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An important point for turbulent transport consists in determining the scaling law for the diffusion coeffi-
cientD due to electrostatic turbulence as a function of the control parameterA'E/vB proportional to the ratio
of the rms electric field to the magnetic field strength times an average frequencyv. It is well known that for
weak amplitudes or large frequencies, the reduced diffusion coefficientD'D/v'Ag has a quasilinearlike~or
gyro-Bohm-like! scaling ~g52!, while for large amplitudes or small frequencies it has been traditionally
believed that the scaling is Bohm-like~g51!. Only recently a percolation critical exponent~g5

7
10! has been

predicted by Isichenko. The aim of this work consists of testing this prediction for a given realistic model. This
problem is studied here by direct simulation of particle trajectories. Guiding center diffusion in a spectrum
of electrostatic turbulence is computed for test particles in a model spectrum, by means of a new parallelized
codeRADIGUET 2 described here. The spectrum involves only one frequencyv but a large number of ran-
domly phased electrostatic plane waves, propagating isotropically in the plane perpendicular to the confining
strong magnetic field. This ensures chaotic trajectories. This set of waves represents standing waves.
Their amplitudes depend on wavelength in order to reproduce thek23 domain of the observed spectrum in
tokamaks. The results indicate a continuous transition for large amplitudes toward a value ofg50.70460.030
which is compatible with the Isichenko percolation prediction.@S1063-651X~96!01907-1#

PACS number~s!: 52.25.Fi, 52.34.Ra, 52.65.Cc

I. INTRODUCTION

Scaling properties for transport laws in hot magnetized
plasmas are presently of huge interest in thermonuclear fu-
sion research, especially in the perspective of building future
large tokamaks such as the ITER~International Thermo-
nuclear Experimental Reactor! project. Although much
progress has been achieved recently, a detailed understand-
ing of the actual mechanisms responsible for the observed
‘‘anomalous transport’’ is far from being reached. The most
probable candidates are, of course, electric and magnetic
fluctuations occurring spontaneously in the plasma, but also
nonlocal transport and self-organization of the plasma.

Here we focus our attention on the local transport proper-
ties of test particles in a given spectrum of electrostatic tur-
bulence, i.e., without trying to determine this spectrum in a
self-consistent way. Electrostatic fluctuations have been
measured in tokamak plasmas@1# and the wave number
spectrum is well known, involving ak23 power-law sub-
range@1,2#. It thus seems interesting to study transport prop-
erties for test particles in such a turbulent spectrum.

Theoretical predictions for the scaling properties of the
diffusion coefficient of test guiding centers in an electrostatic
turbulence are actually very old. Almost 30 years ago, Du-
pree @3# derived, in the domain of low frequencies, a very
nice result from his renormalized turbulence theory~second
cumulant and Corrsin approximation!. He found that in this
limit the well-known Bohm scaling@4# is recovered for the
diffusion coefficient as a function of the magnetic field
strengthD'B2g with

gB51. ~1.1!

More precisely, we haveD'vk
*
22A1g as a function of the

dimensionless amplitudeA'ck
*
E/vB @see Eq. ~2.28!#,

wherek
*
andv are the typical wave vector and frequency in

the turbulent spectrum. The same conclusion has been
reached for a very different model by Taylor and McNamara
@5#, and also by Montgomery@6#.

From a nonlinear treatment of the guiding center equa-
tions, we have derived a general equation describing particle
diffusion in a general spectrum with two different power-law
ranges and we recovered the Bohm scaling in the limit of
high amplitudes or frozen turbulence@7#. The numerical so-
lution actually shows for increasing amplitudes a continuous
transition from a quasilinear scaling~gQL52! to a Bohm
scaling @8#. In previous simulations by Misguich and co-
workers@8–11#, the high-amplitude results have always been
interpreted traditionally as compatible with a Bohm scaling.

We know today that these predictions cannot be true: the
simple reason has been given in Ref.@12#, and is summa-
rized in Sec. II@Eq. ~2.34!#. Actually, in the limit of frozen
turbulence, a percolation mechanism has been invoked by
Isichenko and co-workers@12–15#, which results in a predic-
tion for the diffusion scaling at high amplitude or low fre-
quencies:

g I5
7
10 . ~1.2!

This result appears as a critical exponent for this problem
and should be an exact number. The result~1.2! appears in
Isichenko’s description as the combination
g I512(m1d23)/(d11/n), wherem and d characterize
the static equipotentials~which are the trajectories at zero
frequency!, while n characterizes theparticle dynamicsat
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finite frequency. The exponentm52 describes the probabil-
ity p(s).s2m of occurrence of equipotentials of sizes,
while the exponentd57

4 measures the lengthL(s).sd of
closed fractal equipotentialsof size s. We do not discuss
here this rather idealized description, nor its precise applica-
bility to the present model. Such discussions are left for fu-
ture work.

The aim of the present work consists of building a nu-
merical code for the parallel computer Cray T3D in order to
test this last prediction in the presence of a large number of
waves. It will be checked that it is indeed verified within the
uncertainty bars, in a domain of large amplitudes.

An important question remains: what is the reason for the
general failure of these various Bohm predictions for the
value ofg? The mathematical explanation for the appearance
in frozen turbulence of this Bohm scaling law has been given
in Ref. @7# in the context of the so-called Dupree-Weintock
approximation. The latter is known@16# to involve a
Gaussian-like approximation, along with the Corrsin factor-
ization approximation@17,18#. Actually it has already been
verified that for long times the diffusion process becomes
Gaussian@19#, as expected@20#. For this reason one can
think that it is actually the Corrsin factorization approxima-
tion which could fail in the domain of large amplitudes be-
cause of the occurrence in the observed trajectories of long
quasitrapping events interrupted by long jumps responsible
for the final diffusion. This would surely be the most impor-
tant qualitative conclusion from the present numerical work.

