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Emittance optimization in three- and multiple-bend achromats

S.Y. Lee
Department of Physics, Indiana University, Bloomington, Indiana 47405
(Received 26 December 1905

The necessary condition for minimizing the emittance of the three- and multiple-bend achromat lattices
is derived. For isomagnetic three- or multiple-bend achromat lattices, the minimum emittance can
only be attained if the length of the dipolesdsa factor of 3% longer than that of outer dipoles. For the three-
or multiple-bend achromat with equal length dipoles the minimum emittance can also be achieved by increas-
ing the magnetic field of middle dipoles by a factor ¢8 larger than that of outer dipoles. The minimum
emittance formula for the isomagnetic three-bend achromat with equal length dipole has also been derived.
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PACS numbes): 29.27.Bd, 41.75-i, 03.20+i, 05.45+b

Recently, electron storage rings have been used frequentportional toL %, where# is the bending angle arld=p# is
as light sources for research in condensed matter physicthe length of the dipole, the horizontal emittance obeys a
chemistry, cell biology, microbiology, industrial processing, scaling law:
etc. For many experiments, it is desirable to use a high
brightness light, which requires high brightness electron Co V26
beams. The amplitudes of the betatron and synchrotron os- €= F— 3
cillations are determined by the equilibrium processes of the Ix
guantized emission of photons and the rf acceleration fields

used in compensating the energy loss of the synchrotron re\{\_/here the scaling factaF depends on the storage ring lattice

diation [1]. The horizontal emittance of electron beams in a"rangement. For the minimum emittance separate function
storage rings is given by DBA, we haveF __ =1/4,/15 in small bending angle ap-

MEDBA
proximation[5,6]. If one removes the constraint of the ach-

romat condition, the achievable minimum emittance factor is
o (H/1pl?) F, = 1/12/15.
V3 (1p?) @ Itis generally believed that the achievable minimum emit-
tance in the TBA lattice is the arithmetic mean of the mini-
mum emittance(ME) and the minimum emittance DBA
(MEDBA), i.e., 7 =3(2F ___ +F ). The four-bend

i METBA MEDBA i
achromat(QBA) is expected to have an even smaller emit-

tance. In reality, all existing TBA lattices have

e=C

where C,=3.84X 10 ¥ m, p is the bending radius of the
dipole, J,~1 is the damping partition number, and

1 ., ) FoonZ 2T copar 1 is argued that this “may be simply due to
H= E[D (D +BD")7] @ the TBA being a more recent design, of which the capabili-

ties have not yet been throughly exploref8]. Understand-
. . . . ing the fundamental limit can relieve the troubles of lattice
is the dispersion action. Hewe, , 8, are the Courant-Snyder designers.
b_etatron qmplltudg funct'long, argl andD’ are the disper- This paper studies the theoretical minimum emittance at-
sion function and its derivative2]. o . . tainable in storage rings without using wigglers or undula-
The design of low emittance optics is to minimize yyrs Minimum emittance can be examined through minimiz-
()13, in dipoles, where possible lattices are regularlyjng the(74)/J, function with respect to lattice functions. For
spaced focusing and defocusing quadrup@l®©DO) cells,  ggparate functior(dipoles without field gradientstorage

the Chasman-Green lattickS], and three-bend achromat \jnqs the dispersion function in the dipole region is given by
(TBA), etc. [4]. FODO cells, composed of inter-spacing

guadrupole and dipole magnet units, are used mostly in the .
collider design due to their simplicity and high packing fac- D=p(1—cosp)+Docosp+pDgsing,
tor. A Chasman-Gree{CG) lattice is composed of cells with @
two dipoles to form an achromat, i.e., a zero dispersion func-
tion at both ends. Thus the CG lattice is also called the
double-bend achromaDBA). The three-bend achromat is
composed of three dipoles with zero dispersion function at
both ends.

