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Correlation functions in the two-dimensional random-bond Ising model
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We consider long strips of finite width<13 sites of ferromagnetic Ising spins with random couplings
distributed according to the binary distributid?(J;;) = 1/2[5(J;; — Jg) + 8(J;;—rJp)], 0<r<1. Spin-spin
correlation functiongoyogr) along the “infinite” direction are computed by transfer-matrix methods, at the
critical temperature of the corresponding two-dimensional system, and their probability distribution is inves-
tigated. We show that, although in-sample fluctuations do not die out as strip length is increased, averaged
values converge satisfactorily. These latter are very close to the critical correlation functions of the pure Ising
model, in agreement with recent Monte Carlo simulations. A scaling approach is formulated, which provides
the essential aspects of tReandL dependence of the probability distribution oféryog), including the result
that the appropriate scaling variableR$L. Predictions from scaling theory are borne out by numerical data,
which show the probability distribution of {rgog) to be remarkably skewed at short distances, approaching
a Gaussian only aR/L>1.[S1063-651X96)08506-9

PACS numbegps): 05.50+q, 05.70.Jk, 64.60.Fr, 75.10.Nr

[. INTRODUCTION exponents provided by conformal invariance concé¢p6.
Early extensions of strip scaling to random systehg]
Most studies of random magnetic systems focus orhave since been pursued furthgl8—2Q and put into a
whether or not quenched disorder destroys a sharp pha&goader perspective. Though this has been done with the help
transition and, in the latter case, whether critical exponent§f ideas arising from the study of probability distributions
are the same as for the Corresponding pure madﬂe{@] [4—7], the behavior of the probablllty distributions them-
Less attention has been paid to the underlying probabilitgelves has not been closely investigated in strip geometries.
distribution functions which govern the behavior of sample-In particular, their evolution toward the two-dimensional
averaged thermodynamic quantities, and which are expectegystem’s form as strip width increases has not been analyzed
to be universal in certain circumstancege below Early to our knowledge.
work on probability distributions of correlation functions  We consider a two-dimensional random-bond Ising model
concentrated, as numerical applications were concerned, ¢ @ square lattice with a binary distribution of ferromagnetic
strictly one-dimensional systemié—7]. The behavior, under interaction strengths, each occurring with equal probability:
renormalization group transformations, of the distribution of,
e.g., conductivities in percolation-resistor netwofl&3, or P(Jij)= 1 [6(Jij—Jdo)+(Jjj—rdg)], Osr<1. (1)
interactions in spin glassg®], has been studied as well.
More recently, the probability distributions of bulk quantities For this case, the transition temperatygg=1/kgT, is ex-
such as energy, magnetization, specific heat, and susceptibidetly known from duality{ 21,22,
ity of disordered Ashkin-Teller models have been investi-

gated in two dimensionELO] by Monte Carlo simulations. sinh(28.Jg)sinh(2B.rJg)=1. 2
Bond distribution functions in one-dimensional quantum
spin systems have been revisited very recefitly. We have studied strips of width<13 sites, with periodic

Here we deal directly with spin-spin correlation functions boundary conditions, and lengti=1® sites. Throughout
on finite-width strips of two-dimensional disordered Ising this work we fixr =1/4 andT=T.(1/4) as given by Eq(2).
systems. The basic motivation for using this geometry is theNumerically, T.(1/4)/J,=1.239... [to be compared with
fact that strip calculations, in conjunction with finite-size T (1)/J,=2.269..]. Using this value of ensures that dis-
scaling conceptfl2,13 are among the most accurate tech-order effects are rather strong, while at the same time one
nigues to extract critical points and exponents for nonrandorkeeps a safe distance from the percolation regime=a@
low-dimensional systemfsl4,15. The rate of decay of cor- (near which crossover to geometry-dominated behavior is
relation functions determines correlation lengths along theexpected to complicate the pictlirehis choice also coin-
strip. These latter are, in turn, a key piece of Nightingale’scides with that used in several recent Monte Carlo simula-
phenomenological renormalization schefhé,15, and have tions [3,23]; thus comparisonwhen appropriateis made
been given further relevance via the connection with criticaleasier. The choice &f=T, is important, as it is here that the
probability distributions are expected to have a nontrivial
universal form; furthermore, the extensive literature on criti-
*Electronic address: sldg@if.uff.br cal correlations for pure systems, both making explicit con-
TElectronic address: stinch@thphys.ox.ac.uk nection to conformal invariance ide@$6] and previous to
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that(see, e.g., Ref24] and references thergins an impor- LI I e
tant reference frame against which to set our results. 0.008
In what follows, we first illustrate the role played by in-

