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In this work we present the super transition array~STA! approach for calculating the detailed photoelectric
spectra under local thermodynamic equilibrium conditions. We define the bound-free STAs and obtain analytic
expressions for their moments~total intensity, average energy, and variance!. It is shown that the various STAs
connected with a specific photoelectron can be combined first, and then integration over the continuum is
carried out only once. The various initial superconfigurations give rise to the structure of the photoelectric
spectrum near the ionization edges. The details of this structure are gradually revealed by the convergence
procedure inherent in the STA model. The efficiency of the method is discussed. Results of a few examples are
given in comparison with the average atom method and with detailed term accounting in cases where this
approach is possible.@S1063-651X~96!09308-7#

PACS number~s!: 52.25.2b

I. INTRODUCTION

In previous works@1–5# we have presented the super
transition array~STA! method for calculating emission~ab-
sorption! line spectra emitted from plasma under local ther-
modynamic equilibrium~LTE! conditions. The number of
populated levels contributing to the spectrum may be, under
these conditions, enormously high so that detailed line ac-
counting becomes impractical. The method is based on di-
viding the entire bulk of transitions to groups, STAs, whose
moments ~total intensity, average energy, and variance!
could be calculated analytically, bypassing the need for di-
rect summation over the individual lines one by one. Each
STA is then represented by a Gaussian that is convoluted
with the individual, collision, and Doppler broadened line
shapeP(E2E8). The STA Gaussians construct all together
the entire spectrum. The fine details of the spectrum are re-
vealed gradually by a convergence procedure obtained by
splitting each STA in turn to a number of smaller STAs until
the desired spectral resolution, defined by several criteria, is
reached.

Much of the power of the STA method lies in the specific
definition of a STA spectral group as a collection of all the
level-to-level transitions originating from a superconfigura-
tion J ~a well defined set of energetically neighboring con-
figurations! and involving a specific one-electron jump
a[nal a j a⇒b[nbl b j b . A STA includes therefore all the
transitions between two superconfigurations written symboli-
cally asJ⇒J85J2a1b.

In this work we apply the same approach to the calcula-
tion of photoelectric spectrum where the final transition
states belong to the continuum. We will show that the mo-
ments of the bound-free STAs are easily obtained using the
same working formulas as in the bound-bound case with
substitutions of the radial integrals only. Two bottlenecks

exist in the calculation of the bound-free spectra. One is the
calculation of the continuum orbitals. For this purpose we
have developed a fast algorithm based on a phase-amplitude
approach@6#. The second bottleneck is the superposition of
each STA with the entire continuum range. As we will show,
it is possible to first collect all the STAs connected to a
specific photoelectrona and superpose the result with the
entire continuum by only a single convolution.

In fact, results of the STA bound-free calculations have
already been presented in Refs.@2,3# in comparison with
other models. However, the theory and working formulas
have not been published.

In Sec. II we review the basic STA concepts and quanti-
ties required in the following sections. In Sec. III we define
the bound-free STAs and obtain the working formulas for
their moments. We then show in this section how the super-
position of the continuum is achieved. In Sec. IV we present
examples comparing STA results with average atom and
with detailed term accounting calculations. A summary and
discussion are given in Sec. V.

II. BACKGROUND AND NOTATION

A detailed description of the STA model is given in Refs.
@1,5#. For convenience, a brief summary is given here.

A. Spectral groups

The total bound-bound spectrum can be divided into
groupsG of transition lines

S~E!5(
G

SG~E!, ~1!

where

SG~E!5 (
i , jPG

Niwi j Pi j ~E2Ei j !. ~2!
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In Eq. ~2! the summation is over all the transitionsi→ j in G,
where i , j indicate the corresponding initial and final levels,
Ni is the population of the initial level,wi j is the transition
probability given in terms of the oscillator strengthf i j ,

wi j5
pe2h

mc
f i j , ~3!

andPi j is the corresponding line shape centered on the tran-
sition energyEi j .