Our present result, which holds in the presence of a very
large number of electrostatic waves, does not agree with a
previous attempt to verify the percolation scaling~1.2!. In a
nice simulation work, Ottaviani@19# has considered an en-
semble of only 64 electrostatic waves, but with stochastic
amplitudes varying in time. He has only confirmed the gen-
eral trend of the result

12gO510.260.04 ~1.3!

but the percolation prediction~1.2! would rather give 12gI5
3
10. The Ottaviani result~1.3!, with the given error bar, thus
excludes the possibility of a percolation scaling in this sys-
tem. It thus seems to be useful to test the Isichenko predic-
tion with a large number of wave vectors.

In Sec. II we present the physical content of the code
RADIGUET 2. We discuss successively the model potential in
Sec. II A, along with the average and fluctuating energy den-
sity ~Sec. II B!. The dimensionless equations of motion de-
rived in Sec. II C involve four spatial cartographies of static
electric field components, with periodic time variation. The
physical meanings of the numerical parameters are discussed
in Sec. II D. In Sec. III we present the structure and the
numerical algorithms involved in our codeRADIGUET 2. The
results are discussed in Sec. IV.

II. EQUATIONS OF MOTION

We describe guiding center motion in a constant and
static magnetic fieldB in the presence of a fluctuating elec-
tric field E~x,t! by the drift equation

d

dt
x~ t !5

c

B2 @E„x~ t !,t…3B#. ~2.1!

The magnetic field is considered to be constant and uniform,
in thez direction, and the electrostatic waves are propagating
isotropically in the perpendicular plane. This equation is es-
sentially nonlinear and allows for chaotic motion as soon as
there are more than two phase velocities@21,22#. A randomly
phased realization of the electrostatic field has to be built
analytically such that it corresponds to ak23 spectrum,
wherek is the wave vector in the plane perpendicular to the
z axis.

A. Choice of the model potential

The spectrum of measured fluctuations in tokamak plas-
mas @1# involves a k23 power-law subrange, already dis-
cussed in@23,24#, which is very near the predictionk217/6

developed in@25# or the predictionk210/3of the renormalized
theory developed in@26#. This is the spectrum we are study-
ing here, in a wave-vector domain limited by~kmin ,kmax!.

The model described here is derived from a preliminary
model we have presented in@8# and published in@9#. We
later presented a more realistic model in@10#, which remains
isotropic in the plane perpendicular toz, in agreement with
experimental observations@2#. The results for particle diffu-
sion in this model have been obtained by means of a first
vectorized codeRADIGUET ~Relative and Absolute Diffusion
in GUiding center Electrostatic Turbulence! and were pub-
lished in @11#.

The discretization of the problem is performed as follows.
The k23 spectrum is obtained by building the electrostatic
potentialF(x,y,t) as a sum of discrete plane waves, with
amplitudesak and frequencyv,

F~x,y,t !.(
k
akcos@k•x2vt1wk#. ~2.2!

The wave vectorsk5(kx ,ky) are distributed isotropically in
the plane perpendicular to the magnetic field, and random
phaseswk associated to each wave. Due to isotropy, this
represents a set of standing waves. An example of equipo-
tential curves is given in Fig. 1.

This potential~2.2! is defined on a square of sideL, sup-
posed to be periodic in the plane (x,y). The components of
the wave vectors are thus integer multiples of the elementary
discretization wave vectork052p/L and are represented by
the wave numbersm andn:

k5
2p

L S nmD . ~2.3!

The spectral domain~kmin ,kmax! is thus determined in the
(kx ,ky) plane by a circular annulusC(N0 ,N) limited by the
radii kmin[N0k0 andkmax5Nk0. For instance, a spectral do-
main of width kmax/kmin512 can be represented by using
N054 andN548, which determines in the annulus a set of
7168 couples of integer values for (n,m), thus 7168 plane
waves~the simple caseN054 andN59 is shown in Fig. 2!.

The sizeL of the periodic box is related to the discretiza-
tion vector byL52p/k0 . It is also related to the character-
istic wavelengths

L5N0lmax5Nlmin ~2.4!
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by means of the parametersN0 andN, which also appear as
discretization parameters of the problem. In order to repre-
sent in a simple way the experimental spectrum which is
very wide in frequencies around the diamagnetic drift veloc-
ity, we only consider here a single frequencyv. Different
phase velocities are associated to the different wave vectors,
the large number of which ensures the existence of chaotic
trajectories, with positive Lyapunov exponent@8,9#. The ap-
pearance of chaos in the systems with three electrostatic
waves has been studied in@21,22#; the three-wave system has
also been studied recently in@27#.

The electrostatic potential~2.2! composed with the above
set of isotropic wave vectors can thus be written in the form

F~x,y,t !5
a

2p (
n52N

N

(
m52N

N
U~n,m;N0 ,N!

~n21m2!a/2

3cosF2p

L
~nx1my!1wn,m2vt G ~2.5!

in terms of the Heaviside functionU(n,m;N0 ,N) which is
unity for (n,m) values located into the annulusC(N0 ,N),

FIG. 1. Equipotential curves in one realization of the electrostatic potentialF~x,y,t50! represented on a spatial grid of 5122 points for
the spectrumN054, N548 with the most probable amplitude of energy fluctuations~9%!. This is the realization used in the present work.
The x axis is horizontal pointing to the right, they axis is vertical, pointing downward.
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and 0 elsewhere. The constanta determines the amplitude of
the turbulence. We have introduced here a set of phaseswn,m
randomly chosen between 0 and 2p. The importance of these
random phases will be discussed below. In~2.5! the k2a

dependence of the potential can be shown to correspond to a
spectral energy density ink2I s where the value ofI s is given
by ~see Appendix A!

I s52a23. ~2.6!

In order to describe ak23 spectrum, we thus choosea53.
We note that, contrary to the model considered in@19#, the
amplitudes of the waves in~2.4! describe a realistick23

spectrum, rather than random amplitudes following an
Ornstein-Uhlenbeck process with a prescribed correlation
time. Moreover, the number of waves is much more impor-
tant here~only 64 waves in@19#!.

After determining the electrostatic potential associated
with the k23 spectrum, we still have to derive analytical ex-
pressions for the electric field which drives the particles. The
two components of the electric field are easily derived from
~2.5!:

E~x,y,t !52“F~x,y,t !

