PHYSICAL REVIEW E VOLUME 54, NUMBER 2 AUGUST 1996
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The static approximation suggests that, for a given hole area, the use of a long narrow slot in a beam pipe
gives a reduced coupling impedance. But for a long slot the slot length may be comparable with the wave-
length, making the static approximation a poor one. In this paper we derive expressions for the generalized
polarizability and susceptibilityCheng, Fedotov, and Gluckstern, Phys. Re\2=3127(1995] of an ellip-
tical hole in a thin plane metallic screen, as a function of hole dimensions and wavelength. In particular, we
construct a variational form that allows us to obtain an approximate analytic result for the resonant frequency
of a cavity with such a hole. In the calculations we include the effects of finite wavelength, but still confine our
attention to reduced wavelengths no smaller than the primary hole dimensions. We then use these results to
estimate the coupling impedance of a long narrow elliptical slot in a beam pipe, and show that the effect of
finite wavelength is importanfS1063-651X96)10508-0

PACS numbdis): 29.27.Bd, 41.20-q

I. INTRODUCTION dimensions and wavelength. We redefined polarizabilities in

The penetration of electric and magnetic fields through a‘{erms of the cavity detuning and constructed a generalized

hole in a metallic wall plays an important role in many de- polarizability and susceptibility. In this way, we included.tf_u.e
vices. In an accelerator, such holes in the beam pipe serve {ffauency dependence of the polarizability and susceptibility
allow access for pumping, devices for beam current and®S well as the contributions of hlgher mulUpoIe mom.ents. pf
beam position measurement, coupling between cavities, ett€ Nole. We should note that this generalized polarizability
As a consequence, the beam generates wakefields in tR@d these susceptibilities should only be seen as intermediate
beam pipe when it passes by such holes and these wakefielghicles to relate the coupling integrals of interest to the
are capable of affecting beam quality and stability. In alldetuning of the cavity by the hole. In our earlier wotq we
these and other similar situations, the quantities of imporshowed that the variational approach also allows us to derive
tance are the polarizability and susceptibilities of such holesanalytically the low frequency corrections for the polarizabil-
When we consider the coupling impedance of a hole inty and susceptibilities of a hole in a thin wall, correct to the
the wall of a beam pipg2] of rectangular cross section, we first order ink?.
must evaluate the following integral over the hole on the In the present paper we use the previous approatio
inner surface of the beam pipe: obtain expressions for the generalized polarizability and sus-
ceptibilities of an elliptical hole in a thin plane metallic
_ @) =)yl screen, as a function of hole dimensions and reduced wave-
l_f hmeds dESH T —ETH] @D length. These expressions are derived in Sec. Il and appear
in Egs. (4.1) and (4.4), correct to the first order ik?. The
Here the normal to the wall is in the direction, the azi- free parameter in Eq. (4.4) is treated as a variational pa-
muthal direction is denoted bs;, and the directiont is par-  rameter and chosen in E¢.11) to minimize the suscepti-
allel to the axis of the beam pipe. The supersctiptrefers  bility.
to the fields with no hole and the supersciix refers to the Our interest in an elliptical hole is guided by the fact that
fields in the presence of the hole. narrow slots are considered to be the best choice for pump-
The integral in Eq(1.1) is exactly the same as the integral ing holes in the design of modern high-intensity accelerators.
used to describe the coupling between waveguides and/dris clear that the image currents on the wall will flow more
cavites[3]. In fact it is also the integral which describes the easily around a long thin slot than around a circular hole of
detuning of a cavity by a hole in a plane cavity wall, with the the same area. For this reason a long thin slot gives a lower
superscript$l) and(2) having the same meaning. It is there- coupling impedance. But the length of the slot may then
fore reasonable to relate the frequency dependence of tHecome comparable with the wavelength and the static val-
coupling impedance in Eq1.1) to the detuning of the cavity ues of polarizability and susceptibilities may no longer be
by a hole whose dimensions may be as large as the reducedequate. Therefore, it becomes important to estimate the
wavelength. frequency correction for the coupling impedance of a narrow
The conventional treatment of E€l.1) proceeds by way slot. Our results allow us to obtain a more accurate expres-
of the polarizability and susceptibilities of the hole in the sion for the coupling impedance of an elliptical hole at low
wall [4,3]. In a previous papdrl] we presented the method frequencies. Specifically, for a long narrow slot, the fre-
of calculating the polarizability and susceptibility for a cir- quency correction of the impedance turns out to be much
cular hole in a thick metallic plate as a function of hole larger than the static value.
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Il. GENERALIZED POLARIZABILITY MX co cotho..L
OF AN ELLIPTICAL HOLE -3 Bl (KX,)?= Pn (KX)?,
nzN Bn n#N
In an analysis for the circular ho[&] we showed how to (2.6)
construct a variational form for the resonant frequency of a
cavity with such a hole. For our present purposes we use th&here
same general form of the equation for the calculation of the
frequency of the detuned cavity, pn= K~ K, (2.7)
tanB\L
?\BN =2 2 Ky M7, Ky, (2.1) Kn1= Js dSe,-f;. (2.9
v )23 1