trinsic fluctuations in the probability distribution of correla-  0.006 (a)
tion functions, and show that even though these do not die 0.004
away for large samples, the sample-to-sample fluctuations of ~*
averaged values do go down as sample size increases. Next g pg2
we compare our results for averaged critical correlations with

those for a pure system, in order to check on a recent pro- 0
posal arising from Monte Carlo daf®3] which implies 0.008
equality, within error bars, of the corresponding quantities.

We then go on to identify the key features of the shape of 0.006
distributions, and investigate their variation with distaite

e
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and strip widthL. A simplified scaling theory is formulated, 0.004
which provides the essential aspects of BvandL depen- 0.002
dence. Numerical data for the probability distributions of

correlation functions bear out the main predictions of scaling 0 ~6 5 —1 -3 5
theory, in particular the role played by the combinatift
as an appropriate scaling variable. In [G(R)]

FIG. 1. Normalized histograms of occurrence ofdrfor L=5,
II. INTRINSIC FLUCTUATIONS AND AVERAGES R=20. (@ N=1C; (b) N=1CP. Full vertical arrows afln G); bro-
) ) . . ken vertical arrows at [{G). Curves are Gaussians fitted to mean
We calculate the spin-spin correlation function gng root-mean-square deviation ofan as calculated from respec-

G(R)E<‘T%‘T %e>, between spins on th? same rG?an, FOW  tive realizations. Here, and in all subsequent figures1/4 and
1), andR columns apart, of strips with periodic boundary T=T(r).

conditions along the vertical direction. This is done follow-
ing the lines of Sec. 1.4 of Ref15], with standard adapta- argumen{25] cannot be applied, as explained, e.g., in Ref.
tions for an inhomogeneous systéh®]. At each iteration of [5]. The width of the probability distribution of correlation
the transfer matrix from one column to the next, the respecfunctions is then expected to be a permanent feature, which
tive vertical and horizontal bonds between first-neighbomwill not vanish (at least trivially with increasing sample
spins are drawn from the bond probability distribution, Eq.size.
(1). By shifting the origin along the strip and accumulating We have found that on finite-width strips the width of the
the corresponding results, one then obtains averages of tlistribution tends to stay essentially constantNagaries. A
correlation function(or of any functionF of it, such as its  graphic illustration is provided in Fig. 1, where the horizon-
logarithm, which will be of particular importance in what tal variable is InG, which turns out to be convenient for
follows), to be denoted byG) [or (F(G))], the R depen- most purposessee below. IncreasingN simply smooths out
dence being implicitly understood. With strips of length the histogram; averages such(&) or (In G) hardly move,
N=10° sites, we are able to produce*tlC° independent the same being true of the width. This is easier to notice by
estimates ofG for 7<R<=100, which is the range of dis- comparing the Gaussians fitted to peak{latG) and with
tances to concern us here. width given by the root-mean-square deviation

