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Photoelectric effect in the super transition array model
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In this work we present the super transition ar(&fA) approach for calculating the detailed photoelectric
spectra under local thermodynamic equilibrium conditions. We define the bound-free STAs and obtain analytic
expressions for their moment®tal intensity, average energy, and varigndéeis shown that the various STAs
connected with a specific photoelectron can be combined first, and then integration over the continuum is
carried out only once. The various initial superconfigurations give rise to the structure of the photoelectric
spectrum near the ionization edges. The details of this structure are gradually revealed by the convergence
procedure inherent in the STA model. The efficiency of the method is discussed. Results of a few examples are
given in comparison with the average atom method and with detailed term accounting in cases where this
approach is possibl€S1063-651X96)09308-1

PACS numbds): 52.25—b

[. INTRODUCTION exist in the calculation of the bound-free spectra. One is the
calculation of the continuum orbitals. For this purpose we

In previous works[1-5] we have presented the super have developed a fast algorithm based on a phase-amplitude
transition array(STA) method for calculating emissiofab- ~ approach6]. The second bottleneck is the superposition of
sorption line spectra emitted from plasma under local ther-€ach STA with the entire continuum range. As we will show,
modynamic equilibrium(LTE) conditions. The number of it is possible to first collect all the STAs connected to a
populated levels contributing to the spectrum may be, undefPecific photoelectrorr and superpose the result with the
these conditions, enormously high so that detailed line acéntire continuum by only a single convolution.
counting becomes impractical. The method is based on di- In fact, results of the STA bound-free calculations have
viding the entire bulk of transitions to groups, STAs, whose@lréady been presented in Refg,3] in comparison with
moments (total intensity, average energy, and variance Other models. However, the theory and working formulas
could be calculated analytically, bypassing the need for dihave not been published. _ _
rect summation over the individual lines one by one. Each_ [N Sec. Il we review the basic STA concepts and quanti-
STA is then represented by a Gaussian that is convolutel€S required in the following sections. In Sec. lll we define
with the individual, collision, and Doppler broadened line the bound-free STAs and obtain the working formulas for
shapeP(E—E’). The STA Gaussians construct all togetherthe[r'moments. We'then s.how in this section how the super-
the entire spectrum. The fine details of the spectrum are reRosition of the continuum is achieved. In Sec. IV we present
vealed gradually by a convergence procedure obtained b§Xa@mples comparing STA results with average atom and
splitting each STA in turn to a number of smaller STAs until With detailed term accounting calculations. A summary and
the desired spectral resolution, defined by several criteria, idiScussion are given in Sec. V.
reached.

Much of the power of the STA method lies in the specific
definition of a STA spectral group as a collection of all the
level-to-level transitions originating from a superconfigura- A detailed description of the STA model is given in Refs.
tion E (a well defined set of energetically neighboring con-[1,5]. For convenience, a brief summary is given here.
figurationg and involving a specific one-electron jump
a=nyl,j,=B=nglgiz. A STA includes therefore all the
transitions between two superconfigurations written symboli-
cally asE=E'=E—a+p. The total bound-bound spectrum can be divided into

In this work we apply the same approach to the calculagroupsG of transition lines
tion of photoelectric spectrum where the final transition
states belong to the continuum. We wi.II show. that thg mo- S(E)=2 Se(E), (1)
ments of the bound-free STAs are easily obtained using the G
same working formulas as in the bound-bound case with
substitutions of the radial integrals only. Two bottlenecks,nere

II. BACKGROUND AND NOTATION

A. Spectral groups
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In Eqg. (2) the summation is over all the transitionsj in G,

wherei,j indicate the corresponding initial and final levels,
N; is the population of the initial levely;; is the transition

probability given in terms of the oscillator strendtf,

me?h
Wi =g i

©)

1851

?G(E)sz(E’—EG)P(E—E’)dE’ (10)

having the same moments as the original spect84tE)
defined by Eq(2).

