functions are a property of the lineamore convenient to introduce local mode amplitudes
structure, they can, in principle, be found straightforwardly,A*(z,t) [17,21. Recall that, ifn(z) were uniform, a wave
for example, using methods developed in solid state physicgaveling towards= +% would have magnetic and electric
[19]. We show that if the theory for deep gratings is based orfields related byH = (nE)/Z,, whereZ,=(uq/€)*? is the

the Bloch functions, the resulting equations for the field envacuum impedance; similarly, a wave traveling toward
velopes are very similar to those for shallow gratings, except= — would haveH = —(nE)/Z,. This leads us to intro-
for different values for some of the coefficients and someduce
different nonlinear terms. Of equal importance perhaps is
that we present a systematic approach to solving this class of
problems.

One of our main conclusions is that the grating solitons
observed by Eggletoat al. [13] are not peculiar to shallow whereng is a reference refractive index. In definiti¢8) we
gratings; indeed, though they are affected in some details, theould expectA™ (z,t) to identify the local component of the
concept appears to be generic to nonlinear periodic medialectromagnetic field propagating in the forward direction
Though grating solitons in deep gratings were studied beforandA™ (z,t) that propagating in the backward direction. The
in limiting cased2,3], the present work is much more gen- usefulness of these amplitudes, and the motivation for the
eral. precise form of the definition&3), has been discussed earlier

The outline of this paper is as follows. In Sec. Il we [17]. From Eq.(2) we can immediately derive the equations
discuss the linear properties of one-dimensional periodic methe A* must satisfy
dia. Then, in Sec. Ill we derive the-V expansion, the op-

n(Z) 1/2]

H(zt)
E(Z,t)izow , 3)

Ai(Z,t)Z >

tical equivalent of thek-p expansion in solid state physics ~ dA~(z1) Ln@ dA*(z,) _1[d[Inn(z)] PeTm
[19]. In Sec. IV we introduce the multiple-scales method, gz ~ ¢ a2 9z (z.v),
which we then apply in Secs. V and VI to nonlinear periodic 4

media. Then, in Sec. VIl we transform the resulting equa- . e
tions to the standard form, leading to the coupled-modavhere the speed of light= (uqeo) < or
equations for deep gratings. We also discuss some of the
features of these equations. In Sec. VIII we give the values ; %_
- ; . in(z)—=M":A, (5)
of the coefficients in the present coupled-mode equations. at
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where we have introduced the column vector

_[AT(z1)
=A@ ©
and the matrix differential operator
.0 1. [(d[Inn(2)]
ICE EIC —&Z
M=l 1 opnne)] 0 Y
2'°\ Tz ¢z

In the notation for column vectors and matrix operators, suciﬂq
asA andM, respectively, we leave implicit the dependence

onz (andd/9z).

As the form of Eq.(5) suggests, the eigenvectors of the
matrix n~1(z)M form a useful expansion basis. Writing the

eigenvectors a¥, ,

_[v.@
Y=y, 2

: 8

and the eigenvalues as,,,
eigenvalue equation in the form

MW, =w,nW,, ©)
where
nizy O
n= 0 n(2) (10

It is easy to confirm that the operatdd is Hermitian:
(W)-M-W,)=(¥!-M-W,)* where the row vector
Tt -

v, =y, (2]".[¢,(2]*] 11

and

L
(\PI-M-\I’M)EL dz¥!-M W, . (12)

it is convenient to write the

1971

A=% (f W, e out FE ™ elont), (15

where the constants, are expansion coefficients.

Periodic structures

Our interest is in periodic media with a period that we
take to bed, so thatn(z+d)=n(z); L/d=N is thus the
number of unit cells in our normalization length. Before pro-
ceeding, it will be useful to relate ooP, to the more com-
mon expansion functions used in such a problem, the Bloch
functions for the electric fielf20]. Recall first how these are
troduced. Taking the derivative of the first of Eqg2) and
the t derivative of the second, we combine the results to

obtain a second-order equation #6(z,t) alone,

2 2

—2(9—Et+2 a—Et—O 16
c 972 (z,t)+n (Z)atz (z,t)=0. (16)
Seeking then a solution of the form

E(z,t)= d,(2)e s+ ¢* (2)€'“ut, (17)

where thew, is taken to be positive, we find that the
¢,(z) must satisfy

Phu(2) _

972

—c? w2n%(2)¢,(2). (18

From Bloch’s theorenj19] the Bloch functions¢ ,(z) can
be chosen to be of the form

Pm(2) =€ "Uny(2).

Here the general index has been replaced by a band index
m and a reduced wave numbef19]; k must be of the form
2ap/L, wherep is an integer, to guarantee periodicity over
the normalization length. andu,(z+d)=u,(2). A typi-

cal dispersion relation for the, is sketched in Fig. 1; we
take the values ok to be in the first Brillouin zone, i.e., in
the range— w/d<k=<=/d. From Eq.(18) it is clear that
eigenfunctionsp,,(z) of different eigenvalues are orthogo-

(19

HereL is a normalization length over which we apply peri- hal through the metria?(z); thus we can writé3]
odic boundary conditions and thus the length over which we
require the eigenfunction® , to be periodic. From this it
follows that the eigenvalues, are real and that eigenvec-

tors of different eigenvalues are orthogonal through the met- o
ric n, where we have chosen the normalization condi&nat/d to

facilitate the passage to the— oo limit.

Once a solution17) for E(z,t) is identified, the corre-
spondingH(z,t) can be found from the first of Eq&); the
correspondingA=(z,t) then follow immediately from Eq.
(3). Referring then to Eq(15), we can immediately identify
the ¢,.(z) associated with eaclh,(z); we find

L
JO Gk (DNA(2) bk 2)dZ=NSymdok,  (20)

(WHnw,)=0, 0,#0,. (13

Further, note that if¥¥, satisfies Eq.(9) with eigenvalue
Wy, then\If:‘L defined through

W =

. , (14

) 1 ic 1
Vi 2)= 5| Dbl DT ——

mk \N(2)

IPpmK(2)

0z ’
(21

[ (2]
(4. (D]

satisfies that same equation with eigenvatue . Hence-
forth we restrict ourselves to positive, ; then, sinceA must
be real, it is convenient to expand solutions of E).in the
form

where the overall factor on the right-hand side is chosen to
ensure that
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where we have used EL9) for the ¢, ; note that from the

o

N L L L B B IR U periodicity of the un(z) we find that we also have
i 3 ho(z+d)=h_(2). Defining a column vectoh,,, in the
4 = ] obvious way, we have
.:U} /\ W= e (24)
§ 3 < = and we find
,_g 2 \/ M-(hmkeikz):eikZ(M+kV)'hmk! (25)
o N ]
\é/ :/\ where
! i ] ¢ 0
C / V= 0 —cl (26)
O L1 i1 ’ L1 1 | [ 1 1 | O I |
-1 =05 0 0.5 1 The expression in Eq25) also equalso - ¥, [Eq. (9)],
k (units of Tr/d) so using Eq(24) we find
(M+KV) - = @mi - hiy . (27)

FIG. 1. Typical example of a one-dimensional photonic band
structure, showingangulaj frequency as a function d& (in units  Since we want to expand the photonic bands about a particu-
of 7). The frequency gaps correspond to regions of high reflection|ar crystal momentum(indicated by K) [19], we set
k=K + 6k and defineHy,=M +KV; Eqg. (27) becomes

v oW ) =NS&y S 22
(W N W) = NS ik (22 [Ho+ (8K)V]- hipe= @i - Ay (28)

When a solution or approximation for thén(z) is con-  Fork close toK we now seek an expansion in powers of the

structed, the correspondind’,,, then follow immediately  small parametesk of hy, and wm, abouth,,x and .
from Eq.(21); thus, we will often refer loosely to tt#, as  respectively,

“Bloch functions.” We shall see in Sec. IV that, within a
multiple-scales analysis, the inclusion of nonlinearity is Omi= me+(5k)w(ml|)<+(5k)2w5nzf<+ -
easier using th&,,,, as a basis than using tlag,,. This can

be traced back to the fact that an expansion corresponding to

the k-p expansion used in describing an electron in a peri-

odic prt))ten?ial is simpler, and moregsimilar in form to Ft)he k=P 2 (3K)aPhp+ > (8k)2aPhp+ - - -,
electronic result, with the use of th,,, as a basis instead P P
of the ¢, [22]. This, in turn, occurs because E§), with its
single time derivative, is closer in form to the Sctirger
equation than is Eq(16). It is to the above-mentioned ex-
pansion that we turn in the next section.

(29

where the superscripts indicate expansion coefficients asso-
ciated with the indicated powers ék. We restrict the sums

in the second of Eq929) to p#m; this will yield an h,,
normalized differently thaim,, but as our interest is in the
ol this will not be of consequence. Substituting E€29)

. THE k -V EXPANSION into Eq. (28) we find, respectively, for the expressions mul-

; P 0 1 2
Associated with eachk (see Fig. 1is a set of¥,,,, one tiplying (k)" (ok)7, and (0k)*,

for each of the band indica®. In this section we seek ex-
pressions fow/, = dwm/ Ik and o/ = d?wmi/ 9k? in terms
of (all of the) W, at only thek of interest; such expressions
appear naturally in the development of the following sections > a(pl)(wpK— OmN-hok+V-hp= oPn-hy,
and it will be useful to be able to identify them as the group P
velocity w;,, and the group velocity dispersianr,,,.