In writing Eq. (2.6) we showed earlief1] that by using

Here B2=k?— y2 where they? are the eigenvalues of the : . :
. : = : the exact static expression foi(t,s) (where the azimuthal
-dimensional lar Helmholtz ion in th vity re-".~ ~UT S
two-dimensional scalar Helmholtz equatio the cavity re direction is denoted bg and the direction is parallel to the

gion with the appropriate boundary conditions, & is axis of the beam pipewe can obtain a result for the gener-

tmhgtrfi;eggﬁr?%' bThe quantitiest,,, comprise a symmetric alized polarizability which is accurate through terms propor-
y tional to k2. For the trial function of an elliptical hole in a
plane cavity wall we choose

v

M,,=— > A cotﬁnLK,wKanrZ N otanB,9/2K o, K o) -

RZN 12
(2.2 fi(t,s)=—V

2 SZ

a — Vo, (2.9

Here wherea andb are the semimajor axes in the axial and azi-

muthal directions of the beam pipe, respectively. Then Eq.
Knvzf dse, f,, Km}Ef dse, f,, 2.3 (2.8 becomes
S1

Kpi= fs dSV(f)n'V(,bo:Kﬁfs ds¢n¢01 (21@

wheree, , e, are the complete sets for the field expansion in

the cavity and iris regions, and tfigis the complete set for

the expansion of the electric field at the interface between th@shere we used,=—V ¢, and V2¢n+ Kﬁd,n:o_ For large

cavity of lengthL and the iris of lengtly. As will be seenin N the left hand sidéLHS) of Eq. (2.5 can be rewritten as

Appendix A, we take a cavity of rectangular cross section

with dimensionsA and B, with the iris hole located at the BAL—/%m?  (K*—k{, )L

center of the rectangle. BntanByl= oL = 5 . (211
Note that we have separated the termiN and moved it

to the left side in Eq(2.1) since we shall be looking at the Then from Egs(2.5), (2.10, and(2.11) we have
TM gy, cavity mode corresponding 8yL=/"7 or

L(k>—kZ,)
/271_2 T
kN/_ L2 +KN, (24)

2
where/ is an integer, andﬁ, is the eigenvalue for the cavity 2 ( f d5¢n¢o)
waveguide. Here we use notation = (f dS¢N¢O> / ; W .

Zo [KB,, T™ (212
" Z, |Bnlk, TE, Using the definition of generalized polarizability introduced
earlier[1],
with Z,, being the impedance of the “cavity” wave guide
andZy= yuq/€q being the impedance of free space. We use _ k?— kﬁ,/
latin subscriptsif,m,N, . ..) for thecavity region and greek X~ K2 EZ (0)° (2.13
nEnA(0)

subscripts ¢, u, o,...) for the iris region.
We now consider only the case @& 0 (zero thickness of  we obtain
the wall and by separating out the=1, u=1 term we are