Normalized histograms of occurrence of the allowed val-A(In G)={([In G—(In G)]?)}*2
ues of the correlation functiofor, rather more frequent be- Though neitheA(In G) or AG vanishes, it is still possible
low, of its logarithm are produced by dividing a convenient to extract valuable information from averaged values, the
interval of variation ofG (or In G) into 10° equal-width bins,  dispersion of which among independent samitesbe de-
and assigning each particular realization to the appropriateoted, respectivelyA(In G) or A(G) does shrink with in-
bin. For InG the interval ranging from In 10 to zero has creasing sample size. Figure 2 shows the typical dependence
proved generally adequate, except =100, where the of relative fluctuationsAG/(G) and A(G)/(G), with strip
lower limit was pushed down to In 16, lengthN. Varying the numben of distinct(that is,N lattice

For strictly one-dimensional disordered systerfi®., spacings long samples within a reasonable interval, say
chaing the average free energgrelated to the largest n=5-50, changes\(G) only slightly, consistent with a
Lyapunov exponefthas a normal distributiof4,5,7, as be-  1/\/n dependence to be inferred from standard arguments.
fits a sum of random variables. Thus the fluctuations shrinkfrom an investigation ofA(G)/{(G) for distances in the
with sample sizéstrip length N, and relative errors must die rangeR=7-50 and strip widths up tb=7, it turns out that
out as 1{N. Correlation functions, on the other hand, areboth the order of magnitude arfdl dependencdroughly
products of random variables, thus their distribution tends td/\/N) depicted in Fig. 2 are typical. The behavior of
a lognormal form asR—o [4], that is, the probability dis- A{n G)XIn G) is entirely similar. We can thus preditsee
tribution of In G approaches a Gaussian. However, the analyFig. 2) that the fluctuationg\(In G)/{In G) and A(G)/(G)
sis of correlation functions turns out to be more complexwill be of order 1% or just under that for strips of length
than that of the free energy, even on chains; a primary reasad= 10°. This will be enough for our purposes here. Similar
for this is that while the latter quantity is self-averaging in considerations have been used elsewhere in strip studies
the sense defined above, the former is not: the usual Bro(i20], and seem to have been followed also in Monte Carlo



192 S. L. A. de QUEIROZ AND R. B. STINCHCOMBE 54

R A S A N B 045¢ T3

C AG/(G) ] 0.4F =

——0.51 = s 3

— - 7 0.35 —

o ‘ 1 - -

E K ] 0.3 E e

° -1p B F ;

— - e . 0.25F ]

: sl N : : s
- . — ] 0.2 - 1 1 1 1 1 1 1 i | 1 1 1 1 1 1 1

Q% : \\\ A<G>/<G> : : T T T T I T T T T } T T T T I T T T T |:

®] + \x\ i L ]

— - ~ - -

_of S~ 0.3 (b) ]

F T~ N N

| 1| 1| | 1| | - | P11 1 | .1 | -] | ] 0'2 __ __

4 4.5 5 5.5 . .

log,,N 0.1 :— _:

C a ]

FIG. 2. Relative fluctuations within samplaG/{G), and be- T T —#

tween sample-averaged valueg,G)/(G), against strip lengtiN. Oo 0.01 0.02 0.03 0.04

L=7, R=20, number of samples=20. 1/L2

calculations of correlation functions in finité K L) systems i .
[23]. FIG. 3. Averaged correlation functions for=5, 7, 9, 11, 13.

(8 R=7; (b) R=20. Triangles{G); squares: ex{in G). Errors as
defined in Sec. Il. Continuous line: correlation functions for pure

Ill. COMPARISON WITH PURE-SYSTEM CRITICAL Ising model on strip§16,24).