Since 1980, accelerator physicists have realized that thenghere ¢=s/p with s=0 corresponding to the entrance of
is an achievable minimum emittance, which can serve as the dipole, andD, and D/ are the values of the dispersion
guideline for realistic lattice desigib—7]. Since’H is pro-  function and its derivative as=0, respectively. For the

Do) .
D'= 1—7 sing+ D(cosp,
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double-bend achromat we d8=0 andD;=0 to attain the
achromatic condition. Using E@4), the evolution of theH
function in a dipole is given by9]

H(¢p)=Ho+2(agDo+ BoDg)sing
—2(yoDo+ aoD{) p(1—cosp) + Bosirt ¢
+ y0p?(1—cosp)®—2ap sing(1—cosp), (5)

where H(): ')/OD(2)+ 2a0D0D6+ﬁ0D62, ao,ﬁo, and Yo are
Courant Snyder parametersst 0. Averaging theH func-
tion in the dipole, one obtains

(H)y=Ho+ (agDo+ BoDg) OE( )

Bo

(70Do+aoDo)P02F(0)+ 0?A(6)

-2 p03B( 0)+ 20*C( ). (6)

20”

Here 6 is the bending angle of the dipole and

2(1—co9) 6(6—sind)
E(0)=——(— FO=——(—,
66— 3sin20 6—8co¥+2cosHy
A()= i 0)= 7 ,
300—40sin+5sin20
C(o)= .

05

In the small angle limitA—1, B—1, C—1, E—1, and
F—1. Using the normalized scaling parameters,

702 Yol, Eo: ag,

(@)

whereL=p# is the length of the dipole, the averagétl
function is given by

(H)=p 93[70d(%+ 250d0d6+’,éod62+ agE— ? F) do

Bo
BO d0+ ?A——B-F 2—00] (8)

In a special case with achromat conditicsy=0 and
dy=0, the averagé function is given by

<H>=p93{ %A—ZB ZOC} 9)
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FIG. 1. The minimum() factors16AC— 1582 for the DBA

(the lower curve and 16AC — 15B2 for the ME (the upper curve
lattices are plotted as a function of the bending arjl&lote that
(H) is slightly smaller in long dipoles.

Using the condition3yy,= (1+a2), the minimum of( ) is
given by

G
_ 3
<H>MEDBA_ 4\/1—5’“9 ' (10

whereG=+/16AC— 15§2. The corresponding betatron am-
plitude functions areB,=6C/\15G, @,=/15B/G, and
Yo=85A/\3G. The factor G=16AC—15B? depends
slowly on the dipole bending angeshown in Fig. 1, where
(H) is slightly smaller due to the horizontal focusing of the
bending radius. In the small angle approximation, one ob-
tains easily (H) MEDBA=(1/4\/1_5)p03. The corresponding

minimum emittance is =Cqy?6°144/15,, and theH

. .MEDBA. . i
function at the dispersive end of the dipole is

H(60)=(1{15)p6°.

Without the achromat constraint, the lattice can be con-
sidered as a single dipole lattice. Thus the dispersion and the
betatron amplitude functions, which minimizé{), will be
symmetric with respect to the center of the dipole. The mini-
mization procedure can be accomplished through the follow-
ing steps. Firs{H) can be minimized by finding the optimal
dispersion function wit{ H)/ddy=0, d(H)/3dy=0 to ob-
tain do min=&F, d¢min= — 3E, and

1 4y,

(Hy= 506 BoA—GoB+ 15c (11)
whereA=4A—3E2,_B=3B-2EF, andC=3C—$F2 Us-
ing the relation thaByy,=1+ a2, we obtain

(H),e= E 6° (12)
ME 12J1_5p ’
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whereG = V16AC— 1582 is also shown in Fig. 1. Thus the the bending angle for each dipole is less than 30°. The nor-
minimum () without achromatic constraint is a factor of 3 malized dispersion coordinates for the minimum emittance
smaller than that with the achromat conditifh—7]. The ~DBA and minimum emittance single dipole lattices are

minimum condition corresponds tB,=8C/\15G, &, 9Jiven, respectively, by

— J15B/G, andy,=2\15A/G.