) X 4
able to write Eq.(2.1) approximately as 2 ] Z KM o & E2 (0)
(K )2 X~ <Knlino ns&N\/?—_kz N/EN/ ,
n
BntanByL= MXl/k (2.5 (2.14
17

where we defind o= fdS¢, by, and whereEy,(0) is the
with normal component of the electric field for moble /” at the
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hole location when the hole is absent. The figlg, is nor- tansyL L[ L 2(k2—k2 ) 3.7
malized so that its square, integrated over the cavity volume, By 2\w/ N7 '
iS unity.
The various terms in Eq2.14) can be evaluated explic- Using Egs.(3.1, (3.2), and (3.5), Egs.(3.6) and (3.7) be-
itly, as shown in Appendix A. Our final result for is come
P22 0202 K2b2K(m L
L AL PP SRk ) =KKIS for My, (39
whereP=Px/A, Q=Q/B, andy? is the static polarizabil- :
ity for an eIIintica(Igho(I?aw X P §( —k3,))=m2/AKIE)ILZS  for TEy,, (3.9
1 3 E 01 where
P Zmab? (m). (2.16
_k2 KTM 2 / NZZK2(KTE)2
Here K(m) and E(m) are complete elliptic integrals of the 2 N N / ne N Yn (Kn)
1st and 2nd kind, andh=1—b?/a%. The quantities— P2, (3.10

—52 are the normalized second derivativeskgf with re-

spect tot ands. In order to obtain the expressions fe&r), K= we are

guided by our experience for the circular hplg and use the

IIl. GENERALIZED SUSCEPTIBILITY trial function whose components are

OF AN ELLIPTICAL HOLE
d¢ ¢

J
— 2 2 —
For the frequency calculation we again use Eql). For fu=vi-u—oi= 2, fie=— o0, (31D
the TM,\, mode we have
with ¢=cau1—u?—v?, where we definet=ua and
(Kah? s=uvb. Then for (1, TM)

BntanByL= MIJK 3.9
<= [ ase ti=— [ dsve,
1

and for the Tg,, mode

tanByL  (KN7)? ¢n
B _ (K" a2 S PR P
N 11
=10+ 170, 31
whereMY, is given by no " 'no 312
K B where ¢o=1—u?—v?,
Mir=— 2, Z-ColBaLKR,— 3, J7cotB LK,
nzN Bn n#N , ddo
(33) |n0:b dUdv¢n W ’ (3-13)
cothp,L 1 ) ,
M=k 2, = (K= 24 po’cothpy L(KTD®. 17,=X abJ fdudmn (3.14
(3.9
for (n, TE)

Here p,= x2—k? andp,’ = \y>—k?, wherex? andy? are

the eigenvalues in the Helmholtz equation for TM and TE -
- —— KIE= | dS(AX Vi) -f
modes, respectively. In the limiting case of largeve have nl n/*l1
cothp,L—1, and the equation fav1¥, becomes
affdudvzp f S(t?t//nﬁcﬁ IYn I
(KW)2 - n gt 9s ds at
Mll_kZ _—2 VYa—K(KiD?. (3.5

N Xi—k? Kiz ' =Y,0, (3.1

Once again, for larghl the LHS of Eq.(3.1) can be rewritten  with
as

L ) Yno= af f dudv zpn (9 . (3.19
BntanByL= E(kz—k,\,/), (3.6

Using the definition of generalized susceptibility introduced
and the LHS of Eq(3.2) can be rewritten as earlier[1],
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k?— Kk}
o

(3.17

Egs. (3.89) and (3.9) become the variational forms for the
susceptibilities, which can be evaluated explicitly, as shown
in Appendix B. HereHy,(0) is the normalized tangential

component of the magnetic field for modé¢ at the hole
location when the hole is absent.
The final expressions for the susceptibilities are

A2 kzbz[
(

P ¢gsll—§0+ : K(m)—E(m)

m—21)K(m)+E(m)

K(m)—E(m)

T2 T DK (M) + E(m)

a? ( K(m)—E(m)
+1—m (m—=1)K(m)+E(m)

m[2E(m)—K(m)]
(m=21)K(m)+E(m)

[

Here ¢gs is the static susceptibilty for an elliptical ho{&
the azimuthal direction