C. STA groups

andP;; is the corresponding line shape centered on the tran- | order to complete this brief review we now define a

sition energyE;; .

superconfiguration and a STA group. A superconfiguration

The bound-free contribution has a similar form, but herez s a collection of ordinary configurations defined symboli-
the final levelj belongs to the continuum and the summationcaly py the product over supershetis

over j should be replaced by integration. We will first dis-
cuss the bound-bound spectrum and later on we will analo-

gously treat the bound-free spectrum.

B. Group spectral moments

E=]] o%. (11)

o

A supershell, in turn, is the union of energetically adjacent

For normalized symmetric line profiles we obtain, for the ordinary atomic subshells=j=ndljs. In Eq. (11) the su-

group moments, the following expressions: intensity
Iezf So(E)IE= 2 Niw, @

average energy

JSG(E)E dE iJZEG N;wi; E;j

le le
and variance
J Se(E)(E—Eg)*dE
(AEg)?= | =Ag+AR (®)
G
where
ijEG Niw;; (Ejj —Eg)?
2 __, €
Ag= » @)
is the variance of the line centers in the grdpand
A,%zf P(E—E)(E—E)%dE (8)

is the variance of the individual line shape assumed equal for
all the lines in the grouss. The central achievement of the
STA theory is the ability to obtain, under LTE conditions,
analytical working formulas for the moments, bypassing th
impractical summations over the huge number of transition
one by ong1,5]. In order to account for the non-Gaussian
nature ofP we first construct a Gaussian distribution of the

line centers from the moments,, Eg, andA3,

I'(E-Eg)=

_E_\2
E EG) ’ ©

Ac

ls p[ 1
exp— =
\27TAG 2

perconfigurations are constructed by distributing@heelec-
trons occupying the supershellamong the subshelssin all

possible ways subject 8. ,0s=Q,},

UQUE{ b qE:Q ] l_s[ jgs' (12

Seo

Clearly each partition ofQ, is an ordinary configuration.
The ionization lowering in the plasma limits the number of
bound orbitals as described in Rdfl]. A specific one-
electron jumpa=n,l .j,=B=ngl sz (€.9., D3, 3d5))
transfers each configuratione = to the configurationc’
with one less electron in the shell and one additional elec-
tron in theB shell and leaving all the other shells untouched.

A STA characterized byc={=,a=p8} is defined as the
level-to-level transition array between all the included pairs
of configuration andc’. The level-to-level transition array
between two configurations constitutes an unresolved trasi-
tion array (UTA) [7,8] and a STA is thus a collection of
energetically near lying UTAs and can be viewed as the ar-
ray of transitions between two superconfigurations
E=E'=E—-at+B.

The convergence procedure mentioned above splits super-
shells to smaller supershells according to their energy spread.
For each superconfiguration in its turn, at each step, super-
shells that give rise to relatively well-separated configura-
tions are preferentially split. The detailed structure of the
pectrum is thus gradually revealed, yielding a converging
spectrum. This procedure converges to the UTA spectra
where each UTA is completely unresolved. Finally, it is ap-

eoropriate, and customary, to relate separately to a larger av-
grage atom(AA) array, unifying all the STAs involving the

Same one-electron jumge= g, with all possible initial super-
configurations=Z (containing at least one configuration hav-

ing at least onev orbital and at least one hole in theshell).

D. Partition functions and LTE level populations

The partition function of a group of levels belonging to
an atom or ion containin@ bound electrons, in thermal

and then construct the spectrum by the convolution with theequilibrium with a surrounding plasma at temperatiirand

individual line shape

chemical potential is
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B omkT the transitions, originating from a specific superconfiguration
Uq(L)=ZL gie” BimQw/ikT, (13) =, that belong to a specific one-electron jumpsz, i.e.,

'e transitions between all the pairs of levelssE and
whereg; andE; are the statistical weight and energy of level f € 2'=E—a belonging to the neighboring ion, constrained
i. The population of a particular leveél belonging to this DY energy requirement
atom or ion under these LTE conditions is e=hv—E;, Eq=E—E, (20