5
a

L (
n52N

N

(
m52N

N S nmD U~n,m;N0 ,N!

~n21m2!a/2

3sinF2p

L
~nx1my!1wn,m2vt G , ~2.7!

where the constanta has still to be expressed in terms of the
physical parameters of the problem. From a numerical point
of view, in order to save memory, it appears to be interesting
@8,9# to split the field ~2.7! into static and time-dependent
factors:

E~x,y,t !5ES~x,y!cos~vt !2EC~x,y!sin~vt !, ~2.8!

which vary as cos(vt) and sin(vt), respectively, and can be
easily tabulated. The spatial cartographies or maps of the
field are

ES~x,y!5
a

L (
n52N

N

(
m52N

N S nmD U~n,m;N0 ,N!

~n21m2!a/2

3sinF2p

L
~nx1my!1wn,mG , ~2.9!

EC~x,y!5
a

L (
n52N

N

(
m52N

N S nmD U~n,m;N0 ,N!

~n21m2!a/2

3cosF2p

L
~nx1my!1wn,mG . ~2.10!

The values of these four scalar functions can be computed
once on theM3M nodes of a spatial grid and kept in
memory. These four spatial maps entirely determine one re-
alization of the electric field. The value ofM is chosen of the
form M52s@N in such a way as to represent correctly the
N smallest wavelengths in the periodic square. The value
M5256 has been considered in Refs.@8–11#; we will use
hereM5512 ~with some numerical checks withM51024!
in order to have a good numerical definition of the electric
field. The evaluation of the electric field at the exact position
of the particle at each time step is performed by using a
16-point interpolation method under a matrix form detailed
in Appendix C.

B. Fluctuations of average energy density

In order to relate the amplitude constanta to a physically
measurable quantity, we evaluate here the average energy
density~per unit volume! defined as

E~ t !5
1

8p
^E2~x,y,t !&x,y5

1

L2 E0
L

dxE
0

L

dy
1

8p
E2~x,y,t !.

~2.11!

The result can be decomposed as follows:

E~ t !5
1

8p S aL D 2s2~N,N0 ,a!@11C~w!cos~2vt !

1S~w!sin~2vt !#. ~2.12!

In the square brackets the term unity represents the time
average over one period:

^E~ t !&v5
1

8p S aL D 2s2~N,N0 ,a! ~2.13!

in terms of the numerical constant

s2~N,N0 ,a!5
1

2 (
n52N

N

(
m52N

N
U~n,m;N0 ,N!

~n21m2!a21 ,

~2.14!

which has to be determined numerically in terms of the spec-
tral index a, and of the parametersN and N0 chosen to
represent the discretization of the spectrum, while the other
terms in~2.12! represent the temporal modulationsC~w! and
S~w! in sin(2vt) and cos(2vt),

FIG. 2. Simplified example of the wave numbersn5kx/k0 ,
m5ky/k0 considered in annulus to represent a discretized spectrum
with N054 andN59.
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C~w!

S~w! J 5
1

s2

1

2 (
n52N

N

(
m52N

N
U~n,m;N0 ,N!

~n21m2!a21

3 H cossinJ ~wn,m1w2n,2m!, ~2.15!

which actually depend on the sum of the random phases. In
this problem the choice of a given realization of random
phases is found to modify the energy modulations.

Let us evaluate the average properties of these energy
modulations in an ensemble ofR realizations of the field,
i.e., of the random phases. We have

^E~ t !&R5
1

8p S aL D 2s2@11^C~w!&R cos~2vt !

1^S~w!&R sin~2vt !#, ~2.16!

where the angle brackets denote the ensemble average. We
expect that the amplitude of these oscillations should go to
zero for a sufficiently large ensemble of realizations:
limR→`^C(w)&R5limR→`^S(w)&R50. Using the random
number generatorRANF of the Cray computer we have ob-
tained Gaussian probability functionsP(C) and P(S) for
both quantitiesC~w! and S~w!, with equal standard devia-
tions d.0.09. We have checked that forR523105 realiza-
tions we obtain an average^C(w)&R.^S(w)&R.1024, while
for a larger number of realizationsR523106, we obtain in-
deed a smaller value for the averagêC(w)&R
.^S(w)&R.1025. From Eq.~2.12! it is simple to see that
the maxima and minima of the time modulations are given
by

EE5
1

8p S aL D 2s2~N,N0 ,a!@16F~w!#, ~2.17!

where the relative energy fluctuation is simply
F(w)5[C2(w)1S2(w)] 1/2. This value has a distribution
over an ensemble of realizations, which fits very well with
the expected result holding for uncorrelated values ofC~w!
and S~w! with vanishing averages: the distribution ofF is
found indeed to be given byP(F)52pFP(C)P(S) with the
most probable valueFp5d. This yields roughly 9% of en-
ergy modulation in the caseN054, N548 in which
s250.108. In summary, the choice of one given realization
of the random phases to perform trajectory calculations im-
plies a given amplitudeF~w! of the energy modulation. The
realization could be chosen to be of minimum energy fluc-
tuations (C.S.F.0) but we rather consider here a real-
ization with most probable energy fluctuations~F.0.09!.

C. Dimensionless equations of motion

The equation of motion~2.1! for guiding centers takes the
following form in the presence of a constant magnetic field
in the z direction and an electric field in the perpendicular
plane:

d

dt S xyD5
c

B S Ey~x,y,t !
2Ex~x,y,t !

D5
c

B S 2“yF~x,y,t !
“xF~x,y,t ! D .

~2.18!

These equations describe a nonautonomous Hamiltonian sys-
tem with one and one-half degrees of freedom. The coordi-
natesx andy are canonically conjugate: the physical space
(x,y) is also the phase space of the system. The Hamiltonian
is

H~x,y,t !52
c

B
F~x,y,t !. ~2.19!

From the expressions~2.8!–~2.10! of the electric field, the
equation of motion takes the form

d

dt S x~ t !
y~ t ! D5

c

B

a

L (
n52N

N

(
m52N

N S m
2nD U~n,m;N0 ,N!