In the small angle approximation wittf<1, where D (15ML§?
A—1, B—1, C—1, andG—1, the waist of the optimal X veoen~ \/_—B_ 8 pi’ (16
betatron amplitude function for the minimu¢f) is located
at the middle of the dipole. The values of the disperston o
function at both sides of the dipole are important to deter- aD+ BD’ 7 LY
. . . . . . . P = =+ - (17
mine the beam size in straight sections, where insertion de- MEDBA \/,E 8(15Y* p,’
vices such as the undulators are located. At the ME condi-
tion, we have at the dispersive ends of the dipoles in the MEDBA lattice,
and
H(0)="H(6) L 6% 6CE?— ZBEF+ JAF?
= = — — — . 1/4 y 312
315G 2 2 x - D _ 215t (18
(13 N 24 py’
In the small bending angle approximation, we have
H(6)=(1/3\/15)p6°. 5 aD+BD’ 3 L2 19
o - =7 -
The brilliance of the photon beam from the undulator de- ME \/E 4\/5( 15)Y4 p,

pends on the electron beam width, which depends on the
emittance and momentum spread of the beam. Now we deyt the entrance and exit locations of the dipole in the ME

fine the dispersion emittance E0] lattice, wherep, and L, are the bending radius and the
length of the DBA dipoles, ang, and L, are the bending
€4="Yx(D8)*~ B (D8)(D' 8)+ B,(D' 8)*="H(0) 5 radius and the length of the ME dipoles.
The optical matching between the MEDBA module and
1 Cyy*6® the ME single dipole module is accomplished with quadru-
T e ' (14 poles, where the normalized dispersion functions are trans-
3\/1_5 Je

formed by the coordinate rotation, i.e.,
where 6= (og/E)?=Cyy?*/Jgp is the equilibrium energy
spread in the beandg is the damping partition in synchro- (XME> ( cosb sinfb) ( XMEDBA)
tron phase space. For a separated function lattice, = . , (20
Je=2, Jy=1, or Jg=~2J,. The total emittance for a bi- P —sink  cosp P veosa
Gaussian distribution is given by

ME

where® is the betatron phase advance. The necessary con-
dition for achieving dispersion phase-space matching is

gt egm— a0 15

T s 3 Cweoen (19 L3 L3
?=3?, (21)
2 1

Thus the decrease in the betatron emittance is consumed by
the dispersion beam size. The brilliance of the photon beanyih 2 corresponding phase advande=127.76°. The

from insertion devices or equivalently the size of the eleCtror}natching condition of Eq(21), based on the small angle
beam in the “dispersion free” straight section, is not af- approximation, requires,=3%3L, for isomagnetic storage

fected by the dispersion introduced to minimize the betatror}ings or p;=/3p, for storage rings with equal length di-
emittance. The total electron beam size in the straight sectio oleé Forldipolezangle larger than 30°, the scaling factor is

remains unchanged. Thus the minimization procedure do §1ightly increased

notNlncrease the bedarrj{ bg_lllance tohf undu.lators. itt f Thus we have proved a theorem stating that the isomag-
N ovl;/ wz arti rea )tllott' |scussh_ ﬁrr]nlnlmuﬂm egﬂ ance (;’rnetic TBA with equal length dipolesannotbe matched to
ree-bend achromat fatlices, which have often been used Uyain the advertised minimum emittance. For an isomagnetic

synchrotron radiation sources such as the Advanced Lighgtorage ring, the center dipole for the TBA should &3
Sr?urtce |nF\I)_a(\j/\_/r<ta_nce r\l?erkele;;] Ncatlotnal !_atzlf)r_atory, thte S}r’ﬂ]onger than those of outer dipoles in order to achieve disper-
chrofron Radiation esearch -enter in faiwan, etc. ion function matching. In this case, one can prove the fol-