CORRELATIONS

It has been found in Monte Carlo simulatidr8] that the Of course the present result reaches further, as one could
average correlation function at criticality of a random-bondconceive of a scenario where the correlations would differ in
Ising system is numerically very close to that for a purethe pure and random systems, but decay asymptotically as
system at its own critical point. Below we check on the cor-R—« with the same ratéthus giving the samé). In fact,
responding quantities for the strip geometry. the decay of exffn G) againstR is not too dissimilar to that

The spin-spin correlation function for the pure Ising of (G) for moderate disorder, and for the finite valuesLof
model atT=T_ on a strip of widthL is known from confor-  within reach of calculation. Only a systematic study of ex-
mal invariancd 16] to vary, for largeR, L as trapolation trends as —o, covering different degrees of
disorder, shows how the respective correlation lengths are
essentially distincf19]. The physical origin of this lies in
that, on account of the properties of the probability distribu-
tion of G (to be seen in detail belgwthe most probable
for spins along the same row as is the case here. The propoyalue exgln G) does not coincide with the average ot&)
tionality factor can be obtained from the exact square-latticgg,7]. Accordingly, it has been shown by field-theoretic ar-
(L—) result[24], (oo k)=0.703 38R™. In Fig. 3 we  gumentg26] and supported by numerical wofk9] that the
show, forR=7 and 20, data fo(G) and exgln G) together  most probable, or typical, correlation function decays as
with a continuous curve for the pure system. The latter
passes through numerically calculated pointslfst15 [Eq.

(3) is in error by one part in 0for L=15, R=7 and less
than that forR=20] and follows Eq.(3) for largerL. Using
1/L? for the horizontal axis guarantees that the pure-systerwhile the logarithmic corrections are washed away upon av-
curve approaches the vertical axis linearly. However, it stilleraging for(G), resulting in a purely algebraic decay with
shows high curvature even for the largest valuek aettain-  »=1/4.

able in our random-system calculations. This warns us to Quantitative analysis of the results displayed in Fig. 3
refrain from extrapolating our data far—o. Even so, we shows that, considering the central estima{€$ the ratio
can learn from finite-width results thdG) behaves very Q=(G(R,L,r,T,(r))¥G(R,L,1,T,(1)) is, in all cases,
closely to its pure-system counterpart. This is in line withwithin 1.01—1.03. With estimated error bars of order 1% as
previous findingg19] according to which in a random sys- explained in the preceding section, a very small amount of
tem the correlation lengtl¥ to be used in the exponent- overshooting seems to persist which does not follow a defi-
amplitude relation of conformal invariancé=L/w#7 [16],  nite trend againsR/L (see Fig. 4 Monte Carlo data show

is that obtained from the average decay(6f) againstR.  the corresponding ratio approaching unity from below as lat-
Thus one gets a picture in which=1/4 as for the pure tice sizeL increase$23], in the regionR/L<1. We cannot
system[19], consistent withy/v=7/4 obtained, e.g., from go far into that region, as the maximum strip widths within
strip calculations of the average susceptibility for the randonteach are not much larger than 10, and randomness effects
system[20], and the scaling relatiop/v=2— 7. are significantly distorted for sma<5.

/L

1 1\
{o00R) sinh(7RIL)

)7], n=1/4, 3

expIn G)~R ™ Y4(In R) 1%, 4
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FIG. 4. Ratio Q=(G(R,L,r,T(r)))/G(R.L,1,T¢(1)) against FIG. 5. Normalized histograms of occurrence ofdrfor fixed
R/L for points of Fig. 3. Error bars represent estimated fluctuation§ —5 andr=7. 20 and 50. Full vertical arrows 4n G): broken
of order 1%. vertical arrows at I6G). Curves are Gaussians fitted to mean and

) ) root-mean-square deviation of @&, as calculated from respective
Though we are not able at this point to advance a quantiregjizations.

tative argument, it is plausible that finite-size effects mani-
fest themselves differently in strip and square geometriesR andL dependence db below; for the moment note that it
taken together with those of R¢R3], we interpret our data approaches zero with increasiiy as expected, and is al-
as evidence in favour of pure- and random-system criticaivays negative. This is partly because of the many-channel,
correlations being in fact equal, at least fRfL>1 and incipiently two-dimensional character of correlations on the
R/IL<1. strip: qualitatively, if there is at least one path of “strong”