~n21m2!a/2

3sinF2p

L
~nx1my!1wn,m2vt G . ~2.20!

In order to study these equations numerically, we have to use
dimensionless variables. Two reasonable choices are pos-
sible for reducing spatial units~i! either to the characteristic
lengthL of the periodic square as in Ref.@9#, or ~ii ! to the
total number of pixelsM along the periodic square:x̄[Mx/
L, ȳ[My/L ~which vary from zero toM inside the periodic
cell!. The unit length is in this case 1
pixel5L/M5N0lmax/M5Nlmin/M . We also use t̄[(v/
2p)t and w̄n,m5(1/2p)wn,m where the phasesw̄ are chosen
between 0 and 1. In our numerical computations we rather
use the latter variables. The equation of motion~2.20! takes
the dimensionless form

d

dt̄
S x̄~ t !

ȳ~ t !
D 52pbS ēy~ x̄, t̄ !

2ēx~ x̄, t̄ !
D

52pbH S ēy,S~ x̄!

2ēx,S~ x̄!
D cos~2pt !

2S ēy,C~ x̄!

2ēx,C~ x̄! D sin~2pt !J ~2.21!

in which the amplitudeb of turbulence is defined by

2pb[
MA

s~N,N0 ,a!
~2.22!

in terms of the constantA:

A[
2p

L

c

vB
A8p^E~ t !&v;

E

B
. ~2.23!

The four spatial functions represent four ‘‘spatial cartogra-
phies’’ defined by

S ēy,S~ x̄!

2ēx,S~ x̄! D5 (
n52N

N

(
m52N

N S m
2nD U~n,m;N0 ,N!

~n21m2!a/2

3sinF2pS n x̄

M
1m

ȳ

M
1w̄n,mD G ,

~2.24!
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S ēy,C~ x̄!

2ēx,C~ x̄! D5 (
n52N

N

(
m52N

N S m
2nD U~n,m;N0 ,N!

~n21m2!a/2

3cosF2pS n x̄

M
1m

ȳ

M
1w̄n,mD G .

~2.25!

These spatial cartographies are calculated once. The evo-
lution equation~2.21! is solved by a Runge-Kutta algorithm
of fourth order. At each time step in the~j11!th period, we
havet̄5 j1(1,2,...,p)3D t̄, and the right-hand side is evalu-

ated from the values of trigonometric functions of time
~which have been tabulated at each time step!, and from
16-point spatial interpolations between the nodes of the grid
on which the values of the four cartographies~2.24!, ~2.25!
have been memorized:x̄[$r ,s%5(1,2,...,M ). In the same
notations the dimensionless electrostatic potential is~a.u.!

F̄~ x̄,ȳ, t̄ !.ēy,C0~ x̄!cos~2p t̄ !1ēy,S0~ x̄!sin~2p t̄ !,
~2.26!

where we have defined two additional cartographies for the
electrostatic potential,

S ēy,C0~ x̄!

ēy,S0~ x̄! D5 (
n52N

N

(
m52N

N
U~n,m;N0 ,N!

~n21m2!a/2 S cosF2pS n x̄

M
1m

ȳ

M
1w̄n,mD G

sinF2pS n x̄

M
1m

ȳ

M
1w̄n,mD G D , ~2.27!

which will be useful to compute the discrete values of these
fields by a discrete and complex two-dimensional~2D! fast
Fourier transform~FFT! onM3M points~see Appendix B!.

D. Physically measurable parameters

It is important to stress the difference between the dis-
cretization parameters~which vary according to the model!,
and the physical ones~which vary according to the system!.
The amplitude parameterA @Eq. ~2.23!# actually depends on
the lengthL of the periodic cell; the latter only gets a physi-
cal meaning in terms of the wavelengthslmin or lmax by
means of the discretization parametersN and N0 of the
model @see Eq.~2.4!#. On the other side, a physical ampli-
tude parameterA should be defined independently of the
discretization parameters of the model; since large wave-
lengths are dominant in the spectrum~small k!, we will
chooselmax as the reference length to build a nondimen-
sional physical amplitude:

A[
2p

lmax

c

vB
A8p^E~ t !&v5N0A;

E

vB
. ~2.28!

With N054 the amplitude parameter is thusA54A. As far
as the amplitude parameterb @Eq. ~2.22!# is concerned, it is
simply related to the physical amplitudeA by the following
relation: A52pb(N0/M )s(N,N0 ,a). With N054, N548,
we finds50.3288, and withM5512 this yields the relation
b5247.8A or A50.016 14b.

The diffusion coefficient in physical space is defined, as
usual, from the asymptotic limit of the variance of the fluc-
tuating part of the displacement since the initial time
dx(t)[x(t)2x~0!2^x(t)2x~0!&:

D5 lim
t→`

^dx2~ t !&
t

. ~2.29!

This definition coincides with the one used in our previous
work @Eq. ~16! in Ref. @9# #. It includes the sum of fluctua-

tions in both spatial directions: ^dx2(t)&5^dx2(t)&
1^dy2(t)&. The averagê & is computed numerically by an
average over~64! initial conditions,and by a time average
over each trajectory~the idea of performing time averages
along trajectories, which is usual in statistical mechanics, has
been suggested to us by De Leener!. The result of the simu-
lation is the numerical diffusion coefficient derived from the
equations of motion~2.21!:

D̄5 lim
t̄→`

^d x̄2~ t̄ !&

t̄
. ~2.30!

We determine this quantity by plotting the numerical curve
of ^d x̄2( t̄)& vs time, up tot̄5Q ~see Fig. 3!: the first part of
this curve~let us say up toQ/2! is generally quite smooth
and linear since it represents the average not only on the 64
initial conditions, but also a time average over many inter-
vals of duration t̄ ~smaller thanQ/2! displaced ‘‘like a
comb’’ along the whole trajectory. These technical points are
explained in Sec. III. We determineD̄ by linear regression in
the domain~0,Q/2!. The example presented in Fig. 3 corre-
sponds toA5160 and needs for 2.43104 s of CPU time on
64 processors of the Cray T3D computer. The calculation is
repeated for several sets of initial conditions, and for differ-
ent values ofA, with different time steps.