N

Ni=5 gie EimQuikT, (14 whereE; andE; are the first-order energies of the final and
initial levels, respectively. The spectral “linei—[f=f
whereN is the total density antd is the total partition func- *¢], like a regular bound-bound transition line, is collision
tion of all ions Q) of the specific atom in the plasma and Doppler broadened, yielding a similar line profile
P(E—E’) centered onE;7=E;+e, which is additively
shifted with . For a given orbital jumpa=- the photon

U :QzL Uq(L). (15) spectrum follows the detailed structure of the levefs The
intensity of superposition of the lines having the same pair
The second sum in Eq15) is over the groups of levels i, but differente, weighted by the corresponding transition

that cover the entire collection of all the bound states forprobabilities, is proportional to the one-electron matrix ele-
each of the charge states of the atom. In the STA model weent connecting the active orbitalsand ¢. This intensity
use a particular way of dividing this collection to groups, i.e.,decreases with due to the decreasing overlap of the orbitals

superconfigurationk ==, a ands. The spectral structure is apparent near the edges
The partition function can be approximated by writing the (where the photon energy is exactly sufficient to ionize the
first-order level energies as bound orbitala). At this point the continuum orbita (with
e~0) has a relatively strong overlap with As in the case of
Ei=E”+EY, (16)  the bound-bound spectrum, the huge multiplicity of initially

0)_ ) i . populated levels and the individual line profilBssmear the
whereE{™=2qs¢ is the zeroth-order level enelr)g_y identi- spectrum. In the bound-free case additional smearing appears
cal for all the states within a configuration aBid is the e to the superposition of the lines connecting the leiéls
first-order correction taken as an average, equal for all thgyer the continuum range of Still, the result is a charac-
levels within the(l)'n't'al superconfiguratioE [the analytic  teristic structure appearing near the edges in accordance with
expression forEz’ was given explicitly in Ref.[l], Ed-  the plasma conditions. The convergence procedure described
(B7)]. The result for the partition function & is above is extended to include the photoelectric transitions,
" o thus revealing these detailed structures of the spectrum.
Ug)(E)EeiEE /kTUQ(E):efEE /kTH UQ”(O'), (17)
7 B. Bound-free STA moments

where It is easy to segl,5] that as in the bound-bound case, the
moments of a bound-free STE={E,a=¢} can be writ-
Ug (0)= 11 (gs> X%, X =g [lesmw)/KT], ten, without any approximation, in terms of the following
v [au partitions qs] s \Qs) ® configuration average quantities: intensity
= qS=Q(r
(18) 195 = > Nwr= 2 @) (21)
i,feG €x

The representatiofiL7) of the partition function is necessary

in the derivation of the STA momen{s,5]. Clearly the con- gyerage energy
vergence procedure yields the correct UTA result with first-

order energies in the Boltzmann factors. Finally, when aver-

ages will be required, we will make use of the LTE Fermi- ELHeP= 3 NwEr= > |@DEED)  (22)
Dirac probabilities i.feG ce=
1 and variance
N = oGk 1 (19
whereg,n, is the average occupation number of shell [ALIIAIE)= > Nwir(Ejr— EG)ZZCE_ {1
i,feG €=
ll. THE BOUND-FREE STA SPECTRUM X[(Eéag)— EG)2+[A<CQE>]2]}, (23

A. Bound-free STA groups

e . _ where
Any bound-free transition is characterized by a single-

electron jump from an initial bound orbital state=n_| ,j, _ _
to a continuum orbital state=¢lj, wheree is the con- |<Ca8>5 2 N;wi7= Nch:as), (24)
tinuum orbital energy. A bound-free STA group includes all iecfec’
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N; 8mleay

Ne=2 Ni, wi™'= > mwi, (29 b=tz (33
lec iec,fec’ c
B 1 N r 25 is the radial integral of the electric or magnetic multipole
Elee)= —T —WiET, (26) transition(of rank ) [9],
w ag) , N
c iec,fec c

Do=(BIh|B)—(alh|a)=(B)—(a), (34)