We begin by noting that we may write thje,, of Eq. (21)

Ho* k= @mkN Nk,

(30

as Ep, aé,z)(wpK—me)n‘hpK-i— Ep, aé)l)V'hpK
1 ck Um(2) 1, (1) 2)
~(2)==|+ +— =2 a n-hyk+on-hp.
Y 2) > n(Z)Umk(Z)—wmk 2 % p ®m pKT Wm mK

ic 1 dun(2)| . _ The first of Eqgs.(30) is satisfied by assumptiofsee Eq.
o 0y ef?=h (2)€', (27)]. Taking the dot product of the second of E¢R0) with
mk \Vn(2) hmx andht (q#m), and in each case integrating ovemwe
(23 find
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1
Otk=0mm(K),

(31)

aw—_ _PamK)

L
WgK ™~ WmK

1973
c L
o)1= | M@ T D)~ T2 ho2)) 2

c (L
- Njo {{¥m D T* Y2~ [¥mid 2)]* Pr(2)}d 2.
(37)

respectively, where we have used the orthogonality condition

(22) and defined

h:-nk'v‘ Pk

(k=—""%

(32

Umn

Turning to the third of Eqs(30), take the dot product with
h!« and integrate ovez; we find

% Ao m(K) = 02k (33)
and, using in this the second of Eq81), we obtain
Ump(K)vpm(K
w%)(:_ M (34)
p#Fm  WpK™ WmK
We now have only to note from EQq.(29 that

w0l =dwmk/ K and wZk= (P wmnk/IK?) to obtain from
Egs.(31) and (34) the main results of this section:

The expression simplifies if we write thg" in terms of the
corresponding Bloch functiong [Eg. (21)]. We find

ome(K)  Lic[ 1 1\ ([t I
c —‘zﬁ(w—mm—nk fo $mid2) =5, dz
—1 ! 1 Q. (K 38
=35 w_m<+w_m< mn(K), (39
where
d 0
an(k)E—in ¢Ek(2)ﬂ(d2 (39
0 0z

has units of frequency. We have simplified the integral in Eq.
(38) by noting that, since the integrand is periodic oslethe
integral is simplyN (=L/d) times that from 0 ta.

IV. NONLINEARITY AND MULTIPLE SCALES

We now introduce the nonlinear polarizatiBy, through
PuL(r,t) =XPy.(z,1). Instead of Eqs(2) we find

= = ) 39
On="70 =V )
me ok T MH 1 GE
gt o 0z
Pw Umn(K)vpm(k
o =20y vk (36) (40)
ok p#m (l)pk_ Wmk
JE L [H P
These expressions for the group velocity and group velocity at €n¥(z)] 9z at

dispersion(essentially the inverse effective mass a point
on the photonic band structufgsee Fig. 1 are very similar to

from the Maxwell equations. Taking the same definiti¢d)s

the corresponding expressions for an electron in a periodifor A~(z,t), instead of Eq(5) we find now

potential[19]. In the latter case the role of; (k) is played

by a matrix element of the velocity operator; thus we will

here refer to the (k) as “velocity matrix elements.” With

. 0A
in-—=M-A+B,

s (41

that correspondence the electronic and photonic expressions . .
for the group velocity are identical. The expressions for thevhereB has two identical components

group velocity dispersion differ only in that the electronic )
expression has an extra term due to the mass of the electron. I
No such term would be expected for a photonic band struc-

2e9\non(z) It

B*(z,t)=—

(42

ture: the only effective mass the photon has is acquired from

the lattice. The physical picture of the inverse effective mas@\dopting a simple model foPy, (z,t) as resulting from a
associated with a given barjuh the electronic case, the lat- nondispersive, third-order nonlinearity, we §&4,15

tice contribution theregfarising from the “interaction” of

the band with other bands in the lattice follows from the

perturbation-theory-like structure of E6); it is a useful

Pn(z,t) = eoxP(2)E¥(z,1), (43

picture in solid state physics and will also be so here. Wevherex®)(z), if not uniform, varies with the same period as
also note that Eq(36) for the group velocity dispersion is n(z), x*)(z+d)=x®(2). ExpressingE(z,t) in terms of
much simpler than the corresponding expression written ifA*(z,t) from Egs.(3), Eq. (42) becomes

terms of Bloch function$3], confirming the discussion fol-

lowing Eq. (22).
Inserting theh (2) [Eq. (23)] into Eq. (32) for vpmn(k),
we find

in- +3(z) g
B (2, =~ g Ay LI 2+ A 20T
(@)
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In the presence of this nonlinearity, E@1) is not satisfied of  OE JF , IF
by a solution of the form(15). We shall construct approxi- R R T AT
: . H 0 1 2
mate solutions of Eq4l) by allowing thef,=f, in Eq. (48)
(15) to become slowly varying in both space and time, in a
sense to be described below. In the examples we present here Jf  OF JF 5 JF
there will be either one or two large componefis(z,t); gt IOﬁL WEJF U EJF e

these we calprincipal components of the solutigr8]. The

electromagnetic field thus consists mainly of one, or of theexplicitly exhibiting the variation off over the multiple

sum of two, Bloch function modulated by “envelope func- scales. Sometimes not all the scales appear and sometimes
tions” i, (z,t). forms more general than E¢47) are employed. In particu-

Consider now the solution that would reswéyen in the |ar, for the case of a single principal component we seek an
absence of nonlinearityf we put only such principal com-  approximate solution of the form

ponents into Eq(15) with f,(z,t=0) not uniform but de-
scribing, say, a wave packet. We would expect that, to good _
approx?mati)(/)n, the SF())Iution could be dgscribed by gthe A= T2, ) Wit p;m fo(Z,) Wpy e “mk +c.c.,

fmi(z,t) acquiring a time dependence; indeed, we would ex- (49)

pect the time dependence to involve the motion of the wave

packets) with group velocityw,,,, dispersing as described by where c.c. indicates the complex conjugate. Further, we take
ol and, if described in great enough detail, with even moreherer=2m/wp,y andd to be the period of the lattice, corre-
wave packet reshaping. This we confirm below. We also findPponding to the fastest time and length scales in the problem,
that components , for Bloch functions other than those respectively. To simplify later expressions we introduce a
making up the principal components are also generated, afactora to characterize a typical amplitude of the fields we
though they are smaller in magnitude; these we @athpan- ~ Wish to treat; it is set such that tife)) that appear below are
ion componentg3]. If a weak nonlinearity is now intro- dimensionless and of order unity. Furthermore, we take
duced, the only modification of this scenario is in the detailsfq(z,t) of the form

of the evolution of the amplitudek,;,(z,t) for the principal

. . . — 0 .
and companion components. Of course, there is a qualitative fuz ) =aFii(z1.22, . toote, ), (50)
difference between the linear and nonlinear problems: In the )
linear case the evolution of a field specified initially by one  fp(zt)=anFy(z1,2,, .. . it1ta, .. 0)

or two nonuniformf ., (z,t=0) could always be determined
by rewriting that field, according to Eq15) att=0, as a
sum over an infinite number afniform f,, ; the subsequent
field would follow then from Eq(15) att>0. Such a method
of solution is of course not possible in the presence of non
linearity.

To keep track in a careful way of the “weak’” nonlinear-
ity and “slowly varying” amplitudes alluded to above we
introduce a small parameter<1. A typical function of in-
terest is then written as

+a772|:532k)(21,22, [ ;tl,tz, .. )+ P

for p#m. Note that the companion components#m)
contain terms that are smaller than the primary component
by powers of the same parametgthat separates the differ-
ent length and time scales. The absence of a dependence of
F© on z, andt, might be guessed from the spirit of the
approach: The rapid variation on these fundamental scales is
all contained inW¥,,, and e '“mi=g" 'm0 [Eq. (49)], re-
spectively. Nonetheless, the validity of ans&t9) is, in the
end verified by our ability to construct solutions of the as-
sumed form(see Secs. V and VI

The procedure described above is implemented by insert-
ing a form such as Eq49) in the nonlinear equationg1l),

f(zt)=F(z, 5z, 5%z, ... t,gt, 9%, .. .), (45)

whereF is assumed to vary equally significantly as each of
its spatial arguments varies over a given radgend each of using expressions such as H¢8) to evaluate the deriva-

its temporal arguments varies over a given peio@hen the a5 and then constructing the equations that must be satis-

variation of f over different length and time scales is cap-¢qq for Eq.(41) to be satisfied to successive powersspf
tured by the variation oF on its different parameters. The Tpq protocol is facilitated by noting that, since

rangesn”d and periodsyP7, p=0,1,2,. .., define themul- n(2)=n(z,), we can writeM [Eq. (7)] as
tiple scalesof the problem 23]. Setting

_ b M=M(0>—inVi—in2Vi+~~ (51
Zp=n7 9z, 9z, :
46
(46) whereV is given by Eq.(26) and
=P
=7t ) 1 (&Inn(zo))
—ic— sic| ———
we have M (0 = %% 2 720 (52
1. (dInn(zy) o4
f(Z,t):F(Zo,ZLZz,...;to,tl,tz,...) (47) _EIC (?ZO IC(?_ZO

and involves onlyz, and 9/ 9z,. Equation(41) then becomes
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=|aF/A| and we can establishiF(%)/az,|<|FQ)d| as
A required if we setp=d/A. This establishes a lower limit for
7; upper limits for» are set by the conditiop<<1 required
for a physically meaningful expansion in powers sfand
certain other conditions mentioned below. We will find it
necessary to sej=gd/A, whereg>1 and is to be specified
later, to treat the range of situations of interest.