1 3[(m—1K(m)+E(m)]
yl 27b%am

: (3.19

and \2=P%a%+Q?%?2. The quantities—P2,—Q? are the
normalized second derivatives Hf; with respect ta,s and

A2 a®3\  k2p2

T™_ ,0 - 0 N

" —l/lss[l —5<1+2a—)\§ = [2
K(m)—E(m) K(m)—E(m)

(M—LK(mM+Em) “*(m=1)K(m)+E(m)

o? K(m)—E(m)
T m| (m= DK (m) + E(m)

m[2E(m) —K(m)]
(m=1)K(m)+E(m)

-

where x2,=P2+ Q2. Equations(3.18 and (3.20 are varia-
tional forms with respect to the parameter The minimum
values of 4 occur whena'® and o™
(B35) and (B36).

IV. DISCUSSION

are given by Egs.

1933
=
ettzﬁz_ En(0), 4.2
&°E,
€ss™ 92 En(0). 4.3

Itis at first surprising that our results for the susceptibility
are different for the TE and TM modes, since the cavity
walls have been removed to infinity. But the TE and TM
modes have different higher derivatives at the hole. There-
fore, we can write a single expression which covers both
cases. Specifically, we rewrite Eq8.18 and (3.20 in the
following form:

2 b2 k2b2

a
= ¢23[1+ ghfﬁ §h§s+ T(u+20a+azw)

2 a’(ht,—hs (4.4
5 a ts— Mit) |» .
which is valid for either a TM or TE mode. Here
s Hs ~, Pz’
aZHS ~. Q%x?
_hgsz - 952 /Hs(0)=Q2= B2 ' (4.6)

n—he =2 S o= o o) PLQt M
ts tt_atas S( ) atZ S( )_ 0' TE:
4.7

with H¢(0) corresponding to the value bffg that would exist
at the location of the center of the hole in the absence of a
hole. The quantities, v, andw are defined by the relations

B K(m)—E(m)
U= 2t - DKM+ Em) “8
e K(m)—E(m) 4.9

(m=1DK(mM)+E(m)’

1 [(1-mK(m)+(2m—1)E(m)

W= Tml T m—DKm+Em | “10

The minimum value of} occurs when

v 2

In order to obtain a clear physical picture we represent our
results in terms of field derivatives at the hole, since theThen we can write

fields must satisfy the Helmholtz equation for finke
In the case of the polarizability we rewrite E@.15 in
the following form:

a? b?

; K22 K (m)
X=X 1+ett€+essg+

5 E(m)|’ (4.

with

a:_W+V_VW(h{S_htSt . (4.1
o aZ . b2 . k2b2 UZ
Y=ded 1+ T het ghest = U=
) 1 a* (hi;—hg)?

teow Mgy Ty | (412

or
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0 a2 s ? s k2b2 2 2 t s 1 jkz
Y= hsd 1+ £ hit £ hist A+ za®B(h—hg Z||(k)=—mfocdzEZ(O,z;k)eJ , (5.4
1 a.4 . . . . . .
- t 1Sy\2 where thez direction is along the pipe axis. The integral can
5 k2p? C(Ms™Nu } 413 be rewritten in the form
with
Ezk0=- | dser,,. 55
Ay MEMIK(mM) —E(m)] .14 hote
- L(m=1K(m)+E(m)]JA(m)’ ' where the subscript 1 denotes the fields in the lossless pipe
without the obstacle.
~(m=1)[K(m)—E(m)] For holes whose dimensions are small compared to the
= (4.15 ; X
A(m) ' ' wavelength, the integral can be expressed in terms of the
fields E,, ,H,, near the hole and the electric polarizability
co (1-m)[(m—=21)K(m)+E(m)] 4.16 and magnetic susceptibility of the hole. In our case, we have
B A(m ' .
" LU 5.6
Here Z, 87°R =X, ’