~ N; ~ . . . .
[AL2=—— ¥  LwE—El)2 (270  his the single-electron Hamiltonian, ami{*#) and A (")
Nc involve the radial part of electrostatic interaction between the
orbital s and the active orbitale and 8. The expressions for

andc’ =c— a. Equations(24), (26), and(27) are analogous  these two quantities are rather lengtlsge Refs[6,7,5)) and
to the definitions of the bound-bound UTA moments. In thewill not be needed explicitly here.

present case, each of these UTAs connect two configurations |n the bound-free case the electrostatic interaction be-

of two neighboring ions. tween the final orbitaE=p and any other shelle or s) is

The STA model uses the assumption that for usual LTEassumed to be zero. Following Bauche-Arnoult, Bauche, and
plasmas the widths of relativistic configurations are muchk|apisch [7,8] it is easy to see that the bound-free UTA
smaller tharkT. This means that the populations of the lev- moments of Eqs(24)—(27) have exactly the same form as

els within a configuratiol are to a very good approximation Bauche-Arnoult, Bauche, and Klapisch’s resiis;s. (30)—
distributed statistically. In this case, as in the UTA model,(32)] with the replacements
the populatiorN, of a single level e c is proportional to the

c iec,fec’

level's statistical weight q,=0,
(39
Ni/Ne=0,/9c, (28) Do=¢—(a),
whereg, andg.==,_.g, are the statistical weights of leviel D*A=D
and of the configuratiok, respectively. (36)
ALPP= AW

C. Bound-free UTA moments ) .
where the expressions for the radial papt§? andA () are

"Sbtained by simply eliminating any Slater integral involving
interaction of the orbita|3=¢ with any other orbital. The

The moments of the usual bound-bound UTAs betwee
two configurationsc,c’ belonging to the one electron jump

a=p, expressions for these quantities are given explicitly in the
, Appendix.
CEI_S[ jgs, C'EE[ jgs, 4,=0,—1, Q=0+l In order to account for the Pauli principle for the con-

tinuum electrons in the transition probability=g8=¢ the
number of “holes” in the final continuum statg;E(gﬁ
h qp) of Eq. (28) must be considered. For the LTE plasma
conditions this is taken into account by Fermi-Dirac statistics

(29

were obtained by Bauche-Arnoult, Bauche, and Klapisc
[7,8] assuming the statistical assumption of Eg8). The

results are given in terms of the occupation number depen- 1
dence and radial integrals as follows: the UTA intensity ggzl_ne:m- (37
(aB) — (aB)y2k—1 _
e bNCEK: (Ec™) 9a(9p—0p) D. Working formulas for the bound-free STA moments
j K Qg2 By substitution of the UTA moment30) in (21) using
( la : _B;) (rZ,g)Z, (30) (37) we obtain the following expressions for STA intensity:
2 2
(%) _ K_
(as we will see, the summation over the multipoiewill be 'z ; Mascgg Neda (38)

important for the bound-free transitionshe average energy
H 2
J a K Js
M*-=bg! r“)2(E 21 (39
ECP =D+ S (G- 8D, (@) o gs( Lo —%) (re (B (39
_ In the derivation of Eqs(38) and(39) we have used the fact
and the variance that the average transition energy of the one-electron jump
a=¢ is much greater than the width of all the significantly
(ap)\2_ _ o (af)\2 populated superconfigurations. We have therefore approxi-
(A7) ZS (05~ 85a) (95— As~ 95p) (A7), (32) mated(only in the expressions for the intengity

where EL*®)~(E,), (40)
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where(E ) is taken as the Fermi-Dirac average energy of theSince the average energy of the bound-free STA depends on
total one-electron jump array=-¢, i.e., € only through an additive constant its variance by definition
will not depend on it at all. The expression for theinde-