Since e wis o salve s cquaon  successive poversgf £, SO0 1 0 e foedr st o e oo
7, we obviously must relate the nonlinearity 4o Setting y y

intensity indexs=3; such a result could of course follow

from a small physical nonlinearity or a small amplitude of
(54)

fm(z,t=0) or both. Then, putting Eq49) into the exact
where y(2) is of order unity and dimensionless, the dimen- Eqg. (53), the nonlinearity does not enter gntll we consider
sionless quantityyy, a2 can be taken as characterizing the POWers of 7 greater thano or equal to 3. First note that Eq.
“strength” of the nonlinearity. If the physical nonlinearity (53 is satisfied to order;” because
and intensities of interest are such thag a® is of order (0. _ .
7%, wheres=1,2, ..., we saythat theintensity indexs s. M- W= Omi- Wini (55

. L S S

Then the leading term iB will be of order »°. By satisfying [cf. Eq. (9)], which holds sinceW,, depends only on

Eq. (53 to higher and higher powers of we generally " - 1 :
expect to get equations that better and better capture the e§<— Zo. To be satisfied to ordex”, we find that Eq.(53)

. . . . fequires the condition
act solution, at least in an asymptotic sense with respect to
7. But we will never press the analysis beyont| because

d a d

oy — ...
gty Tat, 7

in-
at,

-A+B.

d d
=[MO—jipV— —in?V—e——. ..
[ Moz, ' Vaz,

(53

x?(2)=xn¥(2),

(0) (0)
Eq. (43 itself is an approximation to the nonlinear response; iakan"I’mF —i akaV'\I’mk
going beyondz® without including higher-order nonlineari- aty Jz;
ties would, in general, be inconsistent.
.In discussions of muItipIe—scaIe analyses such as these, + z qulk)(qu— omon- Wy, (56)
7 is often set equal to unity at the end of the calculation, g#m

following a similar cavalier approach sometimes taken in

perturbation theory. We will be more careful here becausavhile to be satisfied to ordey® Eq. (53) requires the condi-
the restriction that thé’s [see Eq.(47)] vary equally sig- tion

nificantly as each of their parameters of a given tygmatial

or temporal varies over a given range, and the condition _&Fﬁr?,l ) aFg}()

n<1, in fact determine the set of conditions over which the 'TZ”"I'ka"q;m aty n-Wok
equations we derive are valid; this we wish to sketch and

show how the range of validity of the equations could be in aF0)

fact determined for a given set of parameters. We now turn =i
to the derivation of those equations.

mk
VoWt F9(0g— ©mdn
9z, mk q;m[ qk( gk mk)

W (57)

. gk
V. SINGLE PRINCIPAL COMPONENT - 0z, N

Following the approach described in Sec. IV, we now ,
establish the equations that the principal and companiofi®M €ach of Eqs56) and(57) we get an gqu:;mon for each
components oA must satisfy if we are to have a good ap- Pand indexp by taking the dot product withP,, and inte-
proximation to a solution of the full nonlinear equatietl). ~ 9grating over allzy, which, in the spirit of this approach, is
We begin with the ansate49) for the field A, proceeding treated as a variable mdependent of the other=1. From
under the assumption that tfe, are of order unity and only ~EG- (56), for g,p#m, we find
vary significantly as each of their spatial arguments range . .
over distances of order or much greater thieand as each of F1_ vpm(K)  IFmk 58
their temporal arguments range over times of order or much pk _wpk_ Omk 021 (58)
greater thanr=2m/w,,. The equations that are then de-
rived for the Fq, can be considered good approximate de-where we have used EB2) for the velocity matrix element
scriptions of the dynamics as long as their solutions are invpm(k); for p=m we find
deed found to satisfy these requirements, which we refer to
as “consistency conditioris. OFQ , JF

i

gty Omk gz

(59
A. Intensity index s=3: Schradinger equation
To begin the process we must set the parametetf where we have used Eq35) for the group velocityw,,,
fm(z,t=0) varies over a length of ordek>d, then the From Eq.(57) we can find an equation fd?é,zk) correspond-
simplest approach is to identify this variation with the scaleing to Eq.(58), which we will not write down; the equation
z;; it follows that |7a(dF Q) dz;)|=|fmdz,t=0)/A|  corresponding to Eq59) is found to be[3]
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gF0) JEO JEW made precise by the equations given above. A development

i atmk: —iwr’nkaka—i 2 ump(k)aTpk that can be used when such a condition is not satisfied is
2 2. p#Em L presented in Sec. VI.
&Fg?& 1 (92,:#1)& Note that we have only discussed the consistency condi-
=—j wr’nka—zz - E"’;"‘a—zi’ (60)  tions att=0. As theF{) evolve according to Eq$58)—(60),

the resultingA [Eq. (49)] constitutes a good approximate

. solution only as long as the consistency conditions remain
where in the second form of E(S0) we have used Eq58) satisfied; this of course must be investigated on a case-by-

for FiY and Eq.(35) for the group velocity dispersion. case basis by examining the solutions in detail.

_ Before proceeding we examine the consistency condi- g+ et ys now assume that at least for some length of
tions, att=0, to which these equations a(g? SUbleCt'(gonS'defime the consistency conditions are satisfied. We can sim-
first Eq. (59; we require [dFn/ati<|Fre/7l  plify our results[Egs. (58)-(60)] by noting that, if we stop

= wnd Fl/27 and, since|oF ) 9z,|=|FQ)l/gd [see the  the development at ordes?, we have to this order

discussion before Eq55)], the condition gives

0 J 0

’ ; P2 —
oK in—+in —=i—, (65
; “;k <g (61) Tor, "o, ot
mk/ "G
. J J d
or, equivalently, ip—+ing?—=i—,
9z, 9z, oz
’
(Umk k
=q| — 2
omil/k ‘kG ' ®2 5 #? P
TR

whereks=27/d is a reciprocal lattice vector of the grating.
Equation(61) is easy to satisfy nedk|=/d or k=0 (ex- _ _
cept on the lowest branch of the dispersion relation wherdor functions that do not depend ag or to. Then, combin-
wm=0 atk=0) since therao’ ~0. Intermediate between N9 EAs.(59) and(60) we find

these extreme values we have,,|=|w/k| on the lowest 5

branch and @ significantly greater than unity is required to I e 1 0T (66)

satisfy Eq.(62); for higher branches this is less difficult, for "ot TOmk T, T Omk g T
there| ;] <|wmi/K|. To proceed we must assume that, for
our initial conditions, @ can be found satisfying E¢62) for  [refer to Egs.(49) and 50], while Eq. (58) and the corre-
the Bloch function of interest, while still maintaining sponding equation foFE)ZK) can be combined to writd,
n=gd/A<1. (p#m) in terms of derivatives of ,,,. Hence follows the
Turning now to Eq.(58), the consistency condition that name companion component: Onég is determined by
F() is of order unity or less, given th&y) is of order unity,  solving Eq. (66), the otherf ,, can be found immediately;
requires this will quite generally be the situation in the examples
presented in this paper. Note that no nonlinear effects appear,
Upm(K) to this order, because we have assumed the intensity index
(wpk— ©mi)d s=3. Equation(66) does, however, describe a wave packet
traveling with group velocityw,,, and dispersing with group
for all p#m. Once the Bloch states of a band structure arevelocity dispersionw;,,; with a change of variables to a
evaluated, the left-hand side of E(f3) can be calculated moving framet=t, z=z— w/,t, Eq. (66) becomes
using Eq.(38). Typically, though, forg not too large Eq.
(63) is easiest satisfied & away from 0 andr/d; i.e., it

‘ <9 (63)

Of 1 Pl

most generally holds at points on the dispersion relation K -0 (67)
where all other bands are “remote” from the band providing g 2 ™ gz '
the principal componenfsee Fig. 1L Next, the consistency
condition resulting from Eq(60) is a Schralinger equation. The general pattern of the expansion
v 2 is now clear. Just as higher powers\6fin thek-V expan-
©OmikG <4mg? (64) sion (Sec. Il lead to higher derivatives ab,, with respect
®Omk ' to k [see Eq(29)], higher powers ofp lead, through succes-

sive dP/9z" in Eq. (53), to higher derivatives of the “enve-
which is again easiest to satisfy, fgrnot too large, if all lope function” f, premultiplied by higher derivatives of
bands are remote from bamd at pointk on the dispersion o, with respect tok. Thus, once the expected pattern is
relation. A similar result follows from the consistency con- identified, corrections to E¢66) can be written down “by
dition following from the equation fongk) mentioned above. hand,” without going through the detailed analysis. Strictly
Thus the development of this section is quite generally despeaking, if the analysis is stopped at a given powey,dhe
pendent on the condition of all bands other than that provideonsistency conditions should be checked least at the
ing the principal component being remote, in a form that isnext highest order; we shall not outline that explicitly here.
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B. Intensity index s=2: Nonlinear Schradinger equation

Although the result(66) is certainly not unexpected on

physical grounds, the effort in establishing it is justified in
that the development we have presented allows a careful in-
clusion of the effects of nonlinearity. Suppose, for example,

we now assume the intensity index=2. Then nonlinear

effects enter at the order of? that we have presented here.

To see their effect we must return to Eqd4). Since to
lowest order iny we have

A*(z,t)=aF Oy (z0)e  “mko+ c.c. (68)

[see Eqs(49) and(50)], we have to this order

At (z,t)+ A (z,t)=aF \/n(zo) pm(Zo)e ' “mko+c.c.
(69)

[see Eq.(21)]. Thus, from Eq.(44), for the components of
B we find

B=(z,t)=B(z)a%|F\Q2F Qe “mdotc.c.,  (70)

where

a*x'¥(zo)

B(20)= = 5 Nowmic— === Sl 20) #hul20)- - (7D
0
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(Wi Byelomio= LR DL J OL[zp;k(zo)
+ i 20)1* B(20)d Z9
L
=|Fil?Fio JO n(zo) 1 20) B(20)d 25,

(74)

where we have used E€R1). Using the periodicity of the
Bloch functions and the forniz1) of B(z,), we find

(W - B)el“mko

L
where
3 4 3 4
azinowmkjo x®(20)| pmK(20)]*d 29 (76)

characterizes how the Bloch functiof,,(z,) effectively
“samples” the distribution of the nonlinearity over the unit
cell. Using Eq.(75) in Eqg. (73) and combining that with Eq.
(72) using Eqs.(65), we find that if we stop our analysis at
order 5> we obtain the equation

.afmk .y

2
| tio M 1, Pfok
at mk 5z

+§wmk 972 +a’|fmk|2fmk:O,

(77

In writing down Eq.(70) we have neglected terms that vary where the nonlinear term nofef. Eq. (66)] appears at the

ase™3“mdo; these we discuss at the end of this section.

order of the group velocity dispersion term. In the moving

In the presence of nonlinearity with an intensity index frame discussed after E¢56) this equation becomes

s=2, the analysis leading to Eq&6) and (57) leaves Eq.
(56) unchanged, since it results from ordgt. But we find a
new equation in place of Eq57). It is given by Eq.(57)
with the term#~2a~'B added to its right-hand side, where
B is replaced by its approximatiof70) above; our assump-
tion of an intensity index=2 guarantees that this term is of
order unity[see the discussion following E(4)]. Since Eq.
(56) is unchanged we still obtain