The bound-free contribution has a similar form, but here
the final levelj belongs to the continuum and the summation
over j should be replaced by integration. We will first dis-
cuss the bound-bound spectrum and later on we will analo-
gously treat the bound-free spectrum.

B. Group spectral moments

For normalized symmetric line profiles we obtain, for the
group moments, the following expressions: intensity

I G[E SG~E!dE5 (
i , jPG

Niwi j , ~4!

average energy

EG[
E SG~E!E dE

IG
5

(
i , jPG

Niwi j Ei j

I G
, ~5!

and variance

~DEG!2[
E SG~E!~E2EG!2dE

IG
5DG

2 1DP
2 , ~6!

where

DG
2 5

(
i , jPG

Niwi j ~Ei j2EG!2

I G
~7!

is the variance of the line centers in the groupG and

DP
25E P~E2Ē!~E2Ē!2dE ~8!

is the variance of the individual line shape assumed equal for
all the lines in the groupG. The central achievement of the
STA theory is the ability to obtain, under LTE conditions,
analytical working formulas for the moments, bypassing the
impractical summations over the huge number of transitions
one by one@1,5#. In order to account for the non-Gaussian
nature ofP we first construct a Gaussian distribution of the
line centers from the momentsI G , EG , andDG

2 ,

G~E2EG!5
I G

A2pDG

expF2
1

2 SE2EG

DG
D 2G , ~9!

and then construct the spectrum by the convolution with the
individual line shape

S̄G~E!5E G~E82EG!P~E2E8!dE8 ~10!

having the same moments as the original spectrumSG(E)
defined by Eq.~2!.

C. STA groups

In order to complete this brief review we now define a
superconfiguration and a STA group. A superconfiguration
J is a collection of ordinary configurations defined symboli-
cally by the product over supershellss,

J[)
s

sQs . ~11!

A supershell, in turn, is the union of energetically adjacent
ordinary atomic subshellss[j s[nsl sj s . In Eq. ~11! the su-
perconfigurations are constructed by distributing theQs elec-
trons occupying the supershells among the subshellss in all
possible ways subject to$(sPsqs5Qs%,

sQs[ (
H (
sPs

qs5QsJ
)
s
j s
qs. ~12!

Clearly each partition ofQs is an ordinary configuration.
The ionization lowering in the plasma limits the number of
bound orbitals as described in Ref.@1#. A specific one-
electron jumpa[nal a j a⇒b[nbl b j b ~e.g., 2p3/2→3d5/2!
transfers each configurationcPJ to the configurationc8
with one less electron in thea shell and one additional elec-
tron in theb shell and leaving all the other shells untouched.

A STA characterized byG[$J,a⇒b% is defined as the
level-to-level transition array between all the included pairs
of configurationsc andc8. The level-to-level transition array
between two configurations constitutes an unresolved trasi-
tion array ~UTA! @7,8# and a STA is thus a collection of
energetically near lying UTAs and can be viewed as the ar-
ray of transitions between two superconfigurations
J⇒J85J2a1b.

The convergence procedure mentioned above splits super-
shells to smaller supershells according to their energy spread.
For each superconfiguration in its turn, at each step, super-
shells that give rise to relatively well-separated configura-
tions are preferentially split. The detailed structure of the
spectrum is thus gradually revealed, yielding a converging
spectrum. This procedure converges to the UTA spectra
where each UTA is completely unresolved. Finally, it is ap-
propriate, and customary, to relate separately to a larger av-
erage atom~AA ! array, unifying all the STAs involving the
same one-electron jumpa⇒b, with all possible initial super-
configurationsJ ~containing at least one configuration hav-
ing at least onea orbital and at least one hole in theb shell!.