A(m=(2m-1)E(m)+K(m)(1-m). (4.17  whereR s the radius of the pipe ang, x are the generalized
susceptibility and polarizability of a hole, respectivély.
The results obtained above can be used to estimate thEhen, using Eqs(5.1) and(5.3), we have
frequency corrections for the polarizability and susceptibili-
ties of a hole for different values &f a with the correspond- Z(k) jk ¢§SX°
ing field configuration. Z, 8m°R? o0 1-—= o) 5.7
In the present paper our main problem of interest is the
case when the magnetic fie{th the azimuthal directionis  where we used the relatiomﬂ3+ 1/¢gsz 1/x° for an ellip-
perpendicular to the longest dimension of the elliptical holejcal hole and the fact that’> 2. Using the same approxi-
In Appendix C we consider the case where the magnetic fielghation of a narrow slot, the expressions for the static polar-

0
k?a? it

is parallel to the long dimension of the hole. izabilty and susceptibilities become
V. THE COUPLING IMPEDANCE o 2mab’ 2m b2 5.9
OF A LONG NARROW ELLIPTICAL SLOT X "3E(m) 3 an, '

In the design of modern high-intensity accelerators, nar- o
row slots oriented along the chamber axis are the best choice Y= —ab? (5.9
for pumping holes, giving low impedance for a finite hole 3[(m—1)K(m)+E(m)] 3
area. Therefore, in this section we apply our results to esti-

2mab?m

mate the coupling impedance of a long narrow elliptical slot. Y= 2ma’m . 2m a’ (5.10
For this we consider a beam traveling along the axis of a t 3[K(M)—E(m)] 3 [In(4a/b)—1]"
beam pipe. We also consider a long and narrow elliptical slot )
in the pipe wall. Therefore, we can write approximately Finally we obtain
m=1—(b%/a?)—1, E(m)—1, and K(m)—In(4a/b). De- o -
noting the t direction by z and using Egq.(4.1), with Mz Jkab b_ 4_a - _k_a

ik R 2| mz|In 1 . (5.1)
E,—e ¢ e,=—k? ande,=0, for the polarizability of Z, 127R°[a b 5

such a slot we obtain . . . L
In Eq.(5.11) the first term is the static approximation and the

second term is the new correction obtained by considering
(5.1)  the frequency dependence of the polarizability and suscepti-
bilities. Note that the frequency dependent correction re-
In the same limit, using Eq4.4), the expression for the duces the inductive impedance obtained in the static approxi-

susceptibility becomes mation.
For commonly used values df/a~1/5, the frequency

correction becomes important even ta~0.3. And in the
(5.2 case wherd<a the impedance behavior will be essentially

that of the correction term. Therefore, the frequency correc-
The minimum of this expression occurs whers 1, giving  tion in such cases is very important.

For the rectangular narrow slot, in the static approxima-
tion the numerical result contains terms proportional to
w* /7 andw?, with terms proportional taw?/ being can-
celed, wherew and / are the width and the length of the
The definition of the longitudinal coupling impedance is slot, respectivelyf5]. By considering the frequency depen-

2,2
X:XO 1_k_a
5 |-

k?a? k?a?
= lﬁgs( 1—- 2? + (a— 1)2? .

. (5.3

2
s B
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dence, in analogy with an elliptical slot, one would now ~ P@t  Qms
expect to have similar terms proportional W/ (k?/?), ¢n=C cOS—— cos—, (AB)

which will play an essential role for small valueswt/".

wherep, g, P, andQ are odd numbers, in order to satisfy the
VI. SUMMARY boundary conditions dt= + A/2 ands= = B/2. We note that
P and Q are introduced in order to distinguish the specific

We used the method developed earlig}t to obtain the modeN. Here

frequency dependence of the polarizability and susceptibili-

ties of an elliptical hole in a thin plane metallic screen. We pm\2 [qm|?

then used the results to estimate the coupling impedance of a K= —] +|— (A7)
inti i i A B/’

long narrow elliptical slot in a beam pipe.

