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Low-frequency percolation scaling for particle diffusion in electrostatic turbulence
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An important point for turbulent transport consists in determining the scaling law for the diffusion coeffi-
cientD due to electrostatic turbulence as a function of the control paraet&’ wB proportional to the ratio
of the rms electric field to the magnetic field strength times an average frequeticis well known that for
weak amplitudes or large frequencies, the reduced diffusion coeffibre@l/ v~ A has a quasilinearlikéor
gyro-Bohm-like scaling (y=2), while for large amplitudes or small frequencies it has been traditionally
believed that the scaling is Bohm-like=1). Only recently a percolation critical exponeft=15) has been
predicted by Isichenko. The aim of this work consists of testing this prediction for a given realistic model. This
problem is studied here by direct simulation of particle trajectories. Guiding center diffusion in a spectrum
of electrostatic turbulence is computed for test particles in a model spectrum, by means of a new parallelized
codeRADIGUET 2 described here. The spectrum involves only one frequemdyut a large number of ran-
domly phased electrostatic plane waves, propagating isotropically in the plane perpendicular to the confining
strong magnetic field. This ensures chaotic trajectories. This set of waves represents standing waves.
Their amplitudes depend on wavelength in order to reproducétfielomain of the observed spectrum in
tokamaks. The results indicate a continuous transition for large amplitudes toward a vat6.304+0.030
which is compatible with the Isichenko percolation predictid®1063-651X%96)01907-1

PACS numbe(s): 52.25.Fi, 52.34.Ra, 52.65.Cc

I. INTRODUCTION vg=1. 1.1

Scaling properties for transport laws in hot magnetizedviore precisely, we hav®~ wk, ?A*” as a function of the
plasmas are presently of huge interest in thermonuclear fudimensionless amplitudeA~ck, E/wB [see Eq.(2.29],
sion research, especially in the perspective of building futurevherek, andw are the typical wave vector and frequency in
large tokamaks such as the ITEfternational Thermo- the turbulent spectrum. The same conclusion has been
nuclear Experimental Reacjorproject. Although much reached for a very different model by Taylor and McNamara
progress has been achieved recently, a detailed understaré], and also by Montgomer}6].
ing of the actual mechanisms responsible for the observed From a nonlinear treatment of the guiding center equa-
“anomalous transport” is far from being reached. The mosttions, we have derived a general equation describing particle
probable candidates are, of course, electric and magnetdiffusion in a general spectrum with two different power-law
fluctuations occurring spontaneously in the plasma, but alseanges and we recovered the Bohm scaling in the limit of
nonlocal transport and self-organization of the plasma. high amplitudes or frozen turbulen€é]. The numerical so-

Here we focus our attention on the local transport properiution actually shows for increasing amplitudes a continuous
ties of test particles in a given spectrum of electrostatic turtransition from a quasilinear scalingy =2) to a Bohm
bulence, i.e., without trying to determine this spectrum in ascaling [8]. In previous simulations by Misguich and co-
self-consistent way. Electrostatic fluctuations have beemvorkers[8—11], the high-amplitude results have always been
measured in tokamak plasmés] and the wave number interpreted traditionally as compatible with a Bohm scaling.

spectrum is well known, involving & 3 power-law sub- We know today that these predictions cannot be true: the
range[1,2]. It thus seems interesting to study transport prop-simple reason has been given in Ref2], and is summa-
erties for test particles in such a turbulent spectrum. rized in Sec. I[Eq. (2.34)]. Actually, in the limit of frozen

Theoretical predictions for the scaling properties of theturbulence, a percolation mechanism has been invoked by
diffusion coefficient of test guiding centers in an electrostaticlsichenko and co-workefd 2—15, which results in a predic-
turbulence are actually very old. AlImost 30 years ago, Dution for the diffusion scaling at high amplitude or low fre-
pree[3] derived, in the domain of low frequencies, a very quencies:
nice result from his renormalized turbulence thesgcond
cumulant and Corrsin approximatiprHe found that in this v =
limit the well-known Bohm scaling4] is recovered for the
diffusion coefficient as a function of the magnetic field This result appears as a critical exponent for this problem
strengthD~B ™7 with and should be an exact number. The re§ulp) appears in