The final interpretation of this result consists of calculat-
ing a dimensionless coefficient~reduced by means of the
characteristic lengthlmax and time 2p/v! by means of

D[
2p

vlmax
2 D5N0

2D̄/M2. ~2.31!

The aim of the present work consists of determining the ex-
ponentg describing the dependence of the diffusion coeffi-
cient

D~A![
2p

vlmax
2 D~A!.Ag ~2.32!
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as a function of the amplitude parameterA in the low-
frequency or high-amplitude regime. From~2.28! the above
scaling law implies

D~A!.vAg.v12gSEBD g

. ~2.33!

At low values of the amplitude, we have checked previously
that a quasilinear scaling is obtained in numerical simula-
tions@8–10#, with gQL52; an elegant analytical derivation of
this expected result has been given for the discrete case in
Ref. @28#. This B22 behavior also corresponds to the gyro-
Bohm scaling. We have seen in the Introduction that it has
been traditionally believed@3,5–7# since the first work by
Dupree@3# ~based on the truncature by the Corrsin assump-
tion and second cumulant approximation! that the high-
amplitude scaling could be a Bohm-like scaling,g51. How-
ever, Grusinov, Isichenko, and Kalda@12# have remarked
that, in the limit of zero frequency where the Hamiltonian
~2.19! becomes time independent, the system reduces to only
one degree of freedom, and the diffusion coefficient~2.32!
should strictly go to zero. This imposes

j[12g.0, ~2.34!

i.e., the exponentg should be strictly smaller than unity,
g,1. A strict Bohm regime thus appears as impossible in
this case. For low frequencies, the percolation prediction
@12–15# is gI5

7
10 or jI5

3
10. In Sec. IV we will measure the

value ofg by plotting the curve lnD(A).g ln(A) in loga-
rithmic scale, in a domain of sufficiently large values of the
amplitudeA.1. A similar and related research program is in
progress in Brussels, with a different spectrum@29#.

III. STRUCTURE OF THE PARALLEL CODE RADIGUET 2

Although the name remains fundamentally the same as in
our previous work@10,11#, the codeRADIGUET 2 is a fully
new code for parallel computer Cray T3D. This code in-
volves essentially two parts.

The first part computes thecartographiesof the potential
~2.27! and of the components~2.24!, ~2.25! of the electric
field in a given realization. These results are kept in memory
on a spatial grid ofM3M points, withM5512; the results
have been checked to agree with a more precise grid
M51024 and a valueM5256 is almost sufficient. This pro-
gram should be used only once in principle, or repeated to
obtain different realizations of the fields. This calculation can
be performed by a direct summation, or by the complex two-
dimensional FFT presented in Appendix B. For a direct cal-
culation withNP processors, we defineNP vertical domains
in the cartography, to be computed by the various processors.
Each processor has to calculate a quadruple loop, one for
each component of the wave vector, one for each spatial
dimension to be scanned. Then the instructions of the com-
munication librarySHMEM allow us to collect these results
and build the full cartography on one ‘‘master processor.’’
The result is kept in permanent memory in aUNIX file. For
more extended cartographies, we have to use a complex FFT
of the functionsh̃l,n,m defined in~B8!.

The main part of the program is the calculation of the
trajectories ofN particles ~i51,2, . . . ,N!. In all cases, we
useNP5N elementary processors~in generalN564!, each
one for a different trajectory. In simple cases where the four
cartographies of the electric field can be kept in the memory
of each processor~8 Mw!, it is sufficient to perform each
trajectory calculation separately. An individual label is first
attributed to each processor, and the four cartographies
~2.24!, ~2.25! of the electric field are charged into the
memory. A simple loop evaluates a table of values of cos~t!
and sin~t! for the values oft5vt representing every time
step in a period.

A set of N initial conditions $xi(0),yi(0)% is chosen,
equally spaced in the whole elementary cell; each initial con-
dition is introduced in its processing element~PE!. The re-
sults are actually rather sensitive to this choice: we observe
that a slight displacement of the whole set of initial condi-
tions may result in a deviation which can be as large as 10%
on the diffusion coefficient. This seems to be the fundamen-
tal uncertainty of the results: we thus consider in each real-
ization an ensemble of at least four sets of initial conditions,
and repeat the calculation for each one, with different values
of the amplitude.

We solve the equations of motion~2.21! over a large
numberQ of elementaryperiods~2000 or more!. The num-
ber ofelementary time steps Nstepin each period is chosen in
such a way as to ensure that the displacement during one
time step remains much smaller than the smaller wavelength
of the spectrum. The time step has thus to be reduced for
large amplitudes where the motion becomes more rapid; we
use the conditionNstep5103A which is checked to ensure a
good convergence of the result. We explore the domain of
values of the amplitudeA54, . . .,400. With a spectrum
N054, N548 this means a domain of values of

FIG. 3. Example of a diffusion curvêd x̄2( t̄)& ~in unitsM2 or
square cells! vs t̄ ~expressed in periods! up to t̄5Q. Due to the
good statistics obtained by the ‘‘comb average,’’ the first half of the
curve is rather straight and indicates a classical diffusive behavior.
The slope of this line is the diffusion coefficientD̄. Here the am-
plitude is A5160. The number of time steps per period is
Nstep543104 resulting in 83107 iterations on each of the 64 par-
ticles. Each run lasts between 1 and 17 h on 64 processors of the
Cray T3D computer.
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A51,... ,100 and thus values ofNstep ranging from 103 to
105 time steps per period.

The trajectories x~t! andy~t! are obtained by solving the
equations of motion~2.21! with a fourth-order Runge-Kutta
algorithm. It does not seem that a symplectic algorithm
would modify the result which consists in the long time be-
havior of the diffusion coefficient~2.30!: the latter is indeed
a global statistical quantity involving the average of the
mean square displacement over four different sets of 64 ini-
tial conditions. The equations of motion are solved every
time step inside a double loop: one for every periodj and
one for every time stepk inside each period. After each
period j we collect the stroboscopic positionsxi( j ) andyi( j )
and we calculate the quadratic displacement of each particle
i since the origin of time:

r i
2~ j ![@xi~ j !2xi~0!#21@yi~ j !2yi~0!#2. ~3.1!