0)
IF%

0
| S,
at,

= —lwo,—
mk &Zl

(72

[cf. Eq. (59)], but by taking the dot product of the new ver-
sion of Eq. (57) with W' we find a new equation for
aF Q) at,,

0
iaFg&:
at,

COFQ 1 RS (Wl B)eiemio
'OmK Gz, T 29MK 22 n%aN

(73

where we use the parentheses notation of Sefsdé Eg.
(12)] to denote an integral overy; B denotes the positive-
frequency part oB, with respect tad,, as approximated by
Eq. (70) [cf. our sign convention in Eq49)]. The new term
in Eq. (73) involves

Of 1
| —
at

” (?mek

+§wmk iz +a|fmk|2fmk:0, (78

a nonlinear Schdinger equation. This is in agreement with
a previously derived resul8]; the formal difference in the
definition of @ between the two is due only to the fact that
we here have derived the equation for the principal compo-
nent envelope functiof,(z,t) that modulates the compo-
nents ofA [cf. Eq. (49)]. In earlier work the envelope func-
tion was the function that modulated the Bloch function in
the principal component oE(z,t). The latter differs from
the former by a factor of/ny, as can be confirmed by using
Eq. (49), together with the equation relating the components
of A*(z,t) and E(z,t) [Eqg. (3)] and the equation relating
Ym(2) and ¢ni(2) [Eq. (21)].

Note that Eq(77) is identical in form to what one finds in
a weakly nonlinear material with no periodicity in its linear
properties, but with material dispersion; here it is simply that
the grating structure, rather than the underlying material dis-
persion, provides ther,, term. Inasmuch as we only have
one principal component in our expansi@t®) and (50) the
development presented here leads to only dgeamical
quantity f,.. The amplitudes of the othdt, are “slaved”
to f,x as companion componenf&g. (58)]; nonetheless,
they affect the dynamics df,, through the curvature term
appearing in the equations above, manifesting the “contribu-
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tion” of the other bands to the effective mass of the band ot

providing the principal componettsee the discussion at the A=|fu(z,)¥,+f(z,t) ¥+ ;l fo(z,)W,|e ' “0o+c.c.,
end of Sec. II]. p7t:

If we have a stronger nonlinearitguppose the intensity (80
indexs=1), then if we repeat the above analysis but stop aiyvhere
order »* we find, in the case considered here of all other
bands being remote, fu(zt)=aF(zy,2, .. .t 1y, .. 0),
+a772|:532>(21,22, e ;tllt21 .. )+ P
In the moving frame used above, there is only self-phase 81)

modulation. For such a strong nonlinearit~1), it would,

in general, be inconsistent to add in the group velocity disfor p+u,l. We drop thek label at this point;k=0 or
persion term(order 5?) since, as discussed after E®4), k= /d at a band gap and all the Bloch functions involved in
terms from higher-order physical nonlinearities could be exthe sum(80) are at whichever of thedés is associated with
pected to enter as well at that level, in combination withthe gap of interest. Oup can be chosen as discussed at the
higher-order contributions from the assumgd nonlinear-  start of Sec. V, with the principal Componerﬁéol) playing

ity. , , . the role there played by(%) ; it will become clear that, since
We close this section with a comment on the neglecte ' =w/ =0 at a band gap, ap=d/A will here be generally

. . u
third-harmonic termgsee comments after E(Z0)]. If such sufficient[cf. Egs.(61) and(62)]. We will see that significant

terms are included, then in expressions for the companioe - ;
o o . .coupling between the amplitudég(z,t) andf,(z,t) occurs
component amplitudes, contributions with resonant denomi- ping P §(z.1) (2.0

. ) whenA=w,— w, is of order or smalley; we assume
nators ,x— 3wpy) appear rather than with the denominator PuT @ 790 ( y

- f. Eq. (58] that t lowest order. It is TS NEre:
(wpk. Wmi) [C.' a.(58)] that appears a owest order. LISy proceed by inserting E¢480) into the exact Eq(53)
certainly possible to have ab,=3wny, and in such a case

. . . and identifying the coefficients of different powers »fWe
the formal analysis presented here fails and one must in fa‘f}egin by assuming that the intensity index3, as we did at
devel(_)p a theory involving coupled nonlinear Sa:_hmger .the start of Sec. V. Then the nonlinearity does not enter to
equations, as has been done in another formalism ear“%rrder 72 in the expansion, which is as far as we shall go.

E‘:',]v' \varen :1” thenpreftser?ct()e of ‘T‘/u%h fl;o:rr]netllhi redsi?ﬁnathez, Note, however, an important difference between the devel-
OWEver, one can often be saved Iro S QITCUly BY 5 yment here and in Sec. V: Here

physical considerations. We have assumed here that the un-
derlying material is nondispersive, and while this may be a IAp

reasonable approximation for frequencieslose tow ., it in- - #MO. AL, (82)
often is not over frequency ranges extendinguwte 3w - 0

Thus the band structure formally derived at such frequencie%hereAP denotes the principal components Af The as-
and indeed the assumption of no absorption there, may well,med form ofA has at, dependence characterized by fre-
be in error[24]. Although a detailed analysis has not bee”quencywo, which is neither the eigenfrequency 8, nor
performed, we can expect on physical grounds that in man¥y  But, because is of order 7w, the difference in the

instances the actual material dispersion and absorption may,, terms in Eq.(82) generates contributions of ordef.
obviate the difficulties associated with the above-mentione etting

possible resonant denominators and render the description

here based on the neglect of third-harmonic generation ad- wy— W= N0y,
equate. (83
VI. TWO PRINCIPAL COMPONENTS W We=1707,
A. Intensity index s=3: Coupled-envelope-function equations ~ where o, are of orderwg, Eq. (53) is satisfied to order
with remote band effects 7°; for it to be satisfied to orden® we require
We now turn to approximate solutions of Eq40) in- (0) (0)
/ . : | 9Fy all 0 (0)

volving frequenc[es over ranges where the assumption th'atm. = W+ T‘P' =n-[o F oW, + o FOW,]
all but one band is remote from the frequencies of interest is 1 1
not valid. The most striking and interesting of such cases is JE© P
when the frequencies of interest are near a_band:@p&pFig. —iV. | — W+ _I\I;|
1). Labeling the upper and lower frequencies at that gap by 9z, Jzy
w, andw|, respectively, for frequencies in the neighborhood
of wg=1/2(w,+ @) we must expect that the functiont, + 2 N WFY (04— w)
andW,, associated witlw, andw, , respectively, both con- qrul
tribute significantly to the fieldA. Thus, instead of ai of (84)

the form specified by Eq$49) and(50), we look for a field
of the form and for it to be satisfied to ordef® we require
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aF(u)q, .\
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F

dFg -
&—le “Wq- (85)

+ 2>

& anz)(wq— wg) — i

As in Sec. V, we now take the dot product of these equations

with \Ifg for eachp and integrate ovezr,. From Eq.(84) we
find, for p#u,l, that we require

f 0 : 0
F_ Uy c?FfJ ) N Uy (9F|( ) 6
Pwpy—wy 927 wp—wo 97
while for p=u,l we find, respectively,
(0) (0)
ial:u =g FV-iv |ﬂ,
aty v Y9z,
(87)
(0) (0)
L i, T

Hereu;; corresponds to the velocity matrix eleméot Egs.
(38) and(39)] between the statds andh; at thek associated
with the band gap of interest. Equatiof®6) and(87) should
be compared with the corresponding E¢88) and (59) of
Sec. V. Sincanw,=w| =0 at a band gap, there is nothing on
the right-hand side of Eq87) corresponding to the right-
hand side of Eq(59). Rather, here, there is, to ordet, a
coupling between the?) andF(®) because of the closeness
of the eigenfrequencies, andw, ; formally, each of these is
also “coupled to itself” because is used as the common
reference frequency of the fiekl From Eq.(86) we see that
here all bandstherthanu andl must be remote, in the sense
discussed in Sec. V concerning the corresponding(&8),
for the expansion in powers of to be valid.

Turning now to Eq(85), putting the equation intdfﬂ and
lIf,T and integrating oveg, yields

OFO RO FoY -
[ =—ivy———i —,

atz UUI (922 p;&u’| UUp (921 ( )
OF® Y JFH
| =—lv - v .

at, oz, oS P oazy

Compare this with the corresponding equati{@é6) in Sec.
V. Using Eq.(86) in Eq. (88), it is clear that the expression
involves the terms

~_ UupVpu
w,=-2 2 —p7py ,
p#u,l Wp™ Wo

(89

UlpUpl

p#u,l Wp™ Wo
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Except for the appearance in the denominatoregfrather
than w, and w,, respectively, these are the contributions to
the dispersion at the band gap of the bandandl, other
than that which can be associated with their interaction with
each other, as described in tkeV expansion of Sec. Ill.
Combining then Eq987) and(88) and using the expressions
(65) valid to orderz?, we find to that order that the envelope
functionsf(z,t) andf,(z,t) satisfy

af, A oty 1_, 0%,
" T2l veg T 3Bz =0 (0
_af|+Af+ 0fu+1~,,z92fu_
Ittt veg T o0 G2 =

Here we have set =iv,,. The Bloch functions may be
chosen to be purely real at the band gap; making this choice,
vy, is purely imaginarycf. Eq. (38)], vq is purely real, and

vy =ivg. Equation(90) shows how the two bands and|

are treated here in one class and the other bands in another:
The interaction between the envelope functions associated
with the bandsu andl appears in alynamicalsense in that

the functions must satisfy a set of coupled equations; the
interaction with the remote bands resides in the effective-
mass-type term&,,  , simply modifying the evolution of the
envelope functions through their curvature. Because of the
closeness of the bandsandl, the first of these interactions

is described in order!; the second is described in order
7?. If we are content to work to ordey, the effects of the
remote bands can be neglected and E@8). simplify to

of, Af of, 0 o1
Gt 2y =0 ®)
G Aoy
IE—’—EI ng .