Isichenko’s description as the combination

v=1—(pu+d-3)/(d+1/v), where u and d characterize
*Electronic address: reuss@drfc.cad.cea.fr the static equipotential§which are the trajectories at zero
"Electronic address: misguich@drfc.cad.cea.fr frequency, while v characterizes thgarticle dynamicsat
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finite frequency. The exponenpt=2 describes the probabil- The magnetic field is considered to be constant and uniform,
ity p(s)=s # of occurrence of equipotentials of siz&2  inthez direction, and the electrostatic waves are propagating
while the exponenti=Z measures the length(s)=s" of isotropically in the perpendicular plane. This equation is es-
closedfractal equipotentialsof size s. We do not discuss sentially nonlinear and allows for chaotic motion as soon as
here this rather idealized description, nor its precise applicathere are more than two phase velocifig§,22. A randomly
bility to the present model. Such discussions are left for fuphased realization of the electrostatic field has to be built
ture work. analytically such that it corresponds toka® spectrum,
The aim of the present work consists of building a nu-wherek is the wave vector in the plane perpendicular to the
merical code for the parallel computer Cray T3D in order toz axis.
test this last prediction in the presence of a large number of
waves. It will be checked that it is indeed verified within the A. Choice of the model potential
uncertainty bars, in a domain of large amplitudes. . i
An important question remains: what is the reason for the 1€ spectrum of rpgeasured fluctuations in tokamak plas-
general failure of these various Bohm predictions for theMas[1] involves ak™ power-law subrange, ?"r_eaq3lf7,g's'
value ofy? The mathematical explanation for the appearanc&€Ussed in23,24, which is very neles;sthe predictiok -
in frozen turbulence of this Bohm scaling law has been giverfleéveloped in25] or the predictiork of the renormalized
in Ref. [7] in the context of the so-called Dupree-Weintock theory developed ifi26]. This is the spectrum we are study-
approximation. The latter is knowr16] to involve a Ing here, in a wave-vector domain limited Oinin Kma)-
Gaussian-like approximation, along with the Corrsin factor- 1he model described here is derived from a preliminary
ization approximatioi17,18. Actually it has already been Model we have presented [B] and published ir{9]. We
verified that for long times the diffusion process becomesater presented a more realistic mode[10], which remains
Gaussian[19], as expected20]. For this reason one can |sotrop|c in the plane perpendlcularZoln agreement Wlth
think that it is actually the Corrsin factorization approxima- 8xperimental observationg]. The results for particle diffu-
tion which could fail in the domain of large amplitudes be- Sion in this model have been obtained by means of a first
cause of the occurrence in the observed trajectories of lonjectorized cod®ADIGUET (Relative and Absolute Diffusion
quasitrapping events interrupted by long jumps responsibl@ GUiding center Electrostatic Turbulencand were pub-
for the final diffusion. This would surely be the most impor- lished in[11]. _
tant qualitative conclusion from the present numerical work. The_sellscretlzatlon of the problem is performed as follows.
Our present result, which holds in the presence of a ver)The k _ spectrum is obtained by building the electrostetlc
large number of electrostatic waves, does not agree with Botential ®(x,y,t) as a sum of discrete plane waves, with
previous attempt to verify the percolation scalifig2). Ina  amplitudesa, and frequency,
nice simulation work, Ottavianil9] has considered an en-
semble of only 64 electrostatic waves, but with stochastic @(x,y,t):z acodk-x— wt+ ¢, ]. (2.2
amplitudes varying in time. He has only confirmed the gen- k

eral trend of the result o _ _ _
The wave vector&=(k,,k,) are distributed isotropically in

1—vo=+0.2+0.04 (1.3 the plane perpendicular to the magnetic field, and random
. o ] phasesg, associated to each wave. Due to isotropy, this
but the percolation predictiofl.2) would rather give £ %= represents a set of standing waves. An example of equipo-

. The Ottaviani r_es_ql(l.3), with the given error bar, thus tential curves is given in Fig. 1.

excludes the possibility of a percolation scah_ng in this SYS-  This potential(2.2) is defined on a square of side sup-
tem. It thus seems to be useful to test the Isichenko predigypsed to be periodic in the plang,y). The components of
tion with a large number of wave vectors. the wave vectors are thus integer multiples of the elementary

In Sec. Il we present the physical content of the codejjscretization wave vectd,=27/L and are represented by
RADIGUET 2. We discuss successively the model potential inghe wave numbersn andn:

Sec. Il A, along with the average and fluctuating energy den-
sity (Sec. Il B. The dimensionless equations of motion de- 27 (n

rived in Sec. Il C involve four spatial cartographies of static =T ( )
electric field components, with periodic time variation. The

physical meanings of the numerical parameters are discusse.q] : . . .
: e spectral domairtk i, ,Kmna 1S thus determined in the
in Sec. IID. In Sec. lll we present the structure and the(kx,ky) plane by a circular annulu&(Nq,N) limited by the

p: Smuﬁgcaarleatljgi]sggrslgnesdTﬂvgl;ﬁfjll\?. Our COURADIGUET 2. The rad_ii kmmsl.\lok0 andk,,,,=Nky. For instance, a spectral dp—
main of width k,,/Kmin=12 can be represented by using
No=4 andN=48, which determines in the annulus a set of
7168 couples of integer values fon,Mm), thus 7168 plane
We describe guiding center motion in a constant andvaves(the simple cas&l,=4 andN=9 is shown in Fig. 2

static magnetic fiel® in the presence of a fluctuating elec-  The sizeL of the periodic box is related to the discretiza-
tric field E(x,t) by the drift equation tion vector byL=2mx/k,. It is also related to the character-

istic wavelengths

ml- 2.3

1. EQUATIONS OF MOTION

d c
ax(t)=¥ [E(x(t),t)xB]. (2.2 L= NoA mas= N min (2.9
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FIG. 1. Equipotential curves in one realization of the electrostatic potehtigly,t=0) represented on a spatial grid of 5Iints for
the spectrumNy=4, N=48 with the most probable amplitude of energy fluctuati(@®s). This is the realization used in the present work.
The x axis is horizontal pointing to the right, theaxis is vertical, pointing downward.

by means of the parametexk andN, which also appear as The electrostatic potenti@®.2) composed with the above
discretization parameters of the problem. In order to represet of isotropic wave vectors can thus be written in the form
sent in a simple way the experimental spectrum which is N N
very wide in frequencies around the diamagnetic drift veloc- a

ity, we only consider here a single frequeney Different PxyH=5- nZ_N mZ_
phase velocities are associated to the different wave vectors, - -
the large number of which ensures the existence of chaotic 2

trajectories, with positive Lyapunov expond8t9]. The ap- XCOf{L (NX+my)+ @y m—ot| (2.9
pearance of chaos in the systems with three electrostatic

waves has been studied[idl1,22; the three-wave system has in terms of the Heaviside functio®(n,m;Ny,N) which is
also been studied recently j&7]. unity for (n,m) values located into the annul@(Ng,N),

O(n,m;No,N)
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N

N
a n\ ©(n,m;Ng,N)
Esxy)=1 n:ZN m;N (m) “nZrmd)
|27
X sin T (nx+ my)+<pn,m}, (2.9

a N N
Ecxy)=— > >

n=—-N m=—-N

n\ ©(n,m;Ngy,N)
m) (e me)