In the next two sections, we exploit the features of thebonds between two spins, their correlation is significant, and
probability distribution ofG, and show that the variabR/L  is not much enhanced if there are more strong-bond paths,
is indeed at least approximately the convenient one to dethus the peak at large 1@ with an abrupt cutoff above the

scribe several relevant aspects of the problem. maximum; on the other hand, configurations without any
strong-bond paths at all are possible but with low probabil-
IV. PROBABILITY DISTRIBUTIONS: SCALING THEORY ity, giving rise to the "tail” of very low InG values. This
argument explains the general trend towards increals$hg
A. Relevant parameters for RIL<1 as well(see below. An extreme example of this

Our starting point is the result that, in one dimension and"€nd is shown in Fig. 6 fot =13, R=7 whereS=—0.85.
for large R the probability distribution ofG must be log- The negative skewness effect depends also on the variable

normal[4—7]. The same is expected to hold on strips pro-29@inst which histograms are plotted: here we us@ Ioe-

vided thatR/L>1. We seek for deviations from Gaussian C@US€ our goal is to check on departures from a log-normal

behavior as one moves away from this limit. Q|str|but|on, thus it is the skewness of this plot wh|ch matt(_ars
In Fig. 5 we show normalized histograms of occurrence of the context. For instance, a plot of the same distribution

In G for fixed L=5 andR=7, 20 and 50. Though to zeroth 29@nst tanh” G would have positive skewness.

order one could say that all plots look similar to Gaussians, W& choose to characterize the distribution ofGnby

the semblance is reduced Bsdecreases. three quantities, r_lar_nely, me&(in G)), dispersion, or root-
A quantitative measure of departure from Gaussian beMean-square deviatidi(in G)] and skewness3). In other
havior is the(dimensionlessskewnessS, defined ag27] wqrds, we assume tha_t the p(obablhty.dlstnbutmn of corre-
lation functions is satisfactorily described by perturbative
(x—(x)) 3 corrections to a log-normal form. As shown below, this
SE(T) (5 works well in the present case of ferromagnetic disorder. If

frustration effects are present, such as, e.g., in random-field
for a distribution with mearix) and dispersiowr. Of course, [28] or Sp'”'g',%ss systems, it may be necessary to t".’lke re-
for a finite number of realizations of a given probability dis- course to additional parameters, or even to adppt a different
tribution S itself will be subject to fluctuations. In what fol- perspective. We shall not deal with this matter in the present
lows we shall always quot& with two significant digits, WOrK-
which will allow us to discern trends while staying reason- ,
ably within reliable margins. Fdr=5 andR=7, 20, 50 and B. Scaling theory
100 (the latter not shown in Fig.)5one has, respectively, The aspects just described are consistent with a scaling
S=-0.67,—-0.41, -0.24, and—0.19. We shall analyze the description given in this section. It leads to further specific
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T R/L

0.015|~ ] GL(R{tH=L""11 Ga(1{t"}). (7)

Here, {t(V}, are the renormalized random variables for the
block labeled bys. It will be assumed later that these are
largely uncorrelated from one blockto another, since the
blocks were initially nonoverlapping. This, and the other ap-
proximations leading to the approximate form Eg). will be
tested by later comparison to the numerical results. Equation
(7) generalizes a result for the pure case. There, Rt
large, G,(RIL,...t*...)c(Ao/A;)FY, where\,/A; is a uni-
versal ratio of eigenvalues of the transfer matrix of the uni-
versal fixed point Hamiltonian of the pure 2D Ising class.
Then

sl BT
1

| skewness = —-0.85
001+

0.005 -

GL(Rt*)xL™ 7 exd —R/&.], (8)

In [G(R)] where£ [ t=1/L In(\,/\,) (= 7wy/L [16]). It is perhaps inter-
esting that the simpledb=2 Migdal-Kadanoff real-space

FIG. 6. Normalized histogram of occurrence of@nfor L=13  renormalization group transformation gives
and R=7. Full vertical arrow atIn G); broken vertical arrow at  G;(R/L,t*)=(t*)Ft, t*=0.544, hence it gives;~0.19.
In(G). Curve is Gaussian fitted to mean and root-mean-square déFhis unsatisfactory representation of the univensal terms
viation of InG, as calculated from respective realization. Skewnesf a nonuniversal* is due to not having allowed the Hamil-
=—-0.85. tonian to adopt its universal form.