(E,)=¢+ _<a>+2 N a)(gr—b.0) |, (41) pendent STA variance is

(@)72— o
wheren, is given by Eq.(19). In Eg. (39) we could have Azl 2;‘ A (50

used E(E“S) [Eqg. (22)] for each STA instead of the average
guantity (40). However, this may improve the results only if where
the time-consuming quantity’, is calculated for each STA
as well. Since the approximation of Eg0) was found to be o o o o2
very satisfactoryfor the intensity calculations onlyve have 2 7 WUq, —n(9")/Uq (9~ (e)?,  (51)
chosen to adopt it in our model.
The derivation of the working formulas for the bound-free with
STA moments now follows exactly the same steps as in the
bound-bound case of Reffl,5]. First we express the STA n-1
moments in terms of generalized partition functions using po (W= E W (@ npIle) (52)
binomial manipulations over occupation numbers. In the sec-
ond step we apply recursion formulas for these generalized

partition functions to remove the direct summation over con- P @=_ gep@(—x )" (53)

figurations. The results have exactly the same functional de- n i S

pendence as in the bound-bound case except that the vari-

ables are different due to the replacements mentioned above. D ={[D\¥]?+(g¢—1)[AL]?, (54)

Specifically, the results for the bound-free STA moments are

the intensity andD (¥ andA{® are given explicitly in the Appendix.
(E %2 ., (42 E. Superposition of the bound-free STAs with continuum

We can now represent the bound-free SfB\a=¢} by
the Gaussian

where
. N T&(E—ELY = M -G%(E—s), 55
z=g %011 Uoy(9), 43 F(E-ELT)=2 MEOHE-e) (59
with where
1 aco GL(E-5)= = L[EZ(E ) (56)
[ _ — ’ % — =~ ex — - = .
Qa Qa 5ao’! 50(0' 0, a<¢o, (44) ~( € ZWA(Ea) 2 A(Ea)
and the average energy Since the STA average energy and variance do not depend
- on the continuum angular momentum, a single Gaussian
EL®=e+EL, (45  will represent all the STA$E,a=¢} with fixed value ofe
and all possible values gf,,
where
FEE(E_S)EMasG%(E_s)a (57)
EW=_
Ex a>+2 °a (46) where
Qr M,.=> M~ (58)
Enzl ¢g(a)Uan(ga)/UQ(,(ga). (47) aS_Kij ag "
The summation ovex is crucial here since the transitions, as
7= gD (—X )", (48  opposed to bound-bound transitions, can reach very high en-
sea ergies and its high powers appearing in higher multipoles

compensate for the small size of the radial integrals. These
are independent of. Thee independent quantitie® {*) are  radial integrals incidentally have an energy dependence as
given in the Appendix and the reduced weight$ are de-  well, making the energy dependen&"“"!. Convolving
fined in general by I'4(E—e¢) with the individual line profileP(E—E') (assum-
ab.c.. ing the Voigt function to be equal for all the lines within a
gs’ =0s— Osa— Osp— Osc— """ - (49 STA) we obtain
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FIG. 1. Bound-free absorption of iron &=20 eV and ion FIG. 2. Bound-free absorption of iron d&=59 eV and ion
densityp=0.01 g/cni. The solid, dotted, and dashed lines representdensityp=0.0127 g/cr The solid, dotted, and dashed lines repre-
the STA, AA, andorAL results, respectively. sent the STA, AA, anaPrAL results, respectively.

P o e , , o p=0.0127 g/criis presented in Fig. 2. The STA result here
E(E_8)=J PE(B'—&)P(E-ENAE' =M VE(E=2). {5 compared again with both the AA ambAL results. The
(59 differences between the STA and OPAL in this comparison
are due to the different potentials used by the two methods,
but the spectral structure agrees also here. Similar agreement
is observed in the third example of Fig. 3, showing the
Vg(E_s)EJ G&(E'—¢)P(E—E')dE’ (60)  bound-free absorption of Ge a&=100 eV andp=0.01
- - g/cnt. It should be pointed out that similar quality of the
is again a Voigt function. We can now assemble together affPectral details is obtained easily by the STA method for
the V&(E—¢) connected withe and having continuum or- complex spectra |r)§:lud|ng a hugg number of contr[but|ons
bital Energyg: far beﬁ/ond the ability of the detailed term accounting ap-
proach.