. (2.10

21
X COo T (Nx+my)+¢enm

The values of these four scalar functions can be computed
once on theM XM nodes of a spatial grid and kept in
memory. These four spatial maps entirely determine one re-
FIG. 2. Simplified example of the wave numbers-k,/k alization of the e]ectric field. The value bf is chosen of the
o T . . X0 form M =2%>N in such a way as to represent correctly the
m= ky/ko considered in annulus to represent a discretized spectrur’RI smallest wavelengths in the periodic square. The value
with No=4 andN=9. M =256 has been considered in Ref8—11]; we will use
here M =512 (with some numerical checks witll =1024)
in order to have a good numerical definition of the electric
randomly chosen between 0 and.ZThe importance of these field. The eyaluation of th.e electric field at the exact po§ition
random phases will be discussed below.(h5 the k™« of thg pa_lrtlcle at gach time step Is perforr_‘ned by using a
dependence of the potential can be shown to correspond to']z§—p0|nt |r!terpolat|on method under a matrix form detailed
spectral energy density ki-'s where the value of, is given " Appendix C.
by (see Appendix A

and 0 elsewhere. The constantietermines the amplitude of
the turbulence. We have introduced here a set of phasgs

B. Fluctuations of average energy density

ls=2a=3. 2.6 In order to relate the amplitude constanto a physically

In order to describe & 3 spectrum, we thus choose=3. ~ Measurable quantity, we evaluate here the average energy
We note that, contrary to the model consideredif], the  density(per unit volume defined as
amplitudes of the waves ifi2.4) describe a realistik 2 1 1 (L L 1
spectrum, rather than random amplitudes following an g)— 5o <E2(Xryat)>x,y:F f dxf dy - E2(x,y,1).
Ornstein-Uhlenbeck process with a prescribed correlation ™ 0 0 ™
time. Moreover, the number of waves is much more impor- (2.11
tant here(only 64 waves in19)).
After determining the electrostatic potential associatedl he result can be decomposed as follows:
with the k2 spectrum, we still have to derive analytical ex- L )
pressions for the electric field which drives the particles. The R el
two components of the electric field are easily derived from ®) gm\L 7 (N.No, )[1+C(¢)cod2wt)
2.5:
29 +S(p)sin(2wt)]. (2.12
E(X,y,t)=—Vo(x,y,t)

N N In the square brackets the term unity represents the time
o a n| 6(n,m;Ng,N) average over one period:
- L nN N lm (n2+m2)a72
1 [a\?
<5(t)>w:8_ (E) o*(N,Ng, a) (2.13
, (27 T

|27
X sin T (nX+my)+ ¢, mn— ot

) _ in terms of the numerical constant
where the constart has still to be expressed in terms of the

physical parameters of the problem. From a numerical point N N .

. . . . . e(na mu NO 1 N)

of view, in order to save memory, it appears to be interesting d%(N,Ng,a)= 5 > > ———,

[8,9] to split the field(2.7) into static and time-dependent n==Nm=oN (N7 mT)

factors: (2.14

E(x,y,t)=Eg(X,y)cog ot) —Ec(x,y)sin(wt), (2.8)  Which has to be determined numerically in terms of the spec-
tral index «, and of the parameterll and N, chosen to
which vary as cosft) and sinwt), respectively, and can be represent the discretization of the spectrum, while the other
easily tabulated. The spatial cartographies or maps of theerms in(2.12 represent the temporal modulatioBée) and
field are S(¢) in sin(2wt) and cos(t),
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Cle) 11 g . O(n,m;Ng,N) These_equations describe a nonautonomous Hamiltonian sys-
S(e)|] " 0?2 2 2 2 mde T tem with one and one-half degrees of freedom. The coordi-
¢ 0% 2 n SN mEoN natesx andy are canonically conjugate: the physical space
co (x,y) is also the phase space of the system. The Hamiltonian
X[Sirj(‘»pn,m"—()o—n,—m)a (2.15 is
which actually depend on the sum of the random phases. In HX Y1) = — % Dxy.1). 219

this problem the choice of a given realization of random
phases is found to modify the energy modulations. . -
Let us evaluate the average properties of these enerdg/om.the (?xpre_ssmniz.S)—rgz.%O) of the electric field, the
modulations in an ensemble & realizations of the field, quation of motion takes the form
i.e., of the random phases. We have
d x(t))_ c O(n,m;Ng,N)
2 dt | y(t)

a N N m
TBL 2y s (—n) “(nZrm?)
o[ 1+(C(¢))g O 20t)

1 [a
<5(t)>R=§ ([

+(S(¢))r SiN(2wt)], (2.16 X sin

. (2.20

2
T (nxX+my)+ enm— wt

where the angle brackets denote the ensemble average. Weorder to study these equations numerically, we have to use
expect that the amplitude of these oscillations should go telimensionless variables. Two reasonable choices are pos-
zero for a sufficiently large ensemble of realizations:sible for reducing spatial unit§) either to the characteristic
limg_,(C(¢))r=limg_..(S(¢))g=0. Using the random lengthL of the periodic square as in R¢B], or (ii) to the
number generatorANF of the Cray computer we have ob- total number of pixel$vl along the periodic square=Mx/
tained Gaussian probability functior®(C) and P(S) for L, y=My/L (which vary from zero tdV inside the periodic
both quantitiesC(¢) and S(¢), with equal standard devia- cell. The wunit length is in this case 1
tions d=0.09. We have checked that fB=2x10° realiza-  pixel=L/M =Ng\ ,o,/M=NX\;/M. We also uset=(w/
tions we obtain an averad€(¢))r=(S(¢))g=10"% while  2m)t and¢, ,=(1/27) ¢, ,, Where the phaseg are chosen

for a larger number of realizatior®=2x10°, we obtain in- between 0 and 1. In our numerical computations we rather
deed a smaller value for the averagéC(e¢))g Use the latter variables. The equation of mot{@r20 takes
=(S(¢))g=10"°. From EQ.(2.12 it is simple to see that the dimensionless form

the maxima and minima of the time modulations are given

: o o
y i(x_(t)> = ZWB( eixi)_)
a dt \y(t) —ey(x,t)