In order to extract from these trajectories better statistical
information, we make use of the stationary property by per-
forming on each trajectory atime average. At each period,
the present position of the particle can indeed be considered
as a new initial position. Thus for each particlei , in its pro-
cessor, we calculate the time average of~3.1!:

Ri
2~ j ![

1

Q112 j (
l5 j

Q

$@xi~ l !2xi~ l2 j !#2

1@yi~ l !2yi~ l2 j !#2%. ~3.2!

This amounts to considering a time delay ofj periods~let us
say a ‘‘comb’’ !, and to performing the average over all these
intervals defined by displacing the comb of fixed lengthj
from one tooth to the next one, i.e., displacing the initial
point from one period to the next one, up to the end of the
run (l5Q). The final quantity to be evaluated is themean
square displacement:

^dx2~t!&5Š@x~t!2x~0!2^x~t!2x~0!&#2‹

5^@x~t!2x~0!#2&2^x~ t !2x~0!&2, ~3.3!

where the average over theN564 trajectories, ^ . . . &
[1/N( i51

N •••, can only be calculated after collecting all tra-

jectory results on the master processor. The average of the
first term in ~3.3! is simply the average over trajectories of
the expression~3.2!. The second term in~3.3! takes into
account any possible average motion of the ensemble of par-
ticles ~barycentric motion!; it can also be evaluated by a
comb averageover time; this average involves the following
average displacements over the ensemble of particles:

X~ j ![
1

N (
i51

N

xi~ j !, Y~ j ![
1

N (
i51

N

yi~ j ! ~3.4!

on which a comb average can still be applied. We thus fi-
nally evaluate the mean square displacement as follows:

W~ j ![^d x̄2~ j !&5
1

N (
i51

N

Ri
2~ j !2

1

Q112 j

3(
l5 j

Q

$@X~ l !2X~ l2 j !#21@Y~ l !2Y~ l2 j !#2%

~3.5!

by using instruction of theSHMEM library, and keep the re-
sults as a function of the discrete timej in a UNIX file.

IV. RESULTS AND DISCUSSION

An example of such a curve is given in Fig. 3. One can
see that the first part of the curve~let us say the first half of
the total duration of the run, where the statistics is largely
better! does not present important oscillations~as observed
in the absence ofcomb averages!, and appears as rather lin-
ear. The diffusion coefficient is computed as the average
slope of this first part of the curve, which directly yields a
numerical results for the diffusion coefficient~2.30! at a
given amplitude.

These calculations are repeated for various initial condi-
tions and for various values of the amplitudeb or A. We
consider here a realization with themost probable amplitude
of the energy fluctuations~see Sec. II B!. The final plot of
numerical results ln~D! vs ln(A) @see~2.31!, ~2.28!# is given
in Fig. 4 in the large amplitude domain, and compared with
the classical Bohm prediction ln~Dth!, as calculated for this
spectrum in Ref.@7#. The latter prediction describes a final

FIG. 4. Reduced diffusion co-
efficient D(A) in log-log plot.
Black squares represent the
Bohm-like theoretical results cal-
culated in Refs.@8,9# from the
nonlinear diffusion equation de-
rived in Ref. @7#. Open squares
represent the numerical results
from the present simulation. The
dispersion of the results is ob-
tained by changing slightly the
whole set of initial conditions,
which results in a possible 10%
error onD. This dispersion is used
to evaluate the error bar on the
slopeg of this curve.
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linear increase with a slopegB51. We observe a deviation of
the numerical results from these theoretical predictions and a
trend toward an ‘‘asymptotic slope.’’ A linear regression or
least-squares analysis in the domain of large amplitudes
A580–400 yields the final result for the exponentg defined
in ~2.32!,

g50.70460.030. ~4.1!

This is the main result of the present paper: this value~4.1! is
fully compatible with the Isichenko prediction@12–15# gI5
7
10.
The result of the linear regression calculation is shown in

Fig. 5. It is worthwhile to make a comment about the evalu-
ation of the error bar in~4.1!: it actually represents the math-
ematicalprobable error@30,31# on the~least-squares! slope
of the curve ln~D! vs ln(A), computed from the obtained set
of points ~four points at each value ofA: A580, 160, 288,
400!, without any interpretation of the data according to the
number of particles, etc., as has been performed in@19#. We
think it is the most direct evaluation of the error on the slope
of a linear regression result; it can be checked that the en-
semble of 16 numerical points are correctly inserted inside
the bundle of the four straight lines obtained with minimum
and maximum values of the two coefficients yielded by the
linear regression analysis: this constitutes a graphical test of
the validity of the error bar given in~4.1!.

In conclusion we see that the spectrum we have consid-
ered, with the discretizationN054, N548, andM5512 al-
ready allows us to observe the percolation exponent in the
domainA580–400, instead of the Bohm exponentgB51.
These are, however, not asymptotically large amplitudes.
Moreover, the potential does not seem to involve sufficiently
small wavelengths~lmin/lmax5

1
12! to exhibit fractal equipo-

tential curves as invoked in the Isichenko description. For
these reasons we think it necessary to study a much wider
spectrum, with a better discretization and thus a much larger
number of waves. In order to keep a sufficient description of
the smaller wavelengths, the dimension of the spatial gridM
should be increased. Of course in order to keep in memory
the four cartographies ofM3M points, we have to use the
full memory of the 64 processors available for long CPU
calculations in the Cray T3D. This program is in progress
and we plan to publish the results in the near future.
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APPENDIX A: SPECTRAL INDEX a
OF THE DISCRETIZED POTENTIAL

We present here the demonstration of the important rela-
tion ~2.5! which expresses the indexa appearing in the elec-
trostatic model potential~2.4! in terms of the spectral index
I S of the energy density. The latter energy densityE ~per unit
volume! is written in terms of the spectral energy density
Ek' by the same conventional form as in fluid turbulence,

E.E dk'Ek'.E d2k'

1

k'

Ek' ~A1!

and the spectral indexI S is defined by the exponent of the
power lawEk';k

'

2I S. Of course we have

E.E d2k'k'

2~ I S11! . ~A2!