The frequency correction of the impedance turns out to be
much larger than the static value for long narrow slots. J' $2dS= =02~
Therefore it is important to take this correction into account, n ke 4"
when one works with a long narrow slot. We should note
that our results are for a thin metallic screen where the thickwhich giveSE= 2/ky, \/ﬁ Then
ness is less than the slot width. We also note that our results
for an elliptical hole in a plane wall are a good approxima-
tion for a slot in a real beam pipe, where the slot is parallel to Ino= J dSéneo
the beam. But when a long narrow slot is perpendicular to

the beam one has to take into account the curvature of the dtds t? part qws
beam pipe. \/— 2 _2 COS cosg
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47ab 5 —
APPENDIX A: EXPLICIT DERIVATION Kn'no:—\/ﬁ . odoy1-o0?Jo(aVu?+v?)
OF THE POLARIZABILITY
H 2 2
Here we present the detailed calculation of the polariz- _ 4mab ji(Vput o) (A10)
ability from the variational form of Eq(2.14). We first find VAB  ul+1?
the electric field normal to the hole at the hole location in the
absence of the hole. We write where p=pmalA, v=qmb/B, and j,(Ju?+1?) is the
Y spherical Bessel function of order 1.
:CeNsin’ il ey=—Voy (A1) For largeA, B, p, andq we can convert the sum over
’ ' andq in Eq. (A5) to an integral by writing
L Zn 2am 2bw
Eqn=C—— quKNcoT. (A2) 2 f “, E f dv.  (Al1)
2 _
Then from[E°dv=1 we get Equation(A5) then becomes
2/%m? i
C*=Tar (A3) ~ 4mabji(No)/\G
N/ X= % s (Al2)
f f gy AR IO
14
and S NPT
4,2
K 0
k&, E&Q, = % (A4)  where \§=P?7%a?/A’+Q%*m?h?/B?, \?=pu2+12, and
where the limits onu and v are extended to-« to «. By
Therefore for the generalized polarizability we have making the change of variablgs=\cosy, v=Asine, the

integral in the denominator of EA12) can be rewritten as
4,2

x=[lﬁo]/ h(0) ﬁ :

We obtain the expressions fegr, and ¢y by considering the )
rectangular form of the cavity waveguide k (A13)

+ .
2\?\/coala®+ sirfalb?

(A5)

o0 2
J dxjf(x)f da( Jcogala?+ sirfalb?
0 0

E pt Q’iTS
¢n co A co B We will need the results
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2m R Zmn
f dacofala’+sirfa/b?=4E(m)/b, (Al4) H,=CnxVe¢ cos——. (B2)
0
where Then from
w2
Em=| " depI-(1-b7ad)si?é  (ALS) | dome-1 (83)
0
is an elliptic integral of the second kind, with we haveC?=2/L and
m=1-b?a?,
2 2 2
2w da o (AL6) Hw(0)= 1 (Von(0))". (B4)
=4bK(m), Al6
0 cofala+sirfalb? (m) .
For TE modes we write
where
~ Zmn
fw/Z de H =CVy¢ cos——, (B5)
K(m)= —_— Al7
(M=), Tomeire (ALD ) ,
= 2 S Zn
is an elliptic integral of the first kind, and Ho=—C__y\y sin——. (B6)
fwji()\)d)@ 716, (A18)  Then from Eq.(B3) we obtainC2=2/27%/L3?, and
0
/,,/2772
SHOSLIY HE(0)= T3z~ (V¥n(0))°. (87)
j —)\2—277/15 (A19) N/
0
Using Egs.(3.8), (3.9), and(3.17 we have
With the aid of these results, EGA12) can be written in the
form m_ N0t 1ho)? ©8)
_[mabi0)] /[Em) (| Ke? K(m) (¥ én(0)>
S IY: 6b |~ 5 Em)| v2
(A20) B ————, B9
N NS (B9

By expanding the numerator for smaNg, j3(\o)/A\3

=(1—\3/5)/9, we have

_ 4, P272a2  Q%m?b?  k2b2K(m) o1
X=X|1" a7~ "5z~ TBEMmM) | A%V
or
P%a? Q%% kZ2K(m)
_ .0 _ _ _

whereP=P /A, 62 Q/B, andy? is the static polarizabil-

ity for an elliptical hole[3],
1
0

x (A23)

3
~ 27ab? E(m).