2
E) o?(N,Ng,@)[1=F(¢)], (2.17 e_yS(X_)
=27 —e_’ 3 cog2wt)

1
5E—§

where the relative energy fluctuation is simply

F(@)=[C?%(¢)+S*(¢)]*2 This value has a distribution o)
over an ensemble of realizations, which fits very well with —( _y—'c — Sin(277t)] (2.23)
the expected result holding for uncorrelated value€6p) €xc(X)

and S(¢) with vanishing averages: the distribution Bfis
found indeed to be given biy(F) =27FP(C)P(S) with the
most probable valu€&,=d. This yields roughly 9% of en-
ergy modulation in the caséNy=4, N=48 in which 27 B=
¢?=0.108. In summary, the choice of one given realization

of the random phases to perform trajectory calculations im-

plies a given amplitud&(¢) of the energy modulation. The N terms of the constand:
realization could be chosen to be of minimum energy fluc- 2w c E
tuations C=S=F=0) but we rather consider here a real- =" - __

ization with most probable energy fluctuatiofs=0.09. A=T B Bm(&V) B (223

in which the amplitudeB of turbulence is defined by

(T(N,No,a) (222

. . . . The four spatial functions represent four “spatial cartogra-
C. Dimensionless equations of motion P .

phies” defined by
The equation of motio2.1) for guiding centers takes the

following form in the presence of a constant magnetic field e_ys(x_) ) N % ( m ) O(n,m;Ny,N)

_ . P . S B -
g};:ee:z direction and an electric field in the perpendicular e s | "0 =N mEn n ﬁnqmz) 2
. X oy —
d (x :E( E,(X,y,1) >:E<—Vy<b(x,y,t)> Xsin 2| n g+ m o+ onm| |,
dt y B _EX(X,y,t) B VX(D(X,y:t)

(2.18 (2.24
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e (X N N m | ©(n,m:Ng,N) ated from the values of trigonometric functions of time
_é—‘ (x_)): (—n) BT (which have been tabulated at each time stgmd from
x,C n=-Nm=-N (n*+m%) 16-point spatial interpolations between the nodes of the grid
X v on which the values of the four cartographi@s24), (2.25
Xcos{Zw n M+m MJF(’D”'”‘”' have been memorizeck={r,s}=(1,2,...M). In the same

notations the dimensionless electrostatic potentighis)
(2.25 - - —
_ _ D(X,y,t)=e, co(X)cog27t) + ey 5(X)sin(27t),
These spatial cartographies are calculated once. The evo- (2.26
lution equation(2.2]) is solved by a Runge-Kutta algorithm
of fourth order. At each time step in thig+1)th period, we where we have defined two additional cartographies for the
havet=j+(1,2,..,p) X At, and the right-hand side is evalu- electrostatic potential,

X oy
N O(n,m:Ng,N) COE{ZW(HM-f—mM-f-(,DnYm”
N N Xy ” ’ @27

sin

277(n

which will be useful to compute the discrete values of thesdions in both spatial directions: (é)(z(t)>=(é§<2(t)>
fields by a discrete and complex two-dimensio(2D) fast +(by2(t)). The averag€ ) is computed numerically by an
Fourier transform{FFT) on M X M points(see Appendix R average ove(64) initial conditions,and by a time average

over each trajectorythe idea of performing time averages

D. Physically measurable parameters along trajectories, which is usual in statistical mechanics, has

been suggested to us by De Leéendihe result of the simu-
Tation is the numerical diffusion coefficient derived from the
equations of motiorf2.21):

It is important to stress the difference between the dis
cretization parameter@vhich vary according to the model
and the physical ongsvhich vary according to the system

The amplitude parametet [Eq. (2.23)] actually depends on L <5§Z(t_>
the lengthL of the periodic cell; the latter only gets a physi- D= lim —. (2.30
cal meaning in terms of the wavelengthg,, or \pax by T t

means of the discretization parametéisand N, of the ) . ) . )
model[see Eq.(2.4)]. On the other side, a physical ampli- We d_%tgmme.tms quantity by plotting the numerical curve
tude parameteA should be defined independently of the Of (6x(t)) vs time, up tot=Q (see Fig. ¥ the first part of
discretization parameters of the model; since large wavethis curve(let us say up tdQ/2) is generally quite smooth

lengths are dominant in the spectrumall k), we will ~ and linear since it represents the average not only on the 64
choose\,,, as the reference length to build a nondimen-initial conditio.ns,_but also a time average over many inter-
sional physical amplitude: vals of durationt (smaller thanQ/2) displaced “like a

comb” along the whole trajectory. These technical points are
2T C E explained in Sec. Ill. We determir by linear regression in
A= Nmax @B V87T<5(t)>w:N0A~ﬁ' (228 the domain(0,Q/2). The example presented in Fig. 3 corre-
sponds toA=160 and needs for 2x410* s of CPU time on
With Ny=4 the amplitude parameter is thBs=4.A. As far 64 processors of the Cray T3D computer. The calculation is
as the amplitude parametgrEq. (2.22] is concerned, it is repeated for several sets of initial conditions, and for differ-
simply related to the physical amplitudeby the following  ent values ofA, with different time steps.

relation: A=27B8(Nyg/M)a(N,Ng,a). With Ny=4, N=48, The final interpretation of this result consists of calculat-
we find 0=0.3288, and witiM =512 this yields the relation ing a dimensionless coefficierfteduced by means of the
B=247.84 or A=0.016 14. characteristic lengti,,,, and time 2r/w) by means of