D. Partition functions and LTE level populations

The partition function of a group of levelsL belonging to
an atom or ion containingQ bound electrons, in thermal
equilibrium with a surrounding plasma at temperatureT and
chemical potentialm is
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UQ~L !5(
iPL

gie
2~Ei2Qm!/kT, ~13!

wheregi andEi are the statistical weight and energy of level
i . The population of a particular leveli belonging to this
atom or ion under these LTE conditions is

Ni5
N

U
gie

2~Ei2Qm!/kT, ~14!

whereN is the total density andU is the total partition func-
tion of all ions (Q) of the specific atom in the plasma

U5(
Q,L

UQ~L !. ~15!

The second sum in Eq.~15! is over the groups of levelsL
that cover the entire collection of all the bound states for
each of the charge states of the atom. In the STA model we
use a particular way of dividing this collection to groups, i.e.,
superconfigurationsL[J.

The partition function can be approximated by writing the
first-order level energies as

Ei5Ei
~0!1EJ

~1! , ~16!

whereE i
(0)5(sqs«s is the zeroth-order level energy identi-

cal for all the states within a configuration andEJ
~1! is the

first-order correction taken as an average, equal for all the
levels within the initial superconfigurationJ @the analytic
expression forEJ

~1! was given explicitly in Ref.@1#, Eq.
~B7!#. The result for the partition function ofJ is

UQ
~1!~J![e2EJ

~1!/kTUQ~J!5e2EJ
~1!/kT)

s
UQs

~s!, ~17!

where

UQs
~s!5 (

H all partitions qs(
sPs

qs5Qs J
)
s

S gsqsDXs
qs, Xs[e2@~«s2m!/kT#.

~18!

The representation~17! of the partition function is necessary
in the derivation of the STA moments@1,5#. Clearly the con-
vergence procedure yields the correct UTA result with first-
order energies in the Boltzmann factors. Finally, when aver-
ages will be required, we will make use of the LTE Fermi-
Dirac probabilities

nr5
1

e~«r2m!/kT11
, ~19!

wheregrnr is the average occupation number of shellr .

III. THE BOUND-FREE STA SPECTRUM

A. Bound-free STA groups

Any bound-free transition is characterized by a single-
electron jump from an initial bound orbital statea[nal a j a
to a continuum orbital state«̃[« l j , where « is the con-
tinuum orbital energy. A bound-free STA group includes all

the transitions, originating from a specific superconfiguration
J, that belong to a specific one-electron jumpa⇒«̃, i.e.,
transitions between all the pairs of levelsiPJ and
fPJ8[J2a belonging to the neighboring ion, constrained
by energy requirement

«5hn2Ef i , Ef i5Ef2Ei , ~20!

whereEf andEi are the first-order energies of the final and
initial levels, respectively. The spectral ‘‘line’’i→[ f̄[ f
1 «̃], like a regular bound-bound transition line, is collision
and Doppler broadened, yielding a similar line profile
P(E2E8) centered onEi f̄ 5Ef i1«, which is additively
shifted with «. For a given orbital jumpa⇒«̃ the photon
spectrum follows the detailed structure of the levelsi , f . The
intensity of superposition of the lines having the same pair
i , f but different«, weighted by the corresponding transition
probabilities, is proportional to the one-electron matrix ele-
ment connecting the active orbitalsa and «̄. This intensity
decreases with« due to the decreasing overlap of the orbitals
a and «̃. The spectral structure is apparent near the edges
~where the photon energy is exactly sufficient to ionize the
bound orbitala!. At this point the continuum orbital«̃ ~with
«'0! has a relatively strong overlap witha. As in the case of
the bound-bound spectrum, the huge multiplicity of initially
populated levels and the individual line profilesP smear the
spectrum. In the bound-free case additional smearing appears
due to the superposition of the lines connecting the levelsi , f
over the continuum range of«. Still, the result is a charac-
teristic structure appearing near the edges in accordance with
the plasma conditions. The convergence procedure described
above is extended to include the photoelectric transitions,
thus revealing these detailed structures of the spectrum.

