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Inverse Faraday effect and propagation of circularly polarized intense laser beams in plasmas
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The magnetic field generation through inverse Faraday effect and its effects on the propagation of a circu-
larly polarized light wave are studied in a self-consistent way for relativistic intensities. The following results
are presentedi) The magnetic field is produced by two sources, the circular motion of single electrons which
produces plasma magnetization, and the inhomogeneity of both the electron density and light intensity which
produces nonzero currents in the azimuthal direction. The magnetic field is calculated for various profiles of
electron density and light intensityii) For the case of a plane wave in a homogeneous plasma, the cutoff
frequency is calculated as a function of light intensity, which is different from that without consideration of
magnetic field generation. An ultra-intense magnetic field as large as hundreds of MG is obtainable in an
overdense plasma where the wave can propagate owing to the induced transp@iigntie evolution
equations for a laser beam of finite width are derived. Due to magnetic field generation, the critical power for
self-focusing of the laser beam is reduced by a factc(rlafw,%/a)z)‘l; the magnetic field tends to reduce the
effect of the electron cavitation resulting from the transverse ponderomotive f&H@63-651X96)04908-2

PACS numbgs): 52.35.Mw, 52.40.Db, 52.40.Nk

[. INTRODUCTION the plasma based particle accelerafdrs| and the recently
proposed concept of the fast ignitdr2].
Relativistic interaction of electromagneti@m waves However, the studies on self-focusing of laser beams are

with plasma was first investigated about 40 years ago bwtill not complete, even for the case of a circularly polarized
Akhiezer and Poloviil], who showed the complicated non- light wave. As early as the 1970s, the excitation of a mag-
linear coupling even between homogeneous plasma angktic field by a circularly polarized em wave in plasma,
plane em waves. Subsequent studies on the interactions bleasown as the inverse Faraday effét8], was found experi-
tween optical beams of finite width and inhomogeneous plasmentally. It was shown that in the low intensity limit, the
mas, which are concerned with the concept of laser-ignite@nagnetic field produced is proportional to the intensity of the
inertial confinement fusion, have discovered a variety ofincident wave. Therefore the magnetic field produced can be
more complicated structures of laser-plasma coupling. Onas large as tens of MG or even larger when the incident light
of them is the self-focusingpr self-trapping of intense laser wave is at relativistic intensities. It can largely modify the
beams in plasmd2—4]. In the powerful laser field, the elec- propagation of the light wave. To our knowledge, this prob-
tron mass increases due to the relativistic motion. This effediem has not received sufficient attention up to now.
modifies the plasma refractive index in such a way that the In this work, we will study the following problems. First,
refractive index is larger in high intensity regions than that inwe calculate the magnetic field generation in a self-
low intensity regions, and hence results in the self-focusingonsistent way, clarifying that the magnetic field has two
of the beams. Then, Suet al. noted the fact that the pon- sources(1) One source is related to the circular motion of
deromotive force of the laser beam tends to expel plg&ha single electrons in the wave which is equivalent to a mag-
and the expulsive force results in a lowered electron densityetic dipole. The superposition of all the magnetic dipoles
or even electron cavitation channel in the high intensity reconstitutes the magnetization of the plasfid]. (2) The
gion. This channel is beneficial for the focusing of the laserother source is related to the inhomogeneity of both the elec-
beam. In general, both the relativistic effect and the displacetron density and the intensity of the laser beam. If there is no
ment of electrons due to the ponderomotive force should bsuch inhomogeneity, the latter will contribute nothing. In
taken into account. An analytical treatment of similar modelearlier studies, the magnetic field was not calculated self-
equations was given by Kurki-Suonio, Morrison, and Tajimaconsistently, i.e., the magnetic field was not taken into ac-
for the case when the electron cavitation does not of@ur count in the equation of motiof15—18. Meanwhile, either
Borisov et al. further extended the same problem by includ-the first or the second source was ignored.
ing inhomogeneity of plasma densify]. These investiga- Secondly, the dispersion relation of a circularly polarized
tions are expected to be valid for beam len@gh pulse du- relativistic wave is reconsidered, now taking magnetic field
ration) much longer than the width and at times beforegeneration into account. The cutoff frequency is studied as a
significant motion of ions. Recently, two-dimensional self-function of the intensity of the wave, which is shown more
focusing of short intense laser pulse was studigd1Q. It  clearly than that given if14].
has been supposed that this kind of self-focusing is useful for Thirdly, self-focusing of laser beams is studied, including
the self-generated magnetic field. This improves earlier re-
sults in several ways, for example, the critical power for
*On leave from the Southeast University, Nanjing/Jiangsu, Chinaself-focusing is modified, and the electron cavitation channel
Electronic address: sheng@mpg.mpg.de is reduced. In our study we assume that the laser beam is
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short enough to neglect ion motion, while long enough asvhereny is the slowly varying electron density. In deriving
compared to the beam width to neglect the longitudinalthis equation, it is important to use the conditi®nE, =0;
variation. The latter allows us to treat the problem of beamOtherwise, incorrect results are obtairiéd,18. The slowly
self-focusing in one dimension, a method adopted in somearying current is calculated by time averaging