The diffusion coefficient in physical space is defined, as
usugl, from the asymptptic limit of the. variance pf. 'ghe fl'uc- D= 2727 D= NSEM? (2.31)
tuating part of the displacement since the initial time O ax

(1) =x(t) —=x(0)—(x(t) —=x(0)): _ _ N
The aim of the present work consists of determining the ex-

(X)) ponenty describing the dependence of the diffusion coeffi-
D=Iim n . (2.29 cient
t—oo
This definition coincides with the one used in our previous D(A)= 2727 D(A)=A" (2.32

work [Eq. (16) in Ref.[9]]. It includes the sum of fluctua- WA max
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Ill. STRUCTURE OF THE PARALLEL CODE RADIGUET 2

2500

Although the name remains fundamentally the same as in
2000k ] our previous worl{10,11], the coderRADIGUET 2 is a fully

A new code for parallel computer Cray T3D. This code in-
= volves essentially two parts.
% 15008 1 The first part computes theartographiesof the potential
X (2.27 and of the component&.24), (2.25 of the electric
= 1000} 1 field in a given realization. These results are kept in memory
- on a spatial grid oM XM points, withM =512; the results
500k i have been checked to agree with a more precise grid
M =1024 and a valu# =256 is almost sufficient. This pro-
T gram should be used only once in principle, or repeated to
00 400 800 1200 1800 2000 obtain different realizations of the fields. This calculation can
Q/2 be performed by a direct summation, or by the complex two-

dimensional FFT presented in Appendix B. For a direct cal-

FIG. 3. Example of a diffusion curvé&x?(t)) (in unitsM? or  culation withN P processors, we defin¢P vertical domains
square cellsvs t (expressed in periogisip tot=Q. Due to the in the cartography, to be computed by the various processors.
gOOd statistics obtained by the “comb average,” the first half of theEach processor has to calculate a quadrup|e |00p’ one for
curve is rather ;tra.light. and in(.iicat.es a clas.s.icﬂdiffusive behaviolagch component of the wave vector, one for each spatial
The slope of this line is the diffusion coefficieft. Here the am- dimension to be scanned. Then the instructions of the com-
plitude is A=160. The num7b?r of time steps per period IS nication librarysHMEM allow us to collect these results
Nstep=4><104 resulting in 8<10’ iterations on each of the 64 par- d build the full t h 0 t "
ticles. Each run lasts between 1 and 17 h on 64 processors of gfghd bul . e (.;ar ograpny on one m.as er processor.
Cray T3D computer. The result is kept in permgnent memory ivaix file. For

more extended cartographies, we have to use a complex FFT
of the functionsh, , ., defined in(B8).

The main part of the program is the calculation of the
trajectories of\ particles (i=1,2, ... N). In all cases, we
useNP=A\ elementary processofs general\'=64), each
one for a different trajectory. In simple cases where the four
cartographies of the electric field can be kept in the memory
of each processof8 Mw), it is sufficient to perform each
trajectory calculation separately. An individual label is first
ttributed to each processor, and the four cartographies

At low values of the amplitude, we have checked previousl)f‘l

that a quasilinear scaling is obtained in numerical simula-(2'24)' (2.29 of the electric field are charged into the

tions[8-10], with yo_=2; an elegant analytical derivation of MeMOry. A simple loop evaluates a table of values of gos
this expected resuit has been given for the discrete case f'd Sift7) for the values ofr=wt representing every time
Ref. [28]. This B2 behavior also corresponds to the gyro- St€p in a period.

Bohm scaling. We have seen in the Introduction that it has A set of A initial conditions {x;(0).y;(0)} is chosen,
been traditionally believei3,5—7] since the first work by equally spaced in the whole elementary cell; each initial con-
Dupree[3] (based on the truncature by the Corrsin assumpdition is introduced in its processing elemeRtE). The re-
tion and second cumulant approximatiothat the high- sults are actually rather sensitive to this choice: we observe
amplitude scaling could be a Bohm-like scalings1. How-  that a slight displacement of the whole set of initial condi-
ever, Grusinov, Isichenko, and Kalda2] have remarked tions may result in a deviation which can be as large as 10%
that, in the limit of zero frequency where the Hamiltonian on the diffusion coefficient. This seems to be the fundamen-
(2.19 becomes time independent, the system reduces to ontal uncertainty of the results: we thus consider in each real-
one degree of freedom, and the diffusion coeffici€hB2 ization an ensemble of at least four sets of initial conditions,

as a function of the amplitude parameté&rin the low-
frequency or high-amplitude regime. Frai@.28 the above
scaling law implies

D(A):wA72w1_7<§) y. (2.33

should strictly go to zero. This imposes and repeat the calculation for each one, with different values
of the amplitude.
g=1—y>0, (2.34 We solve the equations of motiof2.21) over a large

numberQ of elementaryperiods(2000 or morg¢ The num-

ber ofelementary time stepsgf,in each period is chosen in
i.e., the exponenty should be strictly smaller than unity, such a way as to ensure that the displacement during one
y<1. A strict Bohm regime thus appears as impossible irtime step remains much smaller than the smaller wavelength
this case. For low frequencies, the percolation predictiorof the spectrum. The time step has thus to be reduced for
[12-1F is y,=15 or &=+ In Sec. IV we will measure the large amplitudes where the motion becomes more rapid; we
value of y by plotting the curve IM(A)=vyIn(A) in loga- use the conditiorNstepzlogA which is checked to ensure a
rithmic scale, in a domain of sufficiently large values of thegood convergence of the result. We explore the domain of
amplitudeA>1. A similar and related research program is invalues of the amplitudédA=4,...,400. With a spectrum
progress in Brussels, with a different spectr[26]. No=4, N=48 this means a domain of values of
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FIG. 4. Reduced diffusion co-
efficient D(A) in log-log plot.
Black squares represent the
. Bohm-like theoretical results cal-
] culated in Refs.[8,9] from the
- B nonlinear diffusion equation de-
« inDy, rived in Ref. [7]. Open squares
. o D represent the numerical results
from the present simulation. The
b dispersion of the results is ob-
- tained by changing slightly the
. " whole set of initial conditions,
which results in a possible 10%
. error onD. This dispersion is used
to evaluate the error bar on the
slope y of this curve.