B. Bound-free STA moments

It is easy to see@1,5# that as in the bound-bound case, the
moments of a bound-free STAG[$J,a⇒ «̃% can be writ-
ten, without any approximation, in terms of the following
configuration average quantities: intensity

IJ
~a «̃ ![ (

i , f̄ PG
Niwi f̄ 5 (

cPJ
I c

~a «̃ ! , ~21!

average energy

EJ
~a «̃ !IJ

~a «̃ ![ (
i , f̄ PG

Niwi f̄ Ei f̄ 5 (
cPJ

I c
~a «̃ !Ec

~a «̃ ! , ~22!

and variance

@DJ
~a «̃ !#2IJ

~a «̃ ![ (
i , f̄ PG

Niwi f̄ ~Ei f̄ 2EG!25 (
cPJ

$I c
~a «̃ !

3@~Ec
~a «̃ !2EG!21@Dc

~a «̃ !#2#%, ~23!

where

I c
~a «̃ ![ (

iPc, fPc8
Niwi f̄ 5Ncwc

~a «̃ ! , ~24!
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Nc[(
iPc

Ni , wc
~a «̃ ![ (

iPc, fPc8

Ni

Nc
wi f̄ , ~25!

Ec
~a «̃ ![

1

wc
~a «̃ ! (

iPc, fPc8

Ni

Nc
wi f̄ Ei f̄ , ~26!

@Dc
~a «̃ !#2[

1

wc
~a «̃ ! (

iPc, fPc8

Ni

Nc
wi f̄ ~Ei f̄ 2Ec

~a «̃ !!2, ~27!

andc85c2a. Equations~24!, ~26!, and~27! are analogous
to the definitions of the bound-bound UTA moments. In the
present case, each of these UTAs connect two configurations
of two neighboring ions.

The STA model uses the assumption that for usual LTE
plasmas the widths of relativistic configurations are much
smaller thankT. This means that the populations of the lev-
els within a configurationc are to a very good approximation
distributed statistically. In this case, as in the UTA model,
the populationNl of a single levellPc is proportional to the
level’s statistical weight

Nl /Nc5gl /gc , ~28!

wheregl andgc5( lPcgl are the statistical weights of levell
and of the configurationc, respectively.

C. Bound-free UTA moments

The moments of the usual bound-bound UTAs between
two configurationsc,c8 belonging to the one electron jump
a⇒b,

c[)
s
j s
qs, c8[)

s
j
s

qs8, qa85qa21, qb85qb11,

~29!

were obtained by Bauche-Arnoult, Bauche, and Klapisch
@7,8# assuming the statistical assumption of Eq.~28!. The
results are given in terms of the occupation number depen-
dence and radial integrals as follows: the UTA intensity

I c
~ab!5bNc(

k
~Ec

~ab!!2k21qa~gb2qb!

3S j a1
2

k
0

j b
2 1

2
D 2~r ab

k !2, ~30!

~as we will see, the summation over the multipolesk will be
important for the bound-free transitions!, the average energy

Ec
~ab!5D01(

s
~qs2dsa!Ds

~ab! , ~31!

and the variance

~Dc
~ab!!25(

s
~qs2dsa!~gs2qs2dsb!~Ds

~ab!!2, ~32!

where

b5
8p2ea0
3h4c3

, ~33!

r ab
k is the radial integral of the electric or magnetic multipole
transition~of rankk! @9#,

D05^buhub&2^auhua&[^b&2^a&, ~34!

h is the single-electron Hamiltonian, andD s
(ab) andD s

(ab)

involve the radial part of electrostatic interaction between the
orbital s and the active orbitalsa andb. The expressions for
these two quantities are rather lengthy~see Refs.@6,7,5#! and
will not be needed explicitly here.