We show in Sec. VII that Eqg91) can be rewritten in the
form of the familiar coupled-mode equations. However, the
usual derivation of those equations is only valid in the limit
of a shallow gratind17]. Although Eqgs.(91) lead to equa-
tions of the same form, they are valid for much stronger
gratings, as long as all other bands are remote from the gap
of interest. The coupling strength is determined for a deep
grating by the parameters andvy, which must be evalu-
ated from the actual Bloch functions at the gap.

B. Intensity index s=1: Nonlinear coupled-envelope-function
equations

We now consider a nonlinearity characterized by an in-
tensity indexs=1; then it is only generally consistent to take
the analysis to order!, as we have previously discussed.
The onlylinear effect appearing to this order is the dynami-
cal coupling between the envelope functiohgz,t) and
fi(z,t), as described by Eq$91). To include the nonlinear
effects, note that to lowest order we have

A" (zt)=a[F Py (2o) +F(% i () Je oo+ c.c.
(92

[see Egs(80) and(81)]; so, using Eq(21), we have
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AT (z,)+ A (z,t)=ayn(zo)[FY du(zo)

+F{9¢(z5)]e '“to+c.c. (93

Then, using Eq(44) for the components dB, we find
* 3 3|E(0)
B (z,t)=— 5 No@ol IFy du(zo)

+F{%¢y(20)| A FY pu(20)

X(s)(zo)
n(zoy)

e i@dtotc.c.,

+F{%¢(20)] (94)

where, as in Sec. V, we have neglected the effects of thirdt—
harmonic generation. With an assumed intensity index
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the underlyingy®®)(z,) nonlinearity by the Bloch function
dmi(Z0) leads to a modification of the dynamical equation
that the envelope functioh,(z,t) satisfies. Here Eq98)
spawns a number of different such coefficients, describing in
detail how the sampling of the nonlinearity by the Bloch
functions ¢, (zo) leads to a modification in the self-
interactions and mutual interactions of the associated enve-
lope functionsf, (z,t). Defining

3 d
apars=3 000 || 1085 6o 61 (26,0187
(99

expanding thed, |(z,t), and gathering up the terms we find
hat Eqgs.(97) become

s=1, B leads to an additional term on the right-hand side of ¢ A of,
. u

Eq. (84) [see Eq.(53)]. Putting that new equation int@;
and then into¥] we find, respectively

OF© o o OFO (w].B)elwt
| =0 F( )_|U| (95)
gty Cuwu T PuTgg naN
0 0 T Ryaio
R o OFW | (W-B)elu
oty al 5z, naN

rather than the simpler equatiof®&7); here agaimB is the
positive-frequency part dB, with respect td, this time in
the approximation of Eq94).

Since we are only carrying the calculation to ordewe
can use

. d 0 96
. dJd 0
"oz, oz

for functions that do not depend ag or tg, rather than the
more complicated equatid5). Then Eqs(95) lead directly
to the equations

oty Ao Y .
=~ 5 Tumvg, T 0u(z,)=0, 97
A My =0
i R 1(z,1)=0,

where

3 d
Oy, (z,)= Enowofo X2 @ ¢ (D u(zt) y(2)

+H(z) (D) fu(z.t) pu(2) + f1(zt) y(Z) 1dZ

(98)

and we have used the periodicity f*)(Z) and theg, ,(2)
to restrict the integral to a unit cell.

f +a’uuuu|fu|2fu+aullllfl|2fl

I_—_ J— E—
gt 2 v Vg

+ a’uull(2|fllzfu+flzf:)+auuu|(2|fu|2fl+fﬁfl*):0-
(100

of, of
ra §f|+vg,9_;+aluuu|fu|2fu+ ay [f[%)

+ agy (2] 2+ 268 + e (2] |2+ £31F) = 0.

These equations are the central result of this section. Note
that for a given band structure thg,,,s must be determined
from the Bloch functions and the distribution of the nonlin-
earity. We show in the next section that equations very simi-
lar to the usual nonlinear coupled-mode equations may be
derived from Eqgs(100), but there are some new terms that
appear. Recall that the standard derivation of the usual non-
linear coupled-mode equations relies on the weakness of the
grating. We have not made such an assumption here; rather,
we have only required that the other bands be remote from
the two bands at the edges of the gap of interest. The new
terms that appear are a consequence of the strength of the
grating that the present formalism can describe and vanish in
the conventional limit of a shallow grating.

We note that the effect of including a nonlinearity of in-
tensity indexs=1 and carrying the analysis to the order of
»' has been to add to the simpler equati¢®@® that appear
to that order in the absence of any nonlinearity a series of
nonlinear terms. If instead a weaker nonlinearity of intensity
indexs=2 is present, the nonlinearity enters at the order of
analysis ¢?) at which the dispersive contribution from the
remote bands appear in the equations; it is easy to confirm
the result that, to ordes?, the same series of nonlinear terms
are added then to the more complicated equati®@srather
than to Eqs(91).

VII. TRANSFORMATION TO STANDARD COUPLED-
MODE FORM

Of the results derived until now, Eq6L00 are different,
and have not, as far as we know, been derived in other con-

In Sec. V, where only one band is of dynamical impor-texts[21]; in this section we therefore concentrate on these
tance in the way that both andl are here, there is only one equations. First, note from definitiof®9) that Eqgs.(100
coefficienta [Eqg. (76)] that describes how the sampling of contain five, rather than eight, independent nonlinear coeffi-
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cients, since, for example, from E@6) ay =« - In or-
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cosMmz/d), sin(Mmz/d),

(105

der to simplify the equation further we recall that we have

assumed an expansion abdut0 or k=/d. Since the

where the positive integévl indicates the Bragg ordeM is

group velocity at these positions vanishes, the Bloch funcoedd at the Brillouin zone edge, whiM is even at the center.
tions are real and have a definite parity. We therefore immeThough the normalization has not been given explicitly, it is

diately see from the definition®9) that «,;; and ay,, van-

sufficient to note that all Bloch functions have identical nor-

ish, so that only three independent nonlinear coefficientsnalization prefactors. It is then easy to see that for shallow

remain.
To cast Eqs(100 in a more familiar form we introduce
the envelope function25],
G.=(f,Fif)/2. (101

In terms of these functions, EgEL00) attain the form21]

488 1 e G_+T,|G.|2G, + +2I,|G_|?G
I 9z U_g ot K- ol G+[°G+ ol G-|°G+
+T,(|G,|?+|G_|>)G_+T (G, G*+G_G*)G,
+T,G2G* =0, (102
'aG‘+ | &G‘+ G.+T|G_I2G_++2I'y|G.|%G
IWU—QTKJr ol G-[*G- 0l G+[*G-

+T(|GL?+|G_|)G, +T'1(G,G*+G_G*)G_
+I',G2G* =0,
where the linear coupling coefficient is given by

_A 103
K= 2_vga ( )
whereuv is defined below Eq(90), and the nonlinear coef-
ficients

Fozs_vg(auuuu+ 2aygntayy ),

1

1ﬂlzgg(_a'uuuu'*'allll)i (104

F2:

a— (ayuuu—Bayut+ay ).

8uvg

Equations(102 are similar to the usual coupled-mode

equation for shallow gratinglst]. However, note some im-

gratings and for a uniform nonlinearitye,,,,= @
=3ayy) - From Eqgs(104) we thus find that in this limiting
casel’;=I",=0, as required. Note more generally that for
shallow gratings the nonlinear coefficients are related to the
lowest Fourier components of the nonlinearity; indicating the
nth Fourier component of®)(z) by x{¥) we find

Poxxg”, Tiexi”, Tox—xy?, (109
all with the same precoefficient. This result was obtained by
assuming that the nonlinearity has the same phase as the
refractive index distribution. This result helps explain the
significance of the nonlinear terms in Eq402). The self-
and cross-phase modulation terms, proportional §p are
well known and lead to a nonlinear shift in the Bragg con-
dition. The first terms proportional td'; correspond to a
nonlinear change in the grating depttl]; as expected, this
contribution depends only on the first Fourier component of
X, which varies at the same rate as the grating. The second
terms proportional td"; in Egs.(102 express the nonlinear
shift of the Bragg resonance due to the first Fourier compo-
nent of the electric-field density. Finally, as expected, the
phase conjugation terms proportionalltg rely on the next
higher Fourier component of the nonlinearity of the nonlin-
ear refractive index.

Because of definitioi99) the three coefficienta are not
independent of each other. In fact, using the method de-
scribed in Ref[26] it is easy to show that

Qyuu@in > i (107
under the assumption that the nonlinearity has the same sign
everywhere. The equality i1107) can be ruled out as it
would occur if p2= ¢2 which is not true as they are differ-
ent eigenfunctions of a Sturm-Liouville equation. From in-
equality (107) it can easily be shown that also
(108

ayuuut @ >2ay4i

portant differences. The first of these is that the terms in Egsso that, in terms of th&' coefficients[Eq. (104)],

(102 have coefficients different from the equivalent terms in

Ref.[4]. As an example, in Eq102) the coupling coefficient

|To|>[T4/,IT]. (109

x is given in terms of the exact eigenvalues and eigenfunc-

tions of the linear systerfEg. (103)]. In contrast, the cou-

To finish this section we illustrate some of the properties

pling coeffient forMth-order Bragg reflection for shallow of the Bloch functions and we discuss the transformation

gratings isk= wAn/\, whereAn is the Mth Fourier ampli-
tude of the refractive indejd]. But the most obvious differ-

(101). Figure 2 shows the Bloch functions for a periodic
structure consisting of GaAsnE3.59) and a polymer

ence between Eq£102) and the standard nonlinear coupled- (n=1.5). The periodi=1, the thickness of the GaAs layers
mode equation$4] is that in the latter the nonlinear terms is dgaas=0.25, andd,gyme= 0.75. The solid line represents

with I'; andI', do not appear.