nID
oH

nA

A=1.. ,100 and thus values dg,,ranging from 18to  jectory results on the master processor. The average of the
10° time steps per period. first term in(3.3) is simply the average over trajectories of
Thetrajectories X7) andy(7) are obtained by solving the the expression(3.2). The second term ir{3.3 takes into
equations of motior{2.21) with a fourth-order Runge-Kutta account any possible average motion of the ensemble of par-
algorithm. It does not seem that a symplectic algorithmticles (barycentric motioji it can also be evaluated by a
would modify the result which consists in the long time be-comb averagever time; this average involves the following
havior of the diffusion coefficient2.30: the latter is indeed average displacements over the ensemble of particles:
a global statistical quantity involving the average of the I
mean square displacement over four different sets of 64 ini- _ . 1 .
tial conditions. The equations of motion are solved every X(J)E/T/izl xi(1), Y(J)E/T/iz1 vili) (39
time step inside a double loop: one for every perjodnd
one for every time stef inside each period. After each on which a comb average can still be applied. We thus fi-
periodj we collect the stroboscopic positiorgj) andy;(j) nally evaluate the mean square displacement as follows:
and we calculate the quadratic displacement of each particle
i since the origin of time:

(D=0 —x(OP+yi()-%i(0% (3.

N

. . 1 - 20 1
W(H=(80)= 37 2, RU)~ g71=5

Q
In order to extract from these trajectories better statistical XZ {IX(H=XA=]DPP+[YD)=Y(=])]?
information, we make use of the stationary property by per- =]
forming on each trajectory ime average At each period, (3.5

the present position of the particle can indeed be considered _ .
as a new initial position. Thus for each parti¢ldn its pro- by using instruction of thesHmEM library, and keep the re-

cessor, we calculate the time averagef): sults as a function of the discrete timen a unix file.
5 . 1 Q - IV. RESULTS AND DISCUSSION
R =g1= 2 {x(h=x(-))] -
Q 1 T=) An example of such a curve is given in Fig. 3. One can
. see that the first part of the cur{let us say the first half of
Hy () =yi(1-H13. (3.2 P Vet us say

the total duration of the run, where the statistics is largely
bettey does not present important oscillatiotes observed

in the absence ofomb averagesand appears as rather lin-
ear. The diffusion coefficient is computed as the average

from one tooth to the next one, i.e., displacing the initiaISIOpe of this first part of the curve, which directly yields a

point from one period to the next one, up to the end of thenumerlcal results for the diffusion coefficie(2.30 at a

run (I=Q). The final quantity to be evaluated is theean given amplitude. . . o .
square displacement These calculations are repeated for various initial condi-

tions and for various values of the amplitugeor 4. We
(8x2(7)) = ([ X(7) —X(0) — (X(7) —X(0))]?) consider here a realization with tineost probable amplitude
of the energy fluctuationéee Sec. Il B The final plot of
=([x(7)—x(0)]®)—(x(t)—x(0))2, (3.3  numerical results D)) vs In(A) [see(2.3D), (2.28] is given
in Fig. 4 in the large amplitude domain, and compared with
where the average over th&/=64 trajectories,(...) the classical Bohm prediction (), as calculated for this
Ellj\/E{\il- -+, can only be calculated after collecting all tra- spectrum in Ref[7]. The latter prediction describes a final

This amounts to considering a time delayjgferiods(let us
say a “comby’ ), and to performing the average over all these
intervals defined by displacing the comb of fixed length



54 LOW-FREQUENCY PERCOLATION SCALING FOR PARTICE. . . 1865

4 T T T T
a
35 o -
Q a8
s L o _ FIG. 5. Result of the linear regression calcu-
lation on the 16 numerical results fad(A) in
° log-log scale, obtained from the simulation. The
o ] resulting straight line has a slope=0.704.
2.5 : -
i | | 1
2 4 4.5 5 55 6 6.5
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the bundle of the four straight lines obtained with minimum APPENDIX A: SPECTRAL INDEX  a

and maximum values of the two coefficients yielded by the OF THE DISCRETIZED POTENTIAL
linear regression analysis: this constitutes a graphical test of /o present here the demonstration of the important rela-
the validity of the error bar given it4.1). _tion (2.5) which expresses the indexappearing in the elec-

In conclusion we see that the spectrum we have considstatic model potential2.4) in terms of the spectral index

ered, with the discretizatioNy=4, N=48, andM =512 al- | ' the energy density. The latter energy densitper unit

ready allows us to observe the percolation exponent in th@olume is written in terms of the spectral energy density

domain A=80-400, instead of the Bohm exponepy=1. ¢ 'y the same conventional form as in fluid turbulence,
These are, however, not asymptotically large amplitudes.™