In the bound-free case the electrostatic interaction be-
tween the final orbital«̃[b and any other shell~a or s! is
assumed to be zero. Following Bauche-Arnoult, Bauche, and
Klapisch @7,8# it is easy to see that the bound-free UTA
moments of Eqs.~24!–~27! have exactly the same form as
Bauche-Arnoult, Bauche, and Klapisch’s results@Eqs.~30!–
~32!# with the replacements

q«50,
~35!

D05«2^a&,

Ds
~ab!⇒Ds

~a!

~36!
Ds

~ab!⇒Ds
~a!

where the expressions for the radial partsD s
(a) andD s

(a) are
obtained by simply eliminating any Slater integral involving
interaction of the orbitalb[«̃ with any other orbital. The
expressions for these quantities are given explicitly in the
Appendix.

In order to account for the Pauli principle for the con-
tinuum electrons in the transition probabilitya⇒b[«̃ the
number of ‘‘holes’’ in the final continuum stateg«8[(gb

2qb) of Eq. ~28! must be considered. For the LTE plasma
conditions this is taken into account by Fermi-Dirac statistics

g«8512n«5
1

e2@~«2m!/kT#11
. ~37!

D. Working formulas for the bound-free STA moments

By substitution of the UTA moment~30! in ~21! using
~37! we obtain the following expressions for STA intensity:

IJ
~a «̃ !5(

k
Ma «̃

k (
cPJ

Ncqa , ~38!

Ma «̃
k 5bg«8S j a1

2

k
0

j «
2 1

2
D 2~r a «̃

k !2^Ea&2k21. ~39!

In the derivation of Eqs.~38! and~39! we have used the fact
that the average transition energy of the one-electron jump
a⇒«̃ is much greater than the width of all the significantly
populated superconfigurations. We have therefore approxi-
mated~only in the expressions for the intensity!

Ec
~a «̃ !'^Ea&, ~40!
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where^Ea& is taken as the Fermi-Dirac average energy of the
total one-electron jump arraya⇒«̃, i.e.,

^Ea&5«1F2^a&1(
r
nr^r ,a&~gr2d ra!G , ~41!

wherenr is given by Eq.~19!. In Eq. ~39! we could have
usedEJ

(a«̂) @Eq. ~22!# for each STA instead of the average
quantity~40!. However, this may improve the results only if
the time-consuming quantityr a«̂

k is calculated for each STA
as well. Since the approximation of Eq.~40! was found to be
very satisfactory~for the intensity calculations only! we have
chosen to adopt it in our model.

The derivation of the working formulas for the bound-free
STA moments now follows exactly the same steps as in the
bound-bound case of Refs.@1,5#. First we express the STA
moments in terms of generalized partition functions using
binomial manipulations over occupation numbers. In the sec-
ond step we apply recursion formulas for these generalized
partition functions to remove the direct summation over con-
figurations. The results have exactly the same functional de-
pendence as in the bound-bound case except that the vari-
ables are different due to the replacements mentioned above.
Specifically, the results for the bound-free STA moments are
the intensity

IJ
~a «̃ !5AJ

a (
k

Ma «̃
k , ~42!

where

AJ
a 5

N

U
Xaga)

s
UQ

s8
~ga!, ~43!

with

Qa85Qa2das , das5 H1,0, aPs
a¹s,, ~44!

and the average energy

EJ
~a «̃ !5«1EJ

~a! , ~45!

where

EJ
~a![2^a&1(

s
«a

s , ~46!

«a
s[ (

n51

Qs

fn
s~a!UQs2n~g

a!/UQs
~ga!, ~47!

fn
s~a!52 (

sPs
gs

aDs
~a!~2Xs!

n, ~48!

are independent of«. The« independent quantitiesD s
(a) are

given in the Appendix and the reduced weightsg s
a are de-

fined in general by

gs
a,b,c,...5gs2dsa2dsb2dsc2••• . ~49!