earlier studieg2-7].

In Sec. Il the calculation of the magnetic field produced )\nee’Eg . d . 4
through inverse Faraday effect is given. Section Il presents ~ Js= — (€M)= 2y’ (ey x Xy
the dispersion relation of a plane circularly polarized wave.

Section IV gives the evolution equation of a laser beam withyhere( ) denotes time average over . We notice that this
self-generated magnetic fields taken into account. The staurrent depends on the inhomogeneity of both the plasma

tionary eigenmode solutions of the evolution equation arejensity and light intensity. If the beam is cylindrically sym-
found numerically in Sec. V. A summary of the results is metric, it reduces to
given in Sec. VI.

Mo
5@

)\7763E(2) d (77”0 ~

II. MAGNETIC FIELD GENERATION JS:Z'ymzwg ar y € - (7)

For a cold relativistic electron fluid, On the other hand, the motion of a single electron in the

dp 1 circularly polarized laser field produces a magnetic dipole
qi € E.—-V- &+ c VX (BL+Bs) |, ()  momentu=—e/2c{roXv,) with r, the orbit radius, which
produces magnetization of the plasma when it is summed for
whereE, andB, are the electric and magnetic field of the all electrons,
laser beam, respectively, addand B are the slowly vary-

2,37 2
ing electric potential and the longitudinal magnetic field M=— A 7°e"noEq 8, ®)
along the direction of laser propagation either produced 2cy’m?ws %
through inverse Faraday effect or externally applied. Taking
the electric fieldE, in the form The total magnetic field is calculated frgh9]

E.=3Eo(e+irg)expikz—iwt+igy)+cc, (2 4
L2 Fol G ING e Vo @ VXBy=— Js+4mVXM. ©)

where Ey(X,y,z,t) is the real amplitude, slowly varying in
time and space, is either equal to 1 or-1, corresponding to
right- and left-circular polarization, respectivelg, and &,

are the unit vectors ir andy direction, ¢y is a phase slowly
varying in time and space, used to enfokeee, =0 for pure

transverse waves, and c.c. denotes the complex conjugate 2mhec
terms. From this, we find the oscillation velocity at funda- Bg=—

In cylindrical geometry, with no externally applied constant
magnetic field and,=0 for r —o, we find from Eq.(9), by
using Stokes’s theorem,

n°nolal? F“ nlal® d (n%) }
— dr|e,,
r

. —_
mental frequency is @ Y y dri vy

(10

in ek . . :
VL——7m—w7(Q(+|)\ey)exp(|¢)+c.c., 3 or
271 21412 o 2

where p=(1-Aogdwy) L y= 11— V[T is the relativis-  @c_ A @p[7nfal® 1 f = mlal” d (o)
tic factor, w,=eBJ/mc is the cyclotron frequency, and 0] 20| ¥ Ng Jr y dri vy '
y=kz— wt+yy. From this equation, we find the relativistic 11

factor in the form
wherea= e E,exp(i o)/ mwc is the normalized complex am-
y=[1+(neE/mwc)?]"?, (4)  plitude andw 5=4mnye*/m. Obviously, for a linearly polar-
, ) i o ized laser beam withh=0, there are no curreld, and mag-
which differs from that without a constant magnetic field by netizationM, and therefore no longitudinal magnetic field
a factor of . This factor has been ignored in some ear"ergeneration.