Let us now deduce a similar relation from the expression
~2.5! of the model potential, i.e., from

FIG. 5. Result of the linear regression calcu-
lation on the 16 numerical results forD(A) in
log-log scale, obtained from the simulation. The
resulting straight line has a slopeg50.704.
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F~x,x,t !5
a

2p (
n

(
m

Fn,mcos@k•x1Ck~ t !#, ~A3!

where k•x5(2p/L)(nx1my), Ck(t)5wn,m2vt, and
Fn,m5(n21m2)2a/2.k2a, in which only the exponent of
the wave vectoruk'u[(2p/L)(n21m2)1/2 is of importance
for our present purpose. The two components of the electro-
static fieldE52“F can thus be written

E~x,y,t !5
a

L (
n

(
m

Fn,mS nmD sin@k•x1Ck~ t !#.

~A4!

The energy density per unit volume is obtained by averaging
over the periodic cell the square of the modulus of the elec-
tric field ~2.11!. From ~A4! we immediately see thatE2 in-
troducesk'

222a . By substituting~A4! into ~2.11!, one de-
duces the complete result:

8pE~ t !5S aL D 2(
n

(
m

1

~n21m2!a21

3
1

2
$11cos@wk1w2k22vt#%. ~A5!

The announced result~2.6! is deduced after comparing the
exponents ofk' in the double summation~1/L2!(( of ~A5!,
and in the equivalent double integral in~A2!. The compari-
son yieldsI S1152a22, thus~2.6!. In the particular case of
the experimental spectrumI S53 we have to considera53 in
the discretized potential.

APPENDIX B: DISCRETE AND COMPLEX FFT
IN TWO DIMENSIONS

The computation of the various cartographies~2.24!,
~2.25!, ~2.27! on a spatial grid ofM3M points can be per-
formed by a direct summation. However, to study several
cartographies, or to build more precise cartographies~large
number of waves and/or large number of grid points! it be-
comes necessary to use FFT in 2D. Complex FFT are more-
over useful because the sin and cos cartographies appear, by
pairs, as the real and imaginary parts of the same transform.

We define as usual the discrete 2D Fourier transform on a
grid of M3M points. Let us consider a periodic function of
space

f r ,s[ f ~ x̄5r ,ȳ5s!5 (
ne50

M21

(
me50

M21

f̃ ne ,me
ei ~2p/M !~ner1mes!,

~B1!

which is periodic inx̄5r and in ȳ5s, with periodM . Its
discrete and complex FT is

f̃ ne ,me
5

1

M2 (
r50

M21

(
s50

M21

f r ,se
2 i ~2p/M !~ner1mes!. ~B2!

A difficulty comes from the fact that the spatial function
~B1! is defined by summations over a square ofM3M ‘‘ex-
tended’’ values of wave numbersme and ne , while our
physical cartographies are defined by summation over a cen-

tered annulus of values ofn andm. In order to put summa-
tions of the type~2.5! in the form ~B1!, ~B2!, we split the
annulusC(N0 ,N) in the (n,m) plane into four parts and
reject the four parts at the four inner corners of the extended
grid (ne ,me) involvingM3M points~see Fig. 6!, by means
of the following transform:

ne5Tnn[ Hn if n>0
n1M if n,0, ~B3!

me5Tmm[ Hm if m>0
m1M if m,0. ~B4!

We also need the inverse transformsQne
andQme

used to
conserve the amplitude of the waves:

n5Qne
ne[ Hne2M if ne>M /2

ne if ne,M /2, ~B5!

m5Qme
me[ Hme2M if me>M /2

me if me,M /2. ~B6!

We note that the exact value ofne or me betweenN and
M2N is of no practical importance since all functions on
these points will be cut down by the Heaviside function.

By using these transformations in the wave numbers’ dis-
crete space, we may transform numerically any summation
of an arbitrary functiong(n,m) in the small annulus, to an
extended summation in the wholeM3M plane:

FIG. 6. Extended wave number space (ne ,me) to a grid ofM2

points to satisfy FFT requirements. The original annulus describing
the spectrum has been split into four parts rejected to the four inner
corners of the extended grid. The summation~B7! can be performed
from 0 toM21 due to the precise report of the segmentsne50 and
me50. For clarity we have presented the simplified exampleN054
andN59 as in Fig. 2, andM532.
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(
n52N

N

(
m52N

N

g~n,m!5 (
ne50

M21

(
me50

M21

g~Qne
ne ,Qme

me!.

~B7!

The new Heaviside functions in the extended space are of
course zero, except in the four parts of the annulus. In this
way we have built formally a periodic function of (ne ,me) in
the wave number space.

We can now write down the cartographies~2.27! of the
potential in a form suitable for discrete FFT, by introducing

S h̃a,n,m

h̃b,n,m

h̃g,n,m

D [S n
m
1
D Q~n,m;N0 ,N!

~n21m2!3/2
eiwn,m ~B8!

from which we can write~2.27! as

S ēy,C0~ x̄5r ,ȳ5s!

ēy,S0~ x̄5r ,ȳ5s! D
5SReImD (

n52N

N

(
m52N

N

h̃g,n,me
i ~2p/M !~nr1ms! ~B9!

and from~B7!

S ēy,C0~ x̄5r ,ȳ5s!

ēy,S0~ x̄5r ,ȳ5s! D
5SReImD (

n50

M21

(
m50

M21

h̃g,Qn,Qme
i ~2p/M !~nr1ms!, ~B10!

where we have applied the inverse transformQ to the func-
tion h̃. We have also suppressed the subscripts inne andme ,
and have taken into account the fact that the exponent is
periodic inn of periodM so that the transformation does not
modify it.

It is simple to see that~2.24! and~2.25! can be written in
the same way:

S ēy,C~ x̄5r ,ȳ5s!