We now return to the disordered case and consider the
predictions regarding the form of distribution functions anddevelopment of the probability distributions during the res-
their dependences on the variabRsand L, which will be  calings leading to Eq(6). To allow for correlations it is
discussed subsequently in the light of the numerical resultsnecessary to consider the probability distributieft;} for

The approach combines two main featur@sthe appear-  the whole set of,’s. This is labeled by a parametesetting
ance at large scalds,R>1 of universal aspects related to the scale for all the;’s. The scaling of the distribution is
fixed point Hamiltonian and probability distributions of the given by a mappingV,,:
disordered two-dimensiondRD) Ising model; and(ii) the
crossover fo_rR>L _to Width-limit_ed behavior characteristi_c E(Iﬁ){t} Wb{PEER){t'}}:WL{PEPJ){I'}} (9)
of the one-dimensiondllD) version of the large-scale uni-
versal properties.

The procedure is to first scafetimes by(length rescal-
ing factor b, whereb"=L, which takes the system to an
equivalent linear chain. Th|s step involves the scaling o
joint probability distributions for the appropriate variables. If transformation, aften=In L/In b scalings withn large, W_
one starts from the critical condition of the random 2D Ising o () b
system irrelevant variables scale away, and one approach@’é” have produced a distributioRy,” close to the universal
asymptotically the fixed point Hamiltonian and distribution invariant distributionPy, of the random 2D Ising model,
describing the universality class containing the 2D randonwhich satisfies the fixed point equation
Ising system. This involves a minimal set of relevant random

wherel, | +1 label two successive steps, aw, denoted
iterations of the map. The parametealso scales according

f10 a renormalization group transformation characteristic of
the 2D random Ising model. At the fixed poitit of that

variables{t("} (after n scaling$ and their universal prob- Pt = Wo{PL{ti}}. (10)
ability distributions. The correlation function scales as fol-
lows: Then, employing Eq(7) and taking logarithms to obtain a

sum of random variables on the right-hand side we find that
att*, aftern scalings, the probability distributiog”(«) for

In G, [i.e., for the probability that I, (R,{t;}) takes the
value «] is given by

LRt} =b" G (RIb,{t{"})
==L "G (R/L{t"}) (n=InL/In b).
(6)

We now have an equivalent 1D system with HamiltonianJ da exp Ba) A a)
close to the fixed point Hamiltonian of the disordered 2D
system. Since the correlations in a 1D system are transmitted

through each intermediate space point, a factorization of :f (H dt-)P(f){t»}

G, (R/L,{t(M}) is suggested iR/L>1. This factorization is o

into R/L factors corresponding to successivg L blocks of RIL

the original systenti.e., to single bonds of the renormalized Xexn — InL ex In G(1{t.]. (11
1D systen), labeled bys=1,...,R/L; then Eq.(6) becomes =pn )s];[l LA (Litis]. (1D
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conclusions of this section. No{@) that these conclusions

to a universal function characteristic of the random 2D Isinginclude the result of Ref4] for the 1D case antb) that the
class, since the renormalized bond regions labeled by gachanalogue ofm for the pure case is the universal constant

are each a composition of many original bondst*at
To the extent that the probability distributicF?ff) factor-

izes into partsqgf){ti}s corresponding to the differests (to

be testeglthe result Eq(11) reduces to a form corresponding
to the probability of a sum of random variablés G,):

f da exp(Ba)Aa)=exp(— By In L)[1M(B)]F,
12

with

™(p)= f (H dti) o {ti}s ext A In Gy(Lt )],
(13

where the subscrip indicates that alt;’s are in the region
corresponding to a gives.