studies, thereby losing the self-consistefty—18. Here the In the non-self-consistent way,and y in the above equa-

longitudinal velocity of electrons is ignored on the assump-. : ; - _

) . : 1MPYion are simply substituted with 1 angh= \1+]a|?, where
tion Fhat_the Intensity of the laser bea_tm _changes.slowly n theyo is the normal relativistic factor without the magnetic field.
longitudinal direction. From the continuity equation, we find

. . In this case, the magnetic field can be calculated directly
the density perturbation of electrons at fundamental freTrom these equations. Here we can give some examples for

quency the purpose of comparison with the self-consistent result.
i When the electron density, is homogeneous, and the am-
n=-——V-(ngv,) plitude of the laser field approaches zeroras+,
w
eE, . . Mo 5 A (mwc) wj) [ 3lal? 1, 15
=—m(ex+|)\ey)exm¢)-V(7 +c.c., (5 sT 9 e w2 2,)% 2 Yol- (12
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If both the laser field and the density of electrons are inho-

mogeneous, for example, when both have Gaussian shape  0-00 ' ' ' '
|a|=agexp(—r2/2L2), a3<1, and ny(r)=Ngexp(—r?/L 2)
=Nof4(r), then ¢

---- Approx.
5 \ad [ moc) [ o)’ L L2
=2 el /\ M

-0.05 ——- NSC 1
X exp{ -

where w;,2=47-rN0e2/m; otherwise for the same Gaussian
la|, but density cavitationng(r)=Ng[1—exp(—r?/L2)]
=N,f,(r), we have
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FIG. 1. Magnetic field produced in homogeneous plasma as a
exp(—r?/L2). (14)  function of the light intensity calculated in self-consisté8€) and
non-self-consistentNSC, Eq.(12)] ways, or self-consistently but
with approximation to ordeO(w/w) for w3/w?=0.8 and right-
Self-consistently, the magnetic field produced can be calCugircular polarization(\=1). The magnetic field is normalized to
lated numerically. To do this, it is easier to solve a differen-B,=mewcl/e.
tial equation than to solve an integration equation. Assuming

ng(r)=Nyf(r), and taking the derivative of Eql1), or di- d(w./o) N @2 3 f|al? w2\ 1
rectly from Eq.(9), we find e P Dt i B &
y from Eq.(9) dr 2(7( 2 % W
M:_E“’_ﬁ( 3 Bor’lal’f wp’| " w. .| 2lal? df
dr 2 2 y° w? X 1"’2)\?'}’63 7a
0
laj2 df 7%
R o[a- 12y el ¢ dal
2 0 2y yg dr
3 Bon’lal®| dlal? (17)
X 1—§T ar I (15

Figures 1 and @) show a comparison between E¢E5) and
wherey=[1+\(w./w)|a|*(7/%)*"*. This equation is easily (17). It shows that the approximation to ordef(w /) is
solved for given functiong(r) and|a(r)|% Figures 1 and generally reasonable.

2(a) display a comparison between the non-self-consistent |t should be pointed out that Eq€l5) and(17) are valid
analytical expressions[Eqgs. (12)—(14)] and the self- for inhomogeneous distributions of the light intensity and
consistent result obtained from E@.5). It shows that only  electron density. When both the light intensity and plasma
for the casew3/w’<1 or |a]><1 when the generated mag- density are homogeneous, the total volume current density

netic field is small, the non-self-consistent results approackanishes, but there is still surface contribution. The magnetic
the self-consistent results. The plotted results arefet. If  field is simply

one takes\=—1, the magnetic fields just change sign.
Meanwhile, we note according to Eq(11) that N [ mwc wg 7°lal?