APPENDIX B: EXPLICIT DERIVATION
OF THE SUSCEPTIBILITY

Here we present the detailed calculation of the suscepti-
bilities from the variational form of Eq$3.8) and(3.9). We
first find the magnetic field tangent to the hole at the hole

location in the absence of the hole.
For TM modes we write

H,=0, (B1)

whereX, defined in Eq(3.10), is now written as

2 :kzn;N ('r’wo""ﬁo)z/ \/W_ n;N WYﬁo-
(B10)

In order to find expressions fapy and ¢y we consider
the same rectangular cavity as in the case of the polarizabil-
ity. We choose the magnetic field to be in thalirection.
Therefore, for the TM case we have

. pmwt qms
én,=C Sin—— cos 5, (B11)

wherep is even andj is odd, in order to satisfy the proper
boundary conditions at=*+A/2, s=*+B/2, respectively,
andC=2/x,yAB. Using Eq.(3.13,

pmau
A

2b
xnlr’m:—\/ﬁffududusin
b
Xcos(qgv)/\/l—uz—vz, (B12)

which becomes
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" Admbu
Xl hg=— ——=
nno VABVu?+ 2
1doady(ouZ+ 12
xf kA (B13)
0 NI
whereu=pmal/A, v=qwb/B. And using
1 I'(v+1/2),132(N)
209 _ 2\v—1/2 _ v
fo doo?(1—09) Ji(oN) 2()\/2)”1,2 ,
(B14)
we obtain
T 4arbpj(Nu?+v?) (815
nno \/AB\/,LL2+ 2
Using Eq.(3.14),
Xnl no= ududv
au b
X sin| pi; cos(qWBv a1-uZ—0p2
(B16)
which becomes
, 47Tb,u,aazxﬁj2(\/,uz+vz)
Xnl o= PR . (B17)
VAB(up“+v9)
For the TE case
~ pmt qws
¢n=Ccos—A sm—B , (B18)

wherep is even andj is odd, in order to satisfy the proper

boundary conditions at=*A/2, s=*+B/2, respectively.
Using Eq.(3.16), we find
=~ 22 [ [ voue
=—— vdu
YnYno \/ﬁ
au b
><cos< p; sin(qﬂB U)/ Vi-u?—v?
(B19)
from which we obtain
_ 4aravj(Vu’+v?) (820
yn no0 AB ILL2+V2 -

By converting the sum ovep andq in Eq. (B9) to an
integral, for the TE case we have

1937

YTE=—

4m%a%bj2(\o) J f dudv(l)o+170)?
KA Jula?+ v2b2—K?
J devvzji()\)\/Mz/a + 12/b?—k?

 k%? f w?la?+ v?b?)

(B21)

Using Egs.(B15) and (B17) we rewrite the first integral in
the denominator of EqB21) asl,+1,+13, where

1_f f dudvu?j(Vu?+1?)

2 V2
L

bZ)(/-L2+V2)
—2aau?j1(Vp?+ v?)j (N u+vP)
IZZJ J d/.LdV
\/lea2+ VZ/bZ_ k2[(M2+ V2)3/2]
(B23)

2a%(p?la?+ v2/0?) p2j5(Vu?+ v?)
V?la®+ v2Ib%— K[ (u?+ v?)?]

,u

(B22)

|3:f fd,udv

(B24)
for which we obtain
4b37[E(m)+(m—1)K(m)
=5 { = : (B25)
with m=1-b?/a?,
ar
l,=—2aa? %—[K(m) E(m)], (B26)
and
.
s 103bmA(m) (B27)

where A(m) is given in Eq.(4.17). The second integral in
the denominator of Eq(B21) can be rewritten a$y+1,,
where

4b 7
|o:ﬁ E[E(m)+(m—l)K(m)] (B28)

and

k2 7 4b

~ 5 78 o [K(M)—E(m)].