¢, , the Bloch function at the bottom of the lowest photonic

To show that our results reduce in the appropriate way irband gap, while the dashed lineds,, that at the top of the
the shallow grating limit, recall that in this limit the Bloch gap. As required for Bloch functions at the Brillouin zone
functions at the center and at the edges of the Brillouin zonedge, both are real and have the required translational sym-

can simply be written as

metry ¢(z+d) = — ¢(2). Further, though they are similar to
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~ FIG. 2. Example of a Bloch function at the top(, dashed FIG. 3. Example of a pseudo plane wave as a function of rela-
line) and bottom ¢, , solid line of the lowest photonic band gap as e position in the grating period, for a structure with parameters

a funcFion of the relativ_e po_sition in the grating period, for a struc-given in the text. The solid line is the moduldeft-hand scalg
ture with parameters given in the text. while the dashed line is the phageght-hand scale

the Bloch functions for a shallow gratindeq. (105 with ) )
M =1], the details are clearly different. They also have thethe Iowest photonic band gap. These are directly related to
required properties that they have a definite parity and thdf'e optical frequencyng at the center of the gaEq. (80)]
the associated energy densities peak in the correct medi@hd the width of the gap, which determines the coupling
¢|2 peaks in the high-index medium, whil;eﬁ peaks in the c_oefﬂmentx by Eg.(103. Shown in Fig. 4 are the frequen-_
low-index medium. cies of the upper and lower edges of the lowest photonic
As mentioned, in the final expression of the coupled-ba”d gapina periodic structure consisting of uniform layers
mode equation§Eqgs. (102] the envelope function6. are ©f GaAs and AlAs in units oft/d. The GaAs layers have
linear combinations of the envelope functiohs, that mul- thicknessdg,as and refractive indexgaas=3.59, while the
tiply the Bloch functions in expressiof80) for the electro- AlAS layers have thicknesslyas and refractive index
magnetic fieldsee Eq(101)]. Clearly, in the shallow grating Naias=2.98. The positions are shown as a function of the
limit Eq. (101) corresponds to transforming the underlying GaAs filling fractiondgaas/d, whered=dgaast daias - The
basis functions that multiply the envelope functions, from the
simple trigonometric functions ifL05 to plane waves with L B N BRI RN BRI
wave numberst M 7r/d. More generally, the transformation 1.05 ‘
(102) can be interpreted as introducingpseudo-plane-wave :
basis, i.e., plane waves with higher-order harmonics intro-
duced by the deep gratif@1]. As an example, the pseudo
plane wave following from the Bloch functions in Fig. 2 is
given in Fig. 3. The solid line in Fig. 3 is the modulus of the
pseudo plane wavéeft-hand scalg while the dashed line
gives its phasdright-hand scale Clearly Fig. 3 does not
represent a plane wave since the modulus is not constant and
the phase does not progress linearly. Note also that the de-
viations in Fig. 3 occur on the scale of a single period and
can never be captured by a change in the envelope functions,
which vary on a much longer length scale. Finally, note that
the phase of the pseudo plane wave increases loyver a
single period, as required at the Brillouin zone edge.

(units of c¢/d)
o
©
(@] —

C‘)edge
@
O

|||\\\\||||\\\1||\Jj
02 04 06 08 1

dGaAs/d

S R I L L B B

VIIl. COUPLED-MODE COEFFICIENTS FOR DEEP
GRATINGS
FIG. 4. Exact positionsgsolid lineg and positions according to
In this section we evaluate the coefficients in our coupledthe shallow grating approximaticdashed linesof the band edges
mode equationgl02) for a few different cases. We first con- of a periodic GaAs-AlAs structure with refractive indices 3.59 and
sider the linear properties these equations predict; in particup.98, respectively. The structure has a perdodnd the GaAs and
lar, we look at the positions of the upper and lower edges OAIAs layers have thicknesseh; o anddass, respectively.
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FIG. 5. Similar to Fig. 4 but for GaAs and a polymer with a
refractive index of 1.5. FIG. 6. Nonlinear coefficient¥' (solid line), I'; (long-dashed
line), andI', (short-dashed linefor a GaAs-AlAs structure with

- . efractive indices 3.59 and 2.98, respectively, in units of
solid lines show the exact positions of the band gap edge%,x(s,)/dvg and withng=1.

while the dashed line shows the results assuming the struc:
ture i_s shallow. Recall that Eqg6102) make use of the exact |y 5o UTIONS TO THE COUPLED-MODE EQUATIONS
positions of the photonic band-gap edges. Clearly, the as- FOR DEEP GRATINGS
sumption that the grating is shallow leads to results that are
incorrect. Though the error in Fig. 4 may not seem very In this section we discuss some of the solitary-wave solu-
large, it is important to note that the deviations can be gions to the coupled-mode equations for deep gratiag®),
noticeable fraction of the gap width. The grating propertiesPoth for finite (Secs. IXA and IX B and also for infinite
change drastically around the band edges and it is thus infSecs. IX C and IX D geometries. In doing so we point out
portant to correctly calculate their positions. Figure 5 is simi-différences with the solutions to the conventional coupled-
lar to Fig. 4, but for a periodic structure consisting of layersM0de equations for shallow gratings. We note that the solu-
of GaAs and polymerr(=1.5). As expected, the errors in- tions described in Sec. IXC are generalizations of those
troduced by the shallow grating approximation are more se-
vere in this case of larger refractive index contrast. 001 —— T
Turning now to the nonlinedr coefficients, recall that in L i
the limit in which the grating is shallow and the nonlinearity
is uniform we find thatl';=I",=0. As a comparison we
show in Fig. 6 thel" coefficients[in units of cx®/dv, and
with ny=1] for a GaAs-AlAs system, as a function of the
GaAs filling fraction. In the figure the solid line indicates
I'y, the short-dashed lin&';, and the long-dashed line is
I',. As expected, fodgaas/d— 0,1 we see thdf; ~0 as the
usual shallow grating results must then be obtained. More
generally, whileI'; andI', are certainly smaller thai'y, \ ~
[';~0.16 at dgaas/d=0.44. Note also that for AIAF, is \ P
more than twice as large as for GaAs; this is due to the \ s
normalization of the Bloch functiongEq. (20)]. Finally, in L \ / _
Fig. 7 we show similar results, but for a periodic GaAs- —0005 bl o b L
polymer structure with refractive indices as above and as- O 02 04 06 0.8 1
suming the nonlinearity in the polymer to vanish. Clearly, as d /d
dgaas/d—0 the structure is linear and all nonlinear coeffi- GaAs
cients must vanish. Further, a@g,a/d—1, I'; ,=0 since
the grating is then shallow and the nonlinearity is uniform. F|G. 7. Nonlinear coefficient§' (solid line), T'; (long-dashed
However, in the intermediate cases the new nonlinear coefine), andl', (short-dashed lingfor a GaAs-polymer structure with
ficientsI'y andI', can be as larg€'y [while still satisfying  refractive indices 3.59 and 1.5, respectively, and a vanishing non-
inequality (109)]; in such a case, therefore, use of our ap-linearity in the polymer, in units ofcx$od(dvg), and with
proach is crucial. np=1.
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found in the experiments of Eggletat al [13].

As a general point we mention that, while the coupled- 1 UL AL L L B

mode equations for shallow gratingor which I'y=T", -

=0) have well-known bright and dark solutiofig,27], to 0.8 -

our knowledge Eqgs(102 have not been studied previously. ? C

We will see that the soliton solution of Eq4.02) can differ 2 06

gualitatively from those of the equations valid for shallow ﬁ B

gratings. We use two different approaches. The first of these & 04 L

is a variation on that of Feng and Kneuhb(i7] and makes e TR

use of Stokes parameters. The second is the method de- g B

scribed by Kivshar and Flytzan[27] and allows us to find 0.2 -

closed-form stationary solutions in the stationary limit. In I S ]
discussing the solutions to Eq4.02 we emphasize the in- ol Lo Lo Tameases
fluence of the extra nonlinear coefficients on the shape of the 0 1 2 3 4
solutions. intensity (GW/cm?)

FIG. 8. Transmissivity as a function of incident intensity for a
GaAs-AlAs thin-film stack. The stack consists of 200 periods, each
Recall that while the linear equations have exactly theconsisting of 125-nm GaAsn=3.59) and AlAs (1=2.98) layers,
same form for shallow and for deep gratings, the coefficientsvhile A =1.5522. m. Shown are the results of exact calculations

have different valuegsee Figs. 4 and)5Though these dif- (solid line), standard coupled-mode thedishort-dashed line and
ferences may sometimes seem modest, we emphasize th&js.(102) (long-dashed ling
the properties of periodic structures near a Bragg resonance
vary rapidly as a function of wavelength. A small error in the once they are known, this can be implemented in a simple
position of the edges of the photonic band gap, say, can thygshion.
lead to large errors. This was discussed earlier in fl Figure 8 gives the results of three types of calculations for
Another key point in solving the present coupled-modey periodic structure with parameters given in the caption:
equations on a finite interval is the application of the boundeyact results, following from a full solution of Maxwell's
ary conditions at the interfaces with the outside media. Repquations(solid line), results from Eq(102) (short-dashed
call that in conventional coupled-mode theory the fields argjne) and results from standard coupled-mode thetyg-
expanded in forward and backward propagating modes; sinGgashed ling Clearly, the results of our deep grating theory
these are also the eigenmodes of uniform media, matchingre close to the exact results and are superior to those from
the fields across the interfaces is straightforward. This igtandard coupled-mode theory. We note in passing that all
even true if the average refractive index in the grating differpree methods indicate the existence of a low-transmissivity
from the refractive indices of the outside media, leading toyanch, which, on the present scale, coincides with the hori-
Fresnel reflections at the interfaces. The reason the applicgpntal axis. At high intensities this branch folds back and
tion of the boundary conditions for deep gratings is mor&jnks up with the branches shown in Fig. 8. Full time-
complicated is our expansion of the fields in terms of pseud@jependent simulations of the same problem have indicated
plane wavessee Fig. 3, which must be matched to plane that not all solutions in Fig. 8 are stab|2s,2d, but such

waves in the outside media. This depends on the details @fehavior can of course not be ascertained within the limita-
the Bloch functions, which must therefore be calculated extion of harmonically varying fields.

plicitly, even though this is not necessary to solve the
coupled mode equatiori&qs.(102)].