oo~ (w,/w)?(|al’/y?), therefore either for|a]<1 or Bs=—§< )(F) —, (18)

|a|>1, one hasu./yw<1. We then obtain for; andy in the Y

order of O(w / w)

e

and the corresponding differential equation is

w _
14N diwel@) oy’ or’lal® wp) !
Yo —d|a|2 Y yz —75 w2
We |a|2 B 3|a|2
=yt N — — 07
Y=YotN — 2 (16) x| 1— T) (19
7_1 14N @e 5 Figure 3 displayso /o as a function ofa|? for some value
Y % w Yo | of w5/w’. The non-self-consistent resitaking 7=1, y=1y,)

is also given for comparison. The latter overestimates the
and magnetic field. Compared to Fig. 1, one can see that the
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FIG. 3. Magnetic field produced in homogeneous plasma by a
right-circularly polarized plane wavé\=1) for wg/wZ:O.s, nor-
malized toBy=muwc/e.
0.4 : , with
0.3 1 i ne?ng
Exact J=—enyv, = EL, (21
0.2 ~==-= Approx. | Moy
0.1 and the density of electrons is determined by Poisson’s
. 00 equation
m
& -0.1 ] V2® =4me(ng—ng). (22)
0.2 ] Heren, is the unperturbed electron density or the ion density
03 | with effective charge number equal to one. For plane waves,
) ns=ny, we then have the dispersion relation of circularly
0.4 1 polarized relativistic light,
-0.5 : : 2 1
0.0 5.0 10.0 15.0 s 2. @p ¢
r/r w =kc+—|1-N—] . (23
0 Y wy

FIG. 2. (a) Magnetic field distribution calculated in a self-
consisten{SC) or non-self-consisteniNSC) way for two different
profiles of plasma density given in the tdxurve(l) for f,(r) and
curve (Il) for fo(r)] and for a Gaussian beam fda|=0.1,
w;f/wzzo.l, L,=L,=5.0ry, andA=1. (b) Magnetic field distribu-
tion calculated exactly or with approximation to ord@¢w./ w) for
the same density profiles and Gaussian beam [&=2.0,
0y’ l0?=0.8, Ly=L,=5.0rp, and \=1. Magnetic field in units

Bo=muwc/e; radius in arbitrary units .

volume current density induced by the intensity inhomoge-
neity tends to cancel the magnetic field generation in homo

geneous plasma.

This dispersion relation was also given by Akhiezer and
Polovin[1], where they considered the propagation of a cir-
cularly polarized relativistic wave with an externally applied
magnetic field along the propagation direction. Hesgw in
the dispersion relation is calculated from the self-generated
magnetic field Eq. (18)] and y is given by Eq.(4).

The cutoff frequency above which the laser beam can
propagate in the plasma is

(24)

-1
Cc
'}’wCF) '
[f the magnetic field is produced uniquely by inverse Faraday
effect, Eq.(18) gives

2 2 -2
ll. THE CUTOFF FREQUENCY OF A CIRCULARLY e A f; @2_ 1o\ 2 ) (25)
POLARIZED RELATIVISTIC LIGHT WAVE wcE 2 wgg Y yocg
The general wave equation is therefore
2 2 1
) 1 PE. 4w dd wee 1 |al? “’CF) (26)
VE -5 —>==—7. 20 w2 5 2 '
Loc? gt ¢ oot 20 p 7 2y wy
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(1), after some tedious algebra calculation, we obtain

2.0 . . <
=7 1 m
7 vV, o= Evl><B|_+€(vL-V)yvl
Pig B
15 /// e o ”
7 — 2/ 2 (a) _ 2 c T =2
/// JU— (1);2/(1)22 (b) mezy VL E0+ VL Y Eo ’ (31)
o ——- lojo,l

1.0 <

where we have ignored the longitudinal component and use
the relationV-E, =0. We emphasize that this expression is
valid for a circularly polarized light wave with a slowly
varying magnetic field, either produced by the light wave or
applied externally, in the propagation direction. Now we put
the above equations in dimensionless form by introducing
a =eE /mwc, a=eEexp(iyy)/mwc, ¢=ed/md, Kp