ēy,S~ x̄5r ,ȳ5s! D
5SReImD (

n50

M21

(
m50

M21

h̃b,Qn,Qme
i ~2p/M !~nr1ms!, ~B11!

S ēx,C~ x̄5r ,ȳ5s!

ēx,S~ x̄5r ,ȳ5s! D
5SReImD (

n50

M21

(
m50

M21

h̃a,Qn,Qme
i ~2p/M !~nr1ms!. ~B12!

These expressions of the two cartographies of the potential
~B10! and the four cartographies of the field~B11!, ~B12! are
ready for a discrete complex FFT calculation and therefore
for space-discretized evaluation of the space- and time-
dependent electrostatic potential and components of the field.
The spatial interpolation is detailed in Appendix C.

APPENDIX C: INTERPOLATION WITHIN 16 POINTS
ON A GRID

The cartographies~2.24!, ~2.25!, ~2.27! are continuous
functionsV(x,y) of two variables (x,y) from which we keep
in memory the sampled valuesVi , j on a spatial grid (i , j ) of
M3M points. At each time step we have to compute these
fields at intermediate positions, and we use a 16-point inter-
polation method described below in two dimensions.

This simple and explicit method is based on Lagrange’s
classical formula@32# for interpolations of a function of one-
variableP(x) between four pointsx1 ,...,x4 :

P~x!5P~x1!
~x2x2!~x2x3!~x2x4!

~x12x2!~x12x3!~x12x4!

1P~x2!
~x2x1!~x2x3!~x2x4!

~x22x1!~x22x3!~x22x4!

1P~x3!
~x2x1!~x2x2!~x2x4!

~x32x1!~x32x2!~x32x4!

1P~x4!
~x2x1!~x2x2!~x2x3!

~x42x1!~x42x2!~x42x3!
. ~C1!

This result is generalized here to two dimensions with a
simple result in matrix form for interpolations between 16
points on a grid. This set of 434 points is displaced on the
complete grid ofM3M points Vi , j in such a way as to
ensure that the unknown point (x,y) is inside the central
square. We define the originx505y at the upper left corner
of this central square~see Fig. 7!. For simplicity we use
retrograde axis~x axis pointing to the right, andy axis point-
ing downwards!, which points in the same directions as the
matrix indices j and i , respectively. The distanceDx

FIG. 7. Orientation of the new axisOx̄ andOȳ after translation
to the upper left corner of the elementary grid cell containing the
position of the particle, i.e., the point where the interpolation has to
be performed. This orientation of the axis allows us to make a direct
link with the matrix elementsVi , j representing the 16 points to be
interpolated in the memorized cartography~2.24!, ~2.25!, or ~2.27!.
The first ‘‘vertical’’ interpolation~C3! evaluates the fieldPj (y) at
the pointsA, B, C, andD for j521,0,1,2, respectively. The second
interpolation~C8! evaluates the fieldPP(x,y) at the point (x,y).
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5Dy[L/M between two points on the grid is taken equal to
unity here. The known valuesVi , j on the 16 points are de-
noted by

Vi , j[S V21,21 V21,0 V21,1 V21,2

V0,21 V0,0 V0,1 V0,2

V1,21 V1,0 V1,1 V1,2

V2,21 V2,0 V2,1 V2,2

D , ~C2!

with the conventioni , j521,0,1,2.
First of all we perform a vertical interpolation on each

column j , in a pointPj (y) of ordinate 0<y<1, i.e., between
V0,j andV1,j . By using~C1! we find

Pj~y![„P21~y! P0~y! P1~y! P2~y!…

5Ci~y!Vi , j5„C21~y! C0~y! C1~y! C2~y!…

3S V21,21 V21,0 V21,1 V21,2

V0,21 V0,0 V0,1 V0,2

V1,21 V1,0 V1,1 V1,2

V2,21 V2,0 V2,1 V2,2

D ~C3!

in terms of the known 434 matrix and the vectorCi(y) of
the four polynomials

C21~z![2 1
6z

31 1
2z

22 1
3z, ~C4!

C0~z![ 1
2z

32z22 1
2z11, ~C5!

C1~z![2 1
2z

31 1
2z

21z, ~C6!

C2~z![ 1
6z

32 1
6z, ~C7!

with the obvious and necessary property:
C21(z)1C0(z)1C1(z)1C2(z)51.

Now, from these four values at points of abscissax5
21,0,1,2 and ordinatey, we perform a~horizontal! interpo-
lation on the values ofPj (y) at the point 0<x<1 by using
the same Lagrange formula~C1!. We obtain the interpolated
value PP(x,y) at the point (x,y) in the form of a scalar
product:

PP~x,y!5Cj~x!Pj~y!5Cj~x!Ci~y!Vi , j . ~C8!

More explicitly, we find the interpolated value in the form of a trace of a product of two 434 matrices:

PP~x,y!5M j ,i~x,y!Vi , j . ~C9!

The first one is given by the four known polynomials inx andy,

Mj,i~x,y![Cj~x!Ci~y!5SC21~x!C21~y! C21~x!C0~y! C21~x!C1~y! C21~x!C2~y!

C0~x!C21~y! C0~x!C0~y! C0~x!C1~y! C0~x!C2~y!

C1~x!C21~y! C1~x!C0~y! C1~x!C1~y! C1~x!C2~y!

C2~x!C21~y! C2~x!C0~y! C2~x!C1~y! C2~x!C2~y!

D, ~C10!

and the second matrix in the result~C9! is simply the matrixVi , j of the 16 values surrounding the interpolation point (x,y).
This simple and compact result~C9! has not been given explicitly in Ref.@31#.

The explicit form of the result~C9! is

PP~x,y!5C21~y!$C21~x!V21,211C0~x!V21,01C1~x!V21,11C2~x!V21,2%

1C0~y!$C21~x!V0,211C0~x!V0,01C1~x!V0,11C2~x!V0,2%

1C1~y!$C21~x!V1,211C0~x!V1,01C1~x!V1,11C2~x!V1,2%

1C2~y!$C21~x!V2,211C0~x!V2,01C1~x!V2,11C2~x!V2,2%. ~C11!
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