Moreover, the potential does not seem to involve sufficiently 1

small wavelength$\ i/ A\max=15) to exhibit fractal equipo- ng dk, & :f d’k, — & (A1)
tential curves as invoked in the Isichenko description. For * ke

these reasons we think it necessary to study a much wider . . )

spectrum, with a better discretization and thus a much Iarge‘?lnd the spectral J?deb@ is defined by the exponent of the
number of waves. In order to keep a sufficient description oPoWer lawé, ~k s Of course we have
the smaller wavelengths, the dimension of the spatial igrid

should be increased. Of course in order to keep in memory 5~f 42k kst
the four cartographies dfl X M points, we have to use the o L0 :
full memory of the 64 processors available for long CPU

calculations in the Cray T3D. This program is in progress Let us now deduce a similar relation from the expression
and we plan to publish the results in the near future. (2.5 of the model potential, i.e., from

v=0.704+0.030.
This is the main result of the present paper: this v#ug) is

fully compatible with the Isichenko predictidi2—-15 y, =
7

10

(A2)



1866 J.-D. REUSS AND J. H. MISGUICH 54

D(x,x,t)= Z > @, codk-x+W(1)], (A3)

where Kk-x=(2#@/L)(nx+my), W (t)=¢,n—ot, and
P, m=(n?+m?)~¥?=k" in which only the exponent of
the wave vectotk, |=(2#/L)(n?>+m?)Y? is of importance
for our present purpose. The two components of the electro- 54
static fieldE=—V® can thus be written

E(x,y,t)= 2 E cbnm( )sir{k-x+\Ifk(t)].
(A4)

The energy density per unit volume is obtained by averaging

over the periodic cell the square of the modulus of the elec- 9 P
[eN el e}
o0

tric field (2.12). From (A4) we immediately see thd? in-
troducesk? 2%, By substituting(A4) into (2.11), one de-
duces the complete result:

Ne
8m&(t ( ) —a 23 28 31
=|g) > E (n?+m?)*t MN  MNo M1
1 i 2
><§ {1+cod o+ ¢_—2wt]}. (A5) FIG. 6. Extended wave number spacg, {m,) to a grid ofM

points to satisfy FFT requirements. The original annulus describing
the spectrum has been split into four parts rejected to the four inner

The announced resul2.6) is deduced after comparing the corners of the extended grid. The summatiBid) can be performed

; ; 2
exponents ok, in the double summatiofl/L)>% of (AS), from 0 toM —1 due to the precise report of the segments0 and

and irj the equivalent double integral (A2). The compari- m=0. For clarity we have presented the simplified exanje-4
son yieldsl g+1=2a—2, thus(2.6). In the particular case of ,,qN=9 as in Fig. 2, andl =32.

the experimental spectrung=3 we have to consider=3 in

the discretized potential. tered annulus of values of andm. In order to put summa-

tions of the type(2.5 in the form (B1), (B2), we split the
APPENDIX B: DISCRETE AND COMPLEX FFT annulusC(Ng,N) in the (n,m) plane into four parts and
IN TWO DIMENSIONS reject the four parts at the four inner corners of the extended
grid (n.,m,) involving M X M points(see Fig. & by means

The computation of the various cartographi€s?24), .
putat vanou graphies 24 of the following transform:

(2.25, (2.27) on a spatial grid oM XM points can be per-

formed by a direct summation. However, to study several )

cartographies, or to build more precise cartograpki@ge o nE{” if ”_20 (B3)

number of waves and/or large number of grid pojiritse- © n+M if n<O,

comes necessary to use FFT in 2D. Complex FFT are more-

over useful because the sin and cos cartographies appear, by m if m=0

pairs, as the real and imaginary parts of the same transform. me:TmmE[ m+M if m<o. (B4)
We define as usual the discrete 2D Fourier transform on a

grid of MXM points. Let us consider a periodic function of \ye 41s0 need the inverse transfor@g_ and Qn,_ used to
m

space conserve the amplitude of the waves:
M-1 M-1
fo =f(x=ry=s)= >, > T, mne@Mner+mes) Ne—M if ng=M/2
' ne=0 mg=0 €€ anneneE n it n.<M/2 (B5)
(B1) e e :
which is periodic inx=r and iny=s, with period M. Its 3 [me=M if mg=M/2
discrete and complex FT is M= Qm,Me= me if mMe<M/2. (B6)

iz E 21 (el (B2) We note that the exact value of or m, betweenN and
=0 & : M—N is of no practical importance since all functions on
these points will be cut down by the Heaviside function.
A difficulty comes from the fact that the spatial function By using these transformations in the wave numbers’ dis-
(B1) is defined by summations over a squardvbk M “ex- crete space, we may transform numerically any summation
tended” values of wave numbens, and n., while our of an arbitrary functiorg(n,m) in the small annulus, to an
physical cartographies are defined by summation over a cemxtended summation in the wholéx M plane:
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N N M-1 M-1
> 2 gnm=2 > g(QnNe,QmMe).
n=—N m=—N ng=0 mg=0
(87

-1 0 1 2

»
A £

The new Heaviside functions in the extended space are of
course zero, except in the four parts of the annulus. In this
way we have built formally a periodic function ofi{,m,) in
the wave number space.

We can now write down the cartographi€s27) of the
potential in a form suitable for discrete FFT, by introducing

>
UJl'< =
]

T xy)lC D

E ®(n,m;Ng,N) |
Den, e e (B9
hynm

vy

from which we can writg2.27) as

FIG. 7. Orientation of the new axi®x andOy after translation

to the upper left corner of the elementary grid cell containing the
position of the particle, i.e., the point where the interpolation has to
be performed. This orientation of the axis allows us to make a direct

2 E h i(27r/M)(nr+ms) !ink with the _matrix eIeme_ntS/i’j representing the 16 points to be
IETTNCT (B9) interpolated in the memorized cartograpl2y?4), (2.25), or (2.27).

The first “vertical” interpolation(C3) evaluates the fiel®;(y) at

the pointsA, B, C, andD for j=-1,0,1,2, respectively. The second
interpolation(C8) evaluates the fiel® P(x,y) at the point &,y).