—an (while w, s are zerg.

The essential points of the general discussion given above
can be explicitly illustrated in the simple scenario provided
by the renormalization group approachblocking-
decimation, allowing for just the random variables
{t;=tanhBJ;}. This forces the Hamiltonian to remain of
Ising form [so the reservation expressed under Bj).ap-
plies]. We allow for spin rescaling, and for the distribution
function g(t;) for eacht; to develop towards fixed point
universal form under the scaliri®,9], but we ignore corre-
lations. ThenG4(14t;}) is just the renormalized variable
t(™. The scaling ot; will be of the form

t Y =Ry{t{, (19
where the right-hand side is a function Nf, variablest "
comprising the block. Then the distributigi(t (") scales
according to the following simplified version of E(P):

We now explore the consequences of the above results,

and in particular the expected universality aﬂf),
G1(14t;}s) for L (=b") large, for the distributiorv/«) for
In GL(R{ti}s).

Equation(12) shows that”(a— 7 In L) corresponds to the
probability distribution for a sum oR/L independent ran-

Np
gl = f (Hl dtigil%(ti))5<t'—Rb{t§'>}>, (20)

andt’—t0*Y is the resulting change of scale of the distri-
butiong. No scale change occurs if the initial distribution is

dom variablegin G,(1{t;}5)], and has the consequence that,set at the critical value of®). Then, for largel, Eq. (20)
if R/L is large,7(a) approaches a Gaussian distribution with gives the asymptotic approach to the universal fixed point

mean, width, and skewness given by

R
<a>=(t)m—7]|n L, (14
R 1/2
G fape=( 7] 15
R —-1/2
(a— (@)= (a)) = E) s 19

The quantitiesm, w, ands are characteristics of™ (),
which is related as follows to th@on-Gaussiandistribution
function Q™ (a) for the logarithm of the nearest-neighbor
correlation function of thén-times rescaleddisordered 2D
Ising system:

10(8)= | da exprparQl (@), 1

with

QM (a)= f (H dti) 9l {ti}e8(a—In Gy(1{t}e))-
) (18

ForL=Db" large, all these quantities and therefonew, and
s will become universalcharacteristic of the 2D random
Ising class.

The universal character at largeof the distributionA«)
for In G (R) att*, its Gaussian form at large/L, and the

distribution, from whichm, w, s can be obtained. For an
adequate description of this sort, the transformation(E§).
should give the proper zero value of the exponeribr the
pure case: via the Harris criterion this makes the disorder
marginally relevant and ensures that the widthdoes not
scale away. It requirel, =\ 2, wherex,=b'" is the eigen-
value of the pure version of Eq19), linearized about its
fixed point. Procedures of this sort give m not very dif-
ferent from its pure value; an@i) negative skewness

V. NUMERICAL RESULTS AND CONTACT
WITH THE SCALING THEORY

We begin by recalling that the results exhibited in Fig. 2
point out the importance of intrinsic widths in the critical
random systenti.e., att*). This is a central feature of the
scaling theory, through the appearance of universal distribu-
tions. Secondly, we recall that Fig. 5 provides evidence for
Gaussian distributions for 16 at largeR, with narrowing
relative widths afk increases. This is again a prediction of
the scaling theorysee Eq(14) and the discussion preceding
it].

The results already presented in Fig. 3 show that the over-
all dependence of exim G) on L for fixed R approximately
mimics that of(G), apart from a proportionality factor. The
latter is, in turn, numerically very clogsee Fig. 4 to that of
the pure system, given to good approximation by E).

The proportionality factor is, howeveR dependent, as illus-
trated in Fig. 7; this illustrates that, though both quantities
decay exponentially withR as befits an essentially one-
dimensional system, their respective correlation lengths dif-

results(14)—(16) and their interpretation above, are the mainfer, with well-known consequencé$,7,19. The linear de-
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FIG. 7. Semilog plot of decay din G) and I(G) against dis- FIG. 9. Log-log plot of widthA(In G) against distancd/L.

tance for fixedL=5. Broken line gives slope as predicted by con- Line has slope 1/2.
formal invariance /&= m») with »=1/4.