TBliA [[str? com?maﬂor}lzf_ DI|3A Ir(]';\ttlce W'thl? S'r‘t%btr?'pm?_ lowing trivial theorem: The emittance of the matched mini-
cell at the center. If all dipoles have equal length, the mini- " "re A (OBA. etc) lattice is

mum emittance is usually quoted to be__ =Z2¢ z
; METBA MEDBA

€ve §€_MEDB_A' _ ) 1 C 7293

To simplify our discussion hereafter, we use a small angle 9’ 71

€ =— ,
approximation, which is a good approximation provided that METBA  4./15  Jx

(22)
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where#, is the bending angle of outer dipoles, provided thatwhere the normalized dispersion coordinates are given by

the length of the middle dipole is*8 longer than that of - do 1
outer dipoles. Although the factoF __ =1/415 is identi- XO:\/_’F: — (29)
cal to that of the MEDBA, the actual emittance of the fo 6(8 +~1/4'3 ) _
METBA is lower due to its smaller outer dipole bend angle. 5 o+ Body B* +1/128* 30
T [ fai [ f emi h = =T o= ~ :

o0 provide a fair comparison of emittances, we assume that 0 \[EE 2(5* + 1145 )12

the number of dipoles in the TBA or the QBA is the same as
that of the DBA lattice. Because the bend angle of the outeUsing the matching condition of E¢20), possible solutions
dipole in TBA or QBA is smaller, the resulting minimum are given by

emittances of METBA and MEQBA are related to that of the

MEDBA by . B* P (H)i
3
€ueron= | 37378 Eeosn~ 0666, oo (23)  0.027635 144.79 (1/Y15)(1—0.79643)
, \3 1.005160 134.01° (1/Y15)(1-0.67023)
GMEQBA: 1+ 31;73 €vEDBA O'SSEMEDBA' (24)

Here, we disregard the solution wifa"f =0.027635, which is
Thus a TBA or QBA lattice can provide smaller emittance not easy attainable. The resulting emittance for the isomag-

for future synchrotron radiation light sources. netic TBA lattices with equal length dipoles is given by
At present, all TBA light sources have equal length iso- 1.1064C,y26°
magnetic dipoles; the minimum emittance can be evaluated € =3 (31
as follows. The averag# function is given by VETEA - 4\15 I«
(H)=3[2(H) o+ (H)i], (25) In conclusion, we show that the minimum emittance iso-

magnetic TBA is not attainable with equal dipole length. The

where the subscripte andi are used to identify the outer necessary condition for achieving a minimum emittance in
and inner dipoles, respectively. First, we minimiZe), to  the TBA (or NBA) lattice is that the length of the middle
obtain <H>o=(1/4\/1_5)p03- Once (H), is minimized, the dipole(s) should be a factor of % longer than that of the
('H); is determined by the optical matching condition. outer dipole(in small angle approximationFurther reduc-

To match the optical function in the TBA lattice, the be- tion in emittance can only be achieved by varying the damp-
tatron functions must be symmetric with respect to the centelng partition number.
of the middle dipole. Using the symmetry condition, we ob-  For existing TBA storage rings, the minimum emittance
tain condition can be fulfilled by increasing the dipole field of the
center dipole so that the bending radius of the center dipole

Bo=pB* + _,j;,_ goz_l_, %:i, (26)  is smaller by the factor 13 than that of the outer dipole
4B* 2p* B* [11]. The resulting minimum emittance factor is
gl gt ) 2+3% 1
e 0T o (27) FMETBA_ T 5 4_\/1_5
whereﬁ* = B*/L is the normalized betatron amplitude func-  In this paper we do not discuss the emittance reduction
tion at the center of the middle dipole. Using E§), we  using wigglers or undulators to increase the radiation damp-
obtain ing rate in zero dispersion straight sections, which would
1 = E increase the momentum spread of the beam as well.
_ 3 0 = < 0
(H)i=p0 \/_1—5+( \/,E;_ 3\/’5‘) Po— 3\/'E‘X0+? This work was supported by NSF Grant No. PHY-
0 0 9221402 and DOE Grant No. DE-FG02-93ER40801. | ben-
% Yo efited greatly from many useful discussions with Dr. L.
- T X) , (28) Teng.
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