Since the average energy of the bound-free STA depends on
ẽ only through an additive constant its variance by definition
will not depend on it at all. The expression for the«̃ inde-
pendent STA variance is

@DJ
~a!#25(

s
Da

s , ~50!

where

Da
s5 (

n51

Qs

hn
s,~a!UQs2n~g

a!/UQs
~ga!2~«a

s!2, ~51!

with

hn
s,~a![ (

m51

n21

fm
s,~a!fm2n

s,~a!1nFn
s,~a! , ~52!

Fn
s,~a![2 (

sPs
gs

aDs
~a!~2Xs!

n, ~53!

Ds
~a![$@Ds

~a!#21~gs
a21!@Ds

~a!#2%, ~54!

andD s
(a) andD s

(a) are given explicitly in the Appendix.

E. Superposition of the bound-free STAs with continuum

We can now represent the bound-free STA$J,a⇒«̃% by
the Gaussian

GJ
a «̃~E2EJ

~a «̃ !![(
k

Ma «̃
k GJ

a ~E2«!, ~55!

where

GJ
a ~E2«![

AJ
a

A2pDJ
~a!

expH 2
1

2 FE2~EJ
~a!1«!

DJ
~a! G2J . ~56!

Since the STA average energy and variance do not depend
on the continuum angular momentumj « , a single Gaussian
will represent all the STAs$J,a⇒«̃% with fixed value of«
and all possible values ofj « ,

GJ
a«~E2«![Ma«GJ

a ~E2«!, ~57!

where

Ma«5(
k, j «

Ma«
k . ~58!

The summation overk is crucial here since the transitions, as
opposed to bound-bound transitions, can reach very high en-
ergies and its high powers appearing in higher multipoles
compensate for the small size of the radial integrals. These
radial integrals incidentally have an energy dependence as
well, making the energy dependenceE2k11. Convolving
GJ

a~E2«! with the individual line profileP(E2E8) ~assum-
ing the Voigt function to be equal for all the lines within a
STA! we obtain
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ḠJ
a ~E2«![E GJ

a ~E82«!P~E2E8!dE85Ma«VJ
a ~E2«!,

~59!

where

VJ
a ~E2«![E GJ

a ~E82«!P~E2E8!dE8 ~60!

is again a Voigt function. We can now assemble together all
theVJ

a (E2«) connected witha and having continuum or-
bital energy«:

Ḡa~E2«![(
J

ḠJ
a ~E2«!5Ma«V

a~E2«!, ~61!

Va~E2«![(
J

VJ
a ~E2«!. ~62!

Finally, the contribution of the entire continuum to the total
a array ~ionizing the bound orbitala! is obtained again by
the convolution

Ga~E![E Va~E2«!Ma«d«. ~63!

Equation~63! involves a single convolution for all the STAs
involving ionization of orbitala. This procedure reduces
drastically the computer time required compared to a direct
approach where each STA is convolved with the continuum
separately.

IV. EXAMPLES

In Fig. 1 we present the photoelectric absorption spectrum
for iron at T520 eV and ion densityr50.01 g/cm3. The
converged STA spectrum is compared with the AA result
obtained as a special case of the STA model taking all the
bound orbitals in a single supershell. It is obvious here that
the AA result fails to produce the correct spectrum, whereas
the converged STA spectrum reveals the detailed structure of
the edges in remarkable agreement with the detailed term
accounting spectrum of theOPAL computer code@10#. The
bound-free absorption of iron atT559 eV and ion density

r50.0127 g/cm3 is presented in Fig. 2. The STA result here
is compared again with both the AA andOPAL results. The
differences between the STA and OPAL in this comparison
are due to the different potentials used by the two methods,
but the spectral structure agrees also here. Similar agreement
is observed in the third example of Fig. 3, showing the
bound-free absorption of Ge atT5100 eV andr50.01
g/cm3. It should be pointed out that similar quality of the
spectral details is obtained easily by the STA method for
complex spectra including a huge number of contributions
far beyond the ability of the detailed term accounting ap-
proach.