_ _ _ . gests thatR/L is (as predicted the appropriate scaling
pendence of(In G)=a againstR is consistent with the variable in the regime of larg®, L independent of their

scaling resul(14). _ ratio. The curve also gives evidence of the crossover to the
~Also, at largeR, the slope of the measuredversusR line  universal width of the 2D random Ising system for R>1.
is proportional to 1/, in agreement with theR/L)m term In order to further test the scaling theory, and the sugges-

dominant in Eq.(14); and the coefficient is consistent with tion thatR/L is the appropriate scaling variable, we show in

having m not far from its pure value. The comparison of Fig. 10 numerical results for the skewness agaiRAt.

numerical results foxin G) and (G) with corresponding Again the data collapse is satisfactory. The prediction of

pure forms is given in Fig. 8, whef@,,is given by Eq(3)  (R/L)™ %2 behavior[Eq. (16)] for large R/L is again ob-

above. served, and the crossover towards universal 2D behavior is
A further, rather stringent test of the scaling predictions isseen forL=R>1.

the plot in Fig. 9 of numerical data faX(In G) againstR/L.

It can be seen that theR(L)Y? dependence Eq15) is rea- V1. CONCLUSIONS
sonably followed in the larg&®/L regime where it was de-
rived; and the data collapse of results for differ@yt. sug- We have studied properties of the probability distributions

of correlation functions on finite-width strips of the two-
dimensional random-bond Ising model at criticality. We

NN VYU L have shown that even though intrinsic fluctuations in the
0 . ama . “ A . 1 probability distribution do not die away for large samples,
L Lol A the sample-to-sample fluctuations of averaged values do go
- " 4 down approximately with the square root of sample size as
L - i
-0.5 —
B T O T T 177 I T T T 1T T T 1T T T LI
-1 B = 7 0.5 L . . i
L i g . ]
e ] g -f ;
- u n
L i | i i
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FIG. 8. Log-log plot of ratio between averaged correlation func-
tions andGp, againstR/L, the latter as given in Fig. B16,24. FIG. 10. Log-log plot of negative skewnessS againstR/L.
Triangles: data frol{G); squares: data frortin G). Line has slope-1/2.
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the latter increases. Results thus obtained for averaged crittase of ferromagnetic disorder; it remains to be checked
cal correlations have been compared with those for a pureshether additional parameters, or even a change of perspec-
system, and we have found that the values of averaged cotive, will be necessary if frustration effects are present, e.g.,
relations (G) are very close to the corresponding pure-in random-field[28] or spin-glass systems. We plan to un-
system ones, consistent with recent Monte Carlo {28 dertake this task as a continuation of the present work.
The key features of the shape of distributions have been
identified, and a simplified scaling theory has been formu-
lated, which provides the essential aspects of Rhand L
dependence. Numerical data for the probability distributions S.L.A.dQ. thanks the Department of Theoretical Physics
of correlation functions bear out the main predictions of scalat Oxford, where most of this work was carried out, for the
ing theory, in particular the role played by the combinationhospitality, and the cooperation agreement between Aca-
R/L as an appropriate scaling variable. demia Brasileira de Cieias and the Royal Society for fund-
We expect the approach outlined above, which consists iing his visit. Research of S.L.A.dQ. is partially supported by
describing the probability distribution of I& by perturba- the Brazilian agencies Ministe da Ciecia e Tecnologia,
tive corrections to a log-normal forifihus characterized by Conselho Nacional de Desenvolvimento Cieote Tecno-
only three quantities, namely, meaIn G)), width  logico, and Coordenao de Aperfejoamento de Pessoal de
[A(In G)], and skewnessS)) to be appropriate in the present Ensino Superior.
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