(eyco(x—" Y=5)
€y s0(X=r,y=5)

N N

and from(B7)

€y, co(X=r,y= S)) APPENDIX C: INTERPOLATION WITHIN 16 POINTS
€y s(X=r,y=5) ON A GRID
M-1M-1 The cartographies2.24), (2.25, (2.27) are continuous

= ( :::T? go mZO E%Qn,Qme“z”’M)(”’*mS), (B10)  functionsV(x,y) of two variables X,y) from which we keep

in memory the sampled valu&4 ; on a spatial gridi(j) of

M XM points. At each time step we have to compute these
where we have applied the inverse transfd@nto the func-  fields at intermediate positions, and we use a 16-point inter-
tion h. We have also suppressed the subscriptgiandm,,  polation method described below in two dimensions.

and have taken into account the fact that the exponent is This simple and explicit method is based on Lagrange's
periodic inn of periodM so that the transformation does not classical formuld32] for interpolations of a function of one-

modify it. variableP(x) between four points;, ... X,:
It is simple to see tha2.24) and(2.25 can be written in

h : X—X5)(X—X3)(X—X

the same way P(X) = P(x,) (X=X2) (X=X3)(X—X4)

(X1 = X2) (X1 = X3) (X1 = X4)

(X—=X1)(X—=X3)(X—X4)
(X2 = X1) (X2 = X3) (X = X4)

(eyc(X—ry s))
&y s(X=r,y=5)

Re
Im

+P(Xy)

M-1M-1

2 Z ™ gi@mmnrims (1Y) (X—X1) (X—X2) (X—X4)
i Aonem PO ) (= X (e —Xa)

— = — X—X1)(X—Xz)(X—X
(BC(X_ ry=s) +P(xy) ( 1)( 2)( 3) . ©D
e s(X=r,y=s) (Xa=X1)(Xg—X2) (X4~ X3)
M—1M-1 This result is generalized here to two dimensions with a
(Re E E h _gi@mmmrems (g9 simple result in matrix form for interpolations between 16
= iy wemem points on a grid. This set of*44 points is displaced on the

complete grid ofM XM points V; ; in such a way as to
These expressions of the two cartographies of the potenti&@nsure that the unknown poink, @/) is inside the central
(B10) and the four cartographies of the figll11), (B12) are  square. We define the origin=0=y at the upper left corner
ready for a discrete complex FFT calculation and thereforef this central squarésee Fig. 7. For simplicity we use
for space-discretized evaluation of the space- and timeretrograde axi$x axis pointing to the right, ang axis point-
dependent electrostatic potential and components of the fielihg downwardg which points in the same directions as the
The spatial interpolation is detailed in Appendix C. matrix indices j and i, respectively. The distancéx
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=Ay=L/M between two points on the grid is taken equal toin terms of the known %4 matrix and the vecto€;(y) of
unity here. The known valueg; ; on the 16 points are de- the four polynomials

noted by
Vo1 Voig Vo1 Vo
V. = Vo1 Voo Vo1 Vo 2
H Vi1 Vig Vi1 Vio |’
Vo1 Voo Va1 Vi,

with the conventioni,j=-1,0,1,2.

First of all we perform a vertical interpolation on each
columnj, in a pointP;(y) of ordinate Bsy<1, i.e., between
Vo andVy;. By using(C1) we find

C_(n)=—-1i2+1i2-1z (C4)
Co(2)=322-22—1z+1, (C5)
Ciz)=—-31z3+37%+2, (C6)

Co2)=32°-32, (C?)
with the obvious and necessary property:

C_1(2)+Cy(2)+C1(2) +Cy(2)=1.

Pi(y)=(P_1(y) Po(y) Pi(y) Pay)) Now, from these four values at points of abscissa
=Ci(y)V. =(C_ C C C —1,0,1,2 and ordinatg, we perform a(horizonta) interpo-
(V1= (Coaly) oY) 1Y) 2(¥)) lation on the values oP;(y) at the point 6sx<1 by using
Vo171 Voo Vo1 Voo the same Lagrange formu{€1). We obtain the interpolated
Vo1 Voo Voi Voo value P.P(x,y) at the point &,y) in the form of a scalar
X (C3 product:
Vl,—l Vl,O Vl,l V1,2
Vo1 Voo Vou o Voo PP(x,y)=C;(x)Pj(y)=C;(x)Ci(y)Vi;.  (C8
|
More explicitly, we find the interpolated value in the form of a trace of a product of twd matrices:
PP(X,y)=M;(X,y)V; ;. (C9
The first one is given by the four known polynomialsxrandy,
Co1(¥Coa(y) Ca(X)Coly) C_1(X)Ca(y) C_1(X)Cx(y)
M. (x)=C.()C:(y) = CoXC_1(y)  Co(¥)Coly)  Co(X)Cily)  Co(X)Cx(y) (C10
HEYEHIAYTL CC ay)  CiCHY)  CUICY)  CaXICAY)
CC_1(y)  CaX)Co(y)  CaX)Cily)  CX)Caly)

and the second matrix in the rest@9) is simply the matrixV; ; of the 16 values surrounding the interpolation poxjy).
This simple and compact resyl€9) has not been given explicitly in Rdf31].

The explicit form of the resulfC9) is

PP(X,y)=C_1(yY{C_1(X)V_1-1+Co(X)V_1 0+ C1(X)V_1 1+ Co(X)V_1 3}
+ Co(Y){C_1(X)Vo -1+ Co(X)Vg ot C1(X)Vg 1+ Ca(X) Vg of
+C1YH{C_1(X)V1 -1+ Co(X)V1 o+ C1(X)Vy 1+ Ca(X)Vy o}

+ Co(Y){C_1(X)V2 1+ Co(X)V30+ C1(X) V3 1+ Co(X) V3 5.

(C1D)
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