=" 5 m (29

Putting Egs. (B25-(B29) in Eg. (B21) and expanding
j2(No)/\3 for small\q, we finally obtain
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K(m)—E(m)
m—21)K(m)+E(m)

A3 k2p?
TE_ ,0)4_ "0
¢ _¢ss|1 5 + 5 { (

K(m)—E(m)
Y (m—1)K(m)+E(m)

-2

a? ( K(m)—E(m)
T m| (m=D)K(m) + E(m)

m[2E(m) —K(m)]
T M- DK(m)+ E(m)

[

wherey, is the static susceptibility of an elliptical hola],

1 3[(m-1K(m)+E(m)]
gl 27b%am '

(B31)

Note that for the circular hole limit

b—a, m=1-b%¥a%?-0,

ar ar
E(M)— 5 (1-m/4),  K(m)— 5 (1+m/4),

we recover our result for the circular hdlg],

2 kg2

A
—O+?(3—2a+3a2)

-3

YTE=y° . (B32
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)\2
_ 40 _ 0
¢TE—¢SS{1+k2b2<D 5% ” (B37)
T™_ 4,0 22 )\g 3
l,// —(ﬂs 1+ kb D_WF+WG ,
(B39
where
1 E(m)m[K(m)—E(m)]
DZE{“[(m—1>K<m>+E<m)]A<m)} (B39
a®g (1—m)[K(m)—E(m)]
Ptz A(m) - (B4
G=a4x;(1‘m)[E(m)+K(m’(m‘m ®a1)

A(m)

Here x3= P22/ A%+ Q?7?B?, N3=P%7%a?/ A%+ Q?m?b?/
B2.

APPENDIX C: THE MAGNETIC FIELD ALONG THE
LONGEST DIMENSION OF THE HOLE

Here we present results for the case when the magnetic
field is aligned along the longest dimension of the hole. We
again choose the magnetic field in the azimuthal direction.

For the TM modes we use E(B8) and, after the same Then we havébh>a and the elliptic integrals in our expres-

procedure as for the TE modes, we obtain

A2 a??\ k2p2

™_ ,0)4_"0 N2 R

¥ —1/133[1 5<1+2a )\g + 5 [2
K(m)—E(m) K(m)—E(m)

(M—DK(mM+Em)  “*(m=1)K(m)+E(m)

a? K(m)—E(m)
T m| (m= DK (m) + E(m)

m[2E(m)—K(m)]
(m=1)K(m)+E(m)

I

For the circular hole limit we again recover our earlier result

[1],
(ﬂTM )\2 k2a2
51 €°(1+ 2a)+ —z—(3-2a+3a?). (B34)

We now use the fact that Eq830) and (B33) are varia-
tional forms with respect to the parameter The minimum
values ofys occur when

e (M=D1)[K(m)—E(m)]
~(m—1)K(m)+E(m)(1—2m)’

(B35

(m—1)[K(m)—E(m)—x3a?/k?h?]
(m=1)K(m)+E(m)(1-2m) °’

™ _

(B36)

a

leading finally to

sions should be changed according to

b_ _
E(m)— aE(m), (C1

a
K(m)—>BK(m), (C2

b2
m— — ;m, (C3)
with m=1-—a?/b>.
Theny in Eq. (4.1) should be replaced by

~_ 014 a2+ b2+ k?a? K(m) ca
X=X ettg essg 5 E(ﬁ]) . (CH

Correspondinglyys in Eq. (4.4) should be replaced by

2 b2 k2b2

F=yp| 1+ Thit Thict - U+ Wart a®W)
2 2/t S
—gaa (hs—h) |, (CH
where
K(m)(m—1)+E(m
_on (m)( )+E(m) c6)

K(m)—E(m)



54 FREQUENCY DEPENDENCE OF THE PENETRATION OF ... 1939
5 _ K(E(F—1)+ET) cr M
K(m)—E(m) _ . ~
X mE(m) K(m)(m—1)+E(m)
_ (M= 1)K(M)+ (M+ 1) E() K (M) — E(M) | (+1)E(M) +K(M)(M—1)]
W= — — : (C8 (C10
K(m)—E(m)
Finally - K () (f— 1)+ E(M) c1
~ ol @t b2 K 2 (M DEM) +K(@)(@-1)
U= 1+€htt+€hss+ ?A"‘ga B(his—hy
2 s K(m)—E(m) (12

(C9

all -

sz’é(hgs_ h{)?|,

(M+1)E(M)+K(M)(M—1)
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