A. Solutions to the linearized coupled-mode equations

C. Solitary-wave solutions using Stokes parameters

B. Stationary solutions on a finite interval We next consider solitary-wave solutions to EG<92) on

) ) ) _ . an unbounded interval. To do so, following previous work
It is well known that nonlinear grating structures of finite [7] we look for solutions of the form

extent can exhibit bistability1l]. This is a particularly inter- _ _
esting case to consider as the nonlinear wave equation, G.(z,t)=B.(z—vt)e ve?=B_ (x)e ¥, (110
which is now an ordinary differential equation, can easily be

solved for this case, allowing a comparison with the results ] ] )
from our approximate theory. whereé is a detuning. The ansatz10) turns Eqs(102) into

While the harmonically varying solutions of the conven- & S€t _of two coupled ordinary complex differential equations.
tional coupled-mode equations on a finite interval can beP€fining then the(rea) Stokes parameters through
found in terms of Jacobi elliptic functionjgl], finding an
analytic solution appears to be impossible for the present S=B'oB, (111)
coupled-mode equatior§$02). Though, of course, the result-
ing ordinary differential equations can be straightforwardly
integrated numerically, as noted above the application of th&vhere theo; are the Pauli matrices an8 is the column
boundary conditions requires knowledge of the details of thevector with elementsg. ,B_), it is easy to find the four real
Bloch functions(Fig. 2) of the periodic structure. However, equations for the Stokes parameters
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FIG. 9. Example of a soliton solution for a deep nonlinear pe- FIG. 10. Example of a soliton solution for nonlinear periodic
riodic structure withk=1, v=0.5, and5=0, while the units of structure withk=1, v=0, and 6=— 1/2\/5, while the units of
field strength have been chosen such thg{,,=2.1, @,,;1=1.9, field strength have been chosen such that,,=6, a,,,=0.25,
and oy =2.1, so thatl'=1, I'y=0, andI',=—0.9. Shown as a andqy, =1.5, so that"'=1, I';=-0.5625, and’,=0.75. Shown
function of position is|G . |?+|G_|?, which is proportional to the as a function of position ifG., |2+|G_|2, which is proportional to
energy density(solid line). As a comparison, also shown is the the energy density. As a comparison, also shown is the solution for
solution for the case in which deep grating effects are ignored, i.ethe case in which deep grating effects are ignored, I.e=1 and
I'=1 andI';=T",=0, while the other parameters are unchangedl’;=I',=0, while the other parameters are unchangddshed

(dashed ling line).
Sp=—2kS,— 2I'1S,S,— 21,5, S,, on bright solutions for which the fields vanish pg—c,
though we show below that Eq§102) also possess other
' _ _ solutions.
$17285+ 3155~ vl'$:5,+ 215,57 1S, We note that Eqs(112) have solutions for whiclS,,
+uT,S:S,, S,, andS; are even functions, whil&, is odd, and these are

the solutions we are considering here. These parity properties

b B B B 2 then imply that we can define a “center,” which we take to
S2= ~ 2KkSp+ 20K Sy 265, ~ 318, +vl'S:8,— 214 S be atx=0. Here we consider thg atx=0 for the solutions

+ 20T 1508~ 2112 T,5,8; +vT5S:Ss (112  of Egs.(112); this is not only of interest in its own right, but
also provides convenient initial conditions when solving Egs.
b e (102 or (112 numerically.
S3=vSp, Since we are considering solutions for whighis odd, it
o ) o ] must vanish at the center. We also note that for bright solu-
where the prime indicates differentiation with respecktdt  tions, for which the field envelopes must vanistxat + o,

is straightforward but tedious to demonstrate that this systelfhe second and third conserved quantities in E4$3 van-

has three conserved quantities, namely, ish. Now from the first and second of the conserved quanti-
ties (113 we then find that
- Si-5-83=0,
Sl: iSO/'y,
S-vSy, (113
g AP 114
3 1 1 (272+1)F_47F1+F2,
kSt 6Sg+ IS5 — —T'S2+T,S5,S,+ - (S2—S3).
4 4 4 S=vS,

The first of these follows from the definition of the Stokeswhere

parameters and is a consequence of the fact that absolute

phase is unimportant here. While the syst@rh2) with con- y=11-v? (115
served quantitieg113 is now, in principle, reduced to

guadrature, the conserved quantities are sufficiently compliis the Lorentz factor and the negative sign in the first of Egs.
cated to prevent us finding the relevant integral in closed114) is found to apply. By Eqs(114) all Stokes parameters
form. We therefore consider a special case. We concentrat@e thus known; this provides a convenient starting point for
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finding the solitary-wave solutions numerically. Note that,tonic band gap §=A/2) we haveA;=—A and A,=0,

although by definitionS, is a positive quantity, the right- while at the bottomA;=0 andA,=A. Equations(117) are

hand side of the second of Eq414) can be negative, espe- very similar to those of Kivshar and Flytzaj&7], but have

cially whenT'; is sufficiently large. Such solutions, which more complicated nonlinear terms. It is easy to see that Egs.

are not prevented by inequalit§09), must be disregarded. (117) form a Hamiltonian system witl, , playing the roles
Since all Stokes parameters are known, the systetf) of q andp, respectively, and with

can also be used to evaluate higher derivatives. In particular,

it can be shown tha®; can be either positive or negative. In H=— E(A g2+ A,02) + E(a g%+ 60,9202+ ay9)

the latter case the solution would be expected to be singly A 29192 T TS

peaked, while in the former case it must exhibit auxiliary (119

peaks for it to vanish ag— x 2. Examples of both types of Now each orbit of this Hamiltonian corresponds to a solution

solutions are shown in Figs. 9 and 10. In both figures thepair (91,9,). However, the solitary-wave solutions, i.e., so-
solid lines represent solutions to the full coupled-mode €9Ua tions that settle to definite values as» correspond to

tions (109, while the dashed lines represent the associate e separatrices. We must therefore identify the fixed points

solutions for shallow gratings, obtained by ignoring the non- : :
linear terms proportional @, and I',. We note that the of the system(117) and the orbits connecting the saddle

U . . . oints. Orbits starting and finishing at the origin i
double-peaked SOIUU.O” In Fig. 10 |s.typ|cal for d.eep gratlngs};)pace correspond togbright solitar;g/] waves, W%ile%cﬁlizr)s cor-
"%‘”d does not occur n shallow gratings, for V\.’h'Ch th_e S‘Olu'respond to dark and gray solitary waves and to bright solu-
tions[5] are always single peaked. We note in passing thaﬁ ns on a pedestR7]
the new solutions shown in Figs. 9 and 10 can be consideredp y

to be generalization of the grating solitons observed by Egg: Below we discuss some of these solutions. In doing so we
leton et al. [13] in a shallow grating. assume that the nonlinearity is positive and thws 0. It

is easy to see that for negative nonlinearities the solutions are
) . . very similar. If the spatial distribution of the nonlinearity is
D. Stationary solitary-wave solutions chosen such that not all nonlinear coefficienishave the
Another limit in which exact results can be obtained issame sign, then an entirely new class of solutions becomes
whenv =0, i.e., when the solitary wave is stationary. Thesepossible, but we do not cover these here. In discussing the
solutions can be found using a number of different methodssolutions we identify three different regiméa7]. The first
including that of Kivshar and Flytzan{27], who applied it ~ of these is defined by>A/2; here the frequency iabove
to the closely related problem of nonlinear discrete lattices. Ithe photonic band gap. Singe, ,<0 in this regime we find
is their approach we use here. To start we use E30), that the origin is the only fixed point and that it is a stable
which, of course, are fully equivalent to the coupled-modecenter. For this reason there are no solitary-wave solutions.

equationg102). We set We next consider frequencies such thal/2< 6<A/2,
st i.e., frequencies within the photonic band gap. Nayw<O,
flu(zt)=g1A2)e (116  while A,>0; the system of equatiori¢17) has a saddle at

the origin and two stable centers af;=0 and

and take they, , to bereal. This implies that the envelope .
: : ; " g,==*a;/A;. The only type of solution corresponds to the
functionsG.. [see Eq(101)] are each other's complex con separatrix connecting the origin with itself, corresponding to

{?ognagetz)etfwelss:lhaellgviser;gg ﬂ;e .ﬁﬁ?gZZ%Z[ifuci:girﬁgggetos?&é bright solitary wave. To find these solutions explicitly we
9 gs. define, following the analysis of Kivshar and Flytzaf@],

equations the ratior=g,/g9,, which can be shown to satisfy
r_ 3 2
91=~A2go+ @105+ 322010,, r'=(Ay+Arr)2+4E(aq+6ayr 2+ asr), (120
95=+ 2191~ @303 — 32,0501, (117 whereE is the value of the “energy” corresponding to the

. particular orbit associated with Hamiltonig [Eq. (119];
for convenience, we have seh=ayuuu, @2=au, @d  for the case we are considering héte-0 since the orbits

az=ay . Further, include the origin. Equatiof120) is now seen to yield
Ay=—AR2=5, A=A2-5, 118 r==A,7A tanh(=A1A,2/v )=~ A, /A tanh(C2).
(122

and the prime indicates differentiation with respect to
z/lvy. Note from definitiong118) that at the top of the pho- Finally, then, the solutions fag, , are found to be

—2A,A3 v
1= 2 — - 5 sinh(Cz),
a1A%cosH(Cz)—6a,A,A,c0sH(C2)sint?(Cz) + azAssintf(C2)
2A,A% 112 . .
92= a1A5cosH(Cz) — 6a,A 1A ,cosH(C2)sint?(Cz) + azAssinH(Cz) cosl{Cz), (122
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where C was defined in Eq(121). Using Egs.(116) and TABLE 1. Overview of positions of critical points for
(101), solutions to Egs(102) can then be found. It is inter- 6<—A/2, i.e., frequencies below the bottom of the photonic bad

esting to note that in the shallow grating limit, in which 9ap. The critical points of course exist onlygf andg, are real.
a1= a3=3a, [see the discussion below EG.09], the de-

nominators in Egs(122 can be factored into a perfect TYPe g1 92

square, so that simple expressions dgr, result; these are | 0 0

identical to those of Aceves and Wabnj&] and Feng and 0 + A, la;

Kneubihl [7]. However, as shown in Sec. IX C, the solutions |, . 3o - 02 !