where

[“(E—e)=2, T&(E—&)=M,V*(E—¢), (61)
=1 V. SUMMARY AND DISCUSSION

In this work we have presented an extension of the STA
V“(E—S)EZ VZ(E—e). (62)  model to the calculation of the bound-free spectrum. We
= have extended the definition of STAs to bound-free transi-
Finally, the contribution of the entire continuum to the total ion arrays and obtained the working formulas for calculating
« array (ionizing the bound orbitak) is obtained again by their moments. We have also shown that all the STAs con-
the convolution nected with a specific photoorbitaland originating from all
possible initial superconfigurations can be superposed first
and thus the convolution with the continuum is done only
Fa(E)Ef VHE—&)M,.ds. (63 once for each photoelectran This procedure, together with
Equation(63) involves a single convolution for all the STAs
involving ionization of orbital«. This procedure reduces
drastically the computer time required compared to a direct OPAL -
approach where each STA is convolved with the continuum
separately.

10000

1000 |

IV. EXAMPLES

In Fig. 1 we present the photoelectric absorption spectrum
for iron at T=20 eV and ion density=0.01 g/cn. The
converged STA spectrum is compared with the AA result
obtained as a special case of the STA model taking all the
bound orbitals in a single supershell. It is obvious here that o U
the AA result fails to produce the correct spectrum, whereas O O A B vy D 1600 1800 2000
the converged STA spectrum reveals the detailed structure of
the edges in remarkable agreement with the detailed term FIG. 3. Bound-free absorption of Ge @t=100 eV and ion
accounting spectrum of therAL computer codd10]. The  densityp=0.01 g/cni. The solid, dotted, and dashed lines represent
bound-free absorption of iron dt=59 eV and ion density the STA, AA, andopAL results, respectively.

100 ¢

Bound-free absorption (cm®/g)
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the phase-amplitude methd@] presented recently for the where

calculation of the continuum orbitals, combine to form a

most efficient and accurate method for producing the bound- D(sa)E —(s,a),

free spectrum. The convergence procedure inherent in the o

STA method produces also the detailed bound-free spectrum (S @=F “(js.ja)

with the correct first-order energies in the Boltzmann factors 9 . :

for the level populations as well taking into account UTA __ s 2 (J“ ko s )G K(cria)
widths and orbital relaxatiofii.e., appropriate potential for 0j.~ s K 0 -3 Siian
each superconfigurationThree examples are presented in (A4)
which the STA spectra are compared with average atom re-

sults, which ignore the detailed structure near the ionizatiogjiven in terms of the direct and exchange Slater integrals
edges, and with detailed term accounting model implef k(jsvja) andG k(jslja)’ and

mented by theopAL code. Clearly, as in the case of the

bound-bound spectfd.,5], the STA method works as easily (A)2= 2+ B+ 7, (A5)
for much more complex bound-free cases, involving enor-
mous amount of contributions, where the application of the = 1 E ki i )72
detailed term accountinghe opAL code becomes impracti- s~ (£57 even (2k+1)(2js+1)(2j,+1) [F s o]
cal. (AB)
APPENDIX: MOMENTS OF THE BOUND-FREE UTAs 7= 2 Okk! _ 1
. s A1 (2k+1) (24t 1D)(2j,+1
It is easy to see that the moments of the bound-free UTAs i L ) (2lst D)+
are obtained from the bound-bound expressi@8 and 1 =
(30) for the average energy ><(2j 2. +D) G “(isa)G “(siia)
S o
EL®=Dg+ > (gs— 35 DL (A1) A7
S ’
(—1)¥
i Cs= 2— -
and the variance s, (#02) even s (2]t 1)(2] 1)
(AL)2= 2 (ds~ 820) (95— Gs— 9sp) (A7 (A2) x ‘] J‘ lL]F_k( isia)G K (jsiia),  (AB)
S a

by the substitution3==¢, eliminating all the Slater integrals where?‘(js,ja) anda‘(js,ja) are the direct and exchange

involving =. This is achieved by the replacements Slater integrals multiplied by the corresponding reduced ma-
(@p) (@) (@B) (@) trix elements of the spherical harmoni€¥, as defined ex-
DS*=D¢", A=A, (A3)  plicitly in the Appendix of Ref[5].
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