V. SUMMARY AND DISCUSSION

In this work we have presented an extension of the STA
model to the calculation of the bound-free spectrum. We
have extended the definition of STAs to bound-free transi-
tion arrays and obtained the working formulas for calculating
their moments. We have also shown that all the STAs con-
nected with a specific photoorbitala and originating from all
possible initial superconfigurations can be superposed first
and thus the convolution with the continuum is done only
once for each photoelectrona. This procedure, together with

FIG. 1. Bound-free absorption of iron atT520 eV and ion
densityr50.01 g/cm3. The solid, dotted, and dashed lines represent
the STA, AA, andOPAL results, respectively.

FIG. 2. Bound-free absorption of iron atT559 eV and ion
densityr50.0127 g/cm3. The solid, dotted, and dashed lines repre-
sent the STA, AA, andOPAL results, respectively.

FIG. 3. Bound-free absorption of Ge atT5100 eV and ion
densityr50.01 g/cm3. The solid, dotted, and dashed lines represent
the STA, AA, andOPAL results, respectively.

54 1855PHOTOELECTRIC EFFECT IN THE SUPER . . .



the phase-amplitude method@6# presented recently for the
calculation of the continuum orbitals, combine to form a
most efficient and accurate method for producing the bound-
free spectrum. The convergence procedure inherent in the
STA method produces also the detailed bound-free spectrum
with the correct first-order energies in the Boltzmann factors
for the level populations as well taking into account UTA
widths and orbital relaxation~i.e., appropriate potential for
each superconfiguration!. Three examples are presented in
which the STA spectra are compared with average atom re-
sults, which ignore the detailed structure near the ionization
edges, and with detailed term accounting model imple-
mented by theOPAL code. Clearly, as in the case of the
bound-bound spectra@1,5#, the STA method works as easily
for much more complex bound-free cases, involving enor-
mous amount of contributions, where the application of the
detailed term accounting~theOPAL code! becomes impracti-
cal.

APPENDIX: MOMENTS OF THE BOUND-FREE UTAs

It is easy to see that the moments of the bound-free UTAs
are obtained from the bound-bound expressions~29! and
~30! for the average energy

Ec
~ab!5D01(

s
~qs2dsa!Ds

~ab! ~A1!

and the variance

~Dc
~ab!!25(

s
~qs2dsa!~gs2qs2dsb!~Ds

~ab!!2 ~A2!

by the substitutionb⇒«̃, eliminating all the Slater integrals
involving «̃. This is achieved by the replacements

Ds
~ab!⇒Ds

~a! , Ds
~ab!⇒Ds

~a! , ~A3!

where

Ds
~a![2^s,a&,

^s,a&[F 0~ j s , j a!

2
gj s

gj s2das
(
k

S j a1
2

k
0

j s
2 1

2
DG k~ j s , j a!,

~A4!

given in terms of the direct and exchange Slater integrals
F k( j s , j a) andG

k( j s , j a), and

~Ds
~a!!2[As1Bs1C s , ~A5!

As5 (
k ~Þ0! even

1

~2k11!~2 j s11!~2 j a11!
@ F̄ k~ j s , j a!#2,

~A6!

Bs5(
k,k8

F dkk8
~2k11!

2
1

~2 j s11!~2 j a11!G
3

1

~2 j s11!~2 j a11!
Ḡ k~ j s , j a!Ḡ k8~ j s , j a!,

~A7!

C s5 (
k ~Þ0! even

(
k8

2
~21!k8

~2 j s11!~2 j a11!

3 H j aj s j s
j a

k8
k J F̄ k~ j s , j a!Ḡ k8~ j s , j a!, ~A8!

whereF̄ k( j s , j a) andḠ k( j s , j a) are the direct and exchange
Slater integrals multiplied by the corresponding reduced ma-
trix elements of the spherical harmonicsCk, as defined ex-
plicitly in the Appendix of Ref.@5#.
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