(122 can be qualitatively different from the associated shal- —NSalas

low grating solutiongsee Fig. 10 v \/m a36,— 3ayA
We now finally turn to the third regime, where = Tajas—9a3 = Tajas—9a3

6<—A/2; here the frequency is below the bottom of the
photonic band gap, so that; ,>0. There is now a larger
number of critical points, the character of which depends o
the relative sizes of the nonlinear coefficieatsand on the
detuning. However, for values af just below the photonic

r}gl,gz) plane, from which the qualitative features of the
solutions can then be learned. There are essentially two types

band gap there are two types of dark solutions, independeri[’lsas of solutions. Some typical examples are shown Figs.

of the details of thex parameters, which are similar to those ; and 12, while conditions for their existence are indicated

. ; in Table Il. The orbits in Fig. 11 correspond to three different
for shallow gratinggcf. Refs.[7] and[27]). Using a method . .
similar to th%t de.gé(ribed abO[V(]e the[y c];n be f?)und to be types of solitary-wave solutions. The small, butterfly-shaped
' orbits are unique to deep gratings, while the larger, ovoid

(At A )=t orbits are very similar to the solitary-wave solutions found
g,= > 7 by Kivshar and Flytzani$27]. The orbits in Fig. 12 corre-

ay+6ar+ asr spond to four different types of solutions, all of which are
unigue to deep gratings. Though it is certainly possible to

91=r9g2, (123 find explicit expressions for these solutions, we do not give
them here.

where
AZ— 0 A2 X. DISCUSSION AND CONCLUSIONS
27 18,/ ag
r= \/2A1(A2—3a2A1/a3) We have presented a systematic approach to obtaining the

. envelope-function equations for periodic media. Since it is
Xsin{v2A1(A;—3ayA1/az)zlvgl. (124 based upon the Bloch functions of the structure, it is valid for

It was shown in Refs[27] and[7] that these solutions rep-
resent dark solitary wavesvhere the minus sign applies 4
Eg. (123 and bright solitary waves on a pedediahere the
plus sign applies These two types of solutions correspond
to the large, ovoid orbits in Fig. 11. The existence of such )
solutions was also pointed out in RE6].

Recall that for detunings well below the photonic band
gap of deep gratings other critical points, with associated gZ
solitary-wave solutions, can appear; these have no equivalent 0
in shallow gratings. The positions of these critical points are
summarized in Table I. The critical points labeled as type |,
II, and Il occur also in shallow gratings with uniform non- _2
linearity, while type IV is different. This can be seen from
Table | by realizing that if the grating is shallow and the
nonlinearity is uniform then a1a3=9a§, shifting the

type-IV critical points to infinity. Of course, the type-IV —4
critical points exist only for detunings such thgy and g,
are real. g 1

As mentioned, the critical point at the origitype |) is

always a center forfrequenples be_Iow the photonic band gap. FIG. 11. Separatrices in thay{,g,) plane, corresponding to
_The nature of the o_ther C”tlcal_ F’O'”ts depe_nds on the thurEtationary solutions to the coupled-mode equations. The particular
ing and on the nonlinear coefficients. Details can be found parameters are=1 and 5= —6, while the units of field strength

in Table Il. The frequency dependence is associated Withaye been chosen such thag=1.0 anda,=0.2, as=0.9. Two
pitchfork bifurcations, which, depending on the relative val-ypes of orbits are shown, correspondingete — 6.94 large, ovoid

ues of the «;, may occur for frequencies such that orbits andE=—12.25(small, butterflylike orbits whereE is the
A/A,=3a,/a; and A;/A,=a3/(3a,) (see Table ). “energy” corresponding to the orbit according to Hamiltonian
Rather than discussing the ensuing solitary-wave solutions ifL19. While the saddle points can be clearly seen, the circles cor-
detail, here we just sketch the types of orbits in therespond to the positions of the centers.
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TABLE II. Overview of types of the critical points fo6<—A/2, i.e., frequencies below the photonic
band gap; note that the origiftype |) is always a center for these frequencies. The explicit frequency
dependence enters through the ratieA,/A,. The entries NA indicate that type-IV critical points do not
exist if 1 <3a,<aj. The last column gives the types of separatrices these new critial points give rise to and
refers to Figs. 11 and 12. As discussed in the text, these correspond to stationary solitary-wave solutions to
the coupled-mode equations. The entry 90° refers to a rotation over 90° of the orbits in the figure.

Condition 1 Condition 2 Type Il Type llI Type IV Orbit
aq,a3<3ay a1a3<9a§ center p<asl3a,: saddle saddle Fig. 12
p>asl3ay: center

@y, a3>3a, aaz>9a5  p<3a,/a;: center saddle center Fig. 11
p>3a,/a,: saddle

a1<3a,<as center saddle NA NA

ag<3a,<a; aa3<9a5  p<3aylay center  p<asl3a,: saddle saddle Fig. 12
p>3ay/ay: saddle  p<as/3a,: center

a3<3a,<a; a1a3>9a§ p<3ay/ay: center  p<as/3a,: saddle center Fig. 11
p>3a,/ay: saddle  p>as/3a,: center (90°)

shallow as well as deep gratings and also properly treatsf the nonlinearity and the dispersion and also on the amount
gratings with a nonuniform nonlinearity. While the of detail of the photonic dispersion curve that is required.

envelope-function equations for shallow gratings can easilyThe latter is determined mostly by the spectral width of the

be derived heuristically, it is known that this method is in- source; the wider the spectrum, the more details required.
ternally inconsistent and arrives at the correct answer somerhough many of our results have been derived earlier, our
what fortuitously[17]. In contrast, the method described in systematic approach makes it clear under what conditions the
the present paper is systematic and thus so are the res{fgrious final results are to be used. This is somewhat similar
obtained using it. While, as mentioned, the recent experiqy agrawal’s approach in which various physical phenomena

mental results of Eggletost al. [13] can be described by 516 assigned different length scales, thus indicating their rela-
conventional coupled-mode theory, extensions of such Xve importance 15].

periments to material systems allowing for.deeper gratings Perhaps our main result is EG.02), which is derived for
may require the more complete theory decribed here. . o -
. ) . an intensity indexs=1 (see Sec. 1Y and makes use of two
The many results presented in this paper are valid fo loch functions from the photonic band structure. It is a
different regimes, which depend on the relative importanc o P ) '
generalization of the well-known nonlinear coupled-mode

equations for shallow gratings. While even for moderately
4 | deep grating structures, such as those consisting of GaAs and
o . AlAs, the conventional coupled-mode equations for shallow
B structures are remarkably accurasee Fig. 4, it should be
kept in mind that for frequencies around the edges of the
photonic band gap the grating properties change drastically.
| A correct description in this region is thus of particular im-
. portance. Nevertheless, it is fair to conclude that deep grating
— effects are unlikely to be of importance in fiber gratings,
T where the refractive jump does not exceed 0.04.

An open question at this point is the importance of the
remote band effects. As mentioned in the discussion follow-
| ing Egs. (90), the remote bands, the bands whose Bloch
. functions enter the analysis only through the companion
- . terms at high orders, lead to an additiofglight) curvature

-4 - - - of the bands. At frequencies near the photonic band gap this
-2 0 2 curvature is negligible compared to the dispersion due to the

dynamic interaction of the two bands constituting the princi-

g1 pal terms. But further from the gap, the strength of the dy-
namic interaction drops and remote band effects become

FIG. 12. Separatrices in they{,g,) plane, corresponding to More important, though it is not clear how significant they
stationary solutions to the coupled-mode equations. The particuls2f® compared to the intrinsic dispersion of the constituent
parameters are=1 and 5= —5, while the units of field strength Materials, an effect that has been neglected in our calcula-
have been chosen such that=1.0, a,=0.6 anda;=0.9. Further,  tions. The latter effect must dominate sufficiently far from
E=—4.06, whereE is the “energy” corresponding to the orbit Bragg resonances. Initially, the only way to settle this prob-
according to Hamiltoniar(119). While the saddle points can be lem is probably on a case-by-case basis.
clearly seen, the circles correspond to the positions of the centers. Possible generalizations of our theory easily come to
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mind. Apart from the inclusion of material dispersion, an-cient[30]. Although we do not treat grating superstructures
other generalization is to include more than two principalhere, the method we have developed can also be applied to
components and thus treat fewer bands as remote. Clearlyreat such deep superstructufag].

the more principal components included, the better the final |n conclusion, we have presented a systematic approach
results, but at the expense of more complicated final resultg the derivation of envelope-function equations for nonlin-
(note that the number of coupled equations in the final resulgar periodic media. Perhaps unexpectedly, we find that it is
equals the number of principal compongnt#/e note that possible to derive coupled-mode equations, very much like
this is a standard procedure in solid state physics, where thiose that hold for shallow gratings in regimes well beyond
number of bands included ik- p calculations, for example, where one might naively expect equations of this sort to be
to calculate the band structure of superlattices increases witfglid. Our results reduce to well-known equations in the ap-
the desired accuradyp?2]. However, it follows from our ap-  propriate limits. We have also presented some of the solu-
proach that it is not very useful to improve the description oftions to these different equations. While they have features
the dispersive properties without a similar effort for the non-that differ qualitatively from those of the solutions to the
linear properties. conventional equations, these occur most clearly at high in-

Though we did find different types of solutions to the tensities, which, as yet, are experimentally inaccessible.
present coupled-mode equations, such solutions are unlikely

to be observed experimentally in the near future due to the

high-.intensity levels requirgd. The featurgs pf Iow-i.ntgnsity ACKNOWLEDGMENTS
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