= wy/c, andNg=ng/n, with  5=4mnee’/m. The resulting
wave equation is

0.0 5.0 10.0 15.0

FIG. 4. The cutoff frequency of an intense circularly polarized

. . e 1 42 k>
light wave in homogengous plasma and the magnetic field pro- Vza,_— — =P N, , (32
duced. Curve(a) takes into account the self-generated magnetic ce at Y
field and curve(b) does not account for it.
, Ny=max0,1+k, ?VZ ¢), (33
(OF A wCF 2
—=—5—7la% (27)
CF (l)p 77 2 )\wC 77 2
: 2 | al2)1/2 S1 Vi¢=5_-|V.lal*+ V.= lal?]|, (34
with A=(1+ 7&dal?)** and 5cg=(1— o /yocp) . Figure 4 2y Y

showswidw;; and|w./wcd as functions ofal2 The cutoff

frequency for intense circularly polarized light is slightly with y and » given in Sec. Il. Here we assume the plasma
smaller thanwﬁ/ J1+]al?, the well-known result without density is homogeneous. These three equations describe the
considering the magnetic field generation. With the approxi{propagation of optical beams in plasma with a magnetic field

mation (16), we have in the propagation direction. Substitutingy =a/2(g,
+ine)expkz—iwt) into Eg.(32), we have
o a2 & )exp( ) into Eq.(32)
— =177 -1+ 1+ 2 . (28) .
wp |a Yo da 1 oda i > 2 nNg
E"PU—E—E VJ_‘{‘kp g— a=0, (35)
When|a|>1, we find 9
w?;F/wS:l/|a|, (29  where the dispersion relatiom®=k*c’>+ow} for laser
beams with finite transverse size has been usge,dw/dk
wclwcg=—(\2)|a]. (30) is the group velocity, andr<1 is a constant eigenvalue

meaningful only for the stationary solution of E@®5) and
We note that the magnetic field generated increases linearlyepending on the light power of the eigenm@8¢7]. Physi-
with the amplitude of the light wave. It shows that one cancally, o is related to the effect of relativistic electron-mass
obtain an ultra-intense magnetic field in an overdense plasmiacrease and charge displacement owing to the transverse
where the light wave can propagate through induced trangponderomotive force, which tends to reduce the plasma fre-
parency. As an example, if the incident wave has a wavequency in the dispersion relation. The higher the power of
lengthAg=1 um in vacuum anda|=3.0, which corresponds the trapped eigenmode, the smaller ¢healue. Now making
to an intensity of about 1.2810"° W/cn, the plasma has a substitution ofz’ =z—v4t and normalizingé&=k3z’/k and
cutoff density n.=|a|n{¥=|alw3m/(4me?)=3.35x10?  p, =k,r, , we obtain the evolution equation for a circularly
cm®, and the magnetic field produced is around 160 MG polarized laser beam in plasma,
This value is comparable with these produced through other
mechanism$20,21]. 9
V2+2i Pt

7N

a= a, (36)

IV. THE EVOLUTION EQUATIONS OF CIRCULARLY

POLARIZED LASER BEAMS where V2=d/dp(pd/dp)/p for cylindrical geometry. To

For a laser beam with finite transverse si¥p is not  simplify the problem, we calculate all quantities to order
zero. Assuming the amplitude envelope of the laser bear®(w/w) since this is a very good approximation as shown
changes slowly in longitudinal space as compared to that iin Sec. Il, wherey and y are given by Eq(16), andV, ¢ is
transverse direction, taking the time average avetin Eq.  reduced to
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1 w 4+|al?

Vid= (27 N T

|al?

1 , 3
=V, yo+ VJ_ |n7’o_§7’0 )
and

. d2a+ 1 da
dp®  pdp

. da
a —p+c.c., (37

where

4+|al?

[OR 4+|a|2
B4:1+)\ _—
2vq

wc 4—9a]*~|a|*

=1+
Bs N 252

If the magnetic field is produced exclusively through the
inverse Faraday effect, then the cyclotron frequency is cal-

culated simply by Eq(17) with d/dr substituted withd/dp.
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m2c® w? (=
Pcrzz—ez—a?pj |a|?p dp
m2c® 1 j He g
=7 25 (p)p dp
a)2 2 -1
=1.62<101% | — || 1+ —=]| W, (42)
wp (1)

where, in the last integration, we have made use of the result
given in Ref.[7]. Compared with previous studies, we find
that the critical power is reduced by a factor(df- w5/w®) ™

due to the magnetic field generation. This result is also con-
firmed in the following numerical calculations. Physically, it
can be understood from the basic dispersion relation Eq.
(23): it shows that self-generated magnetic field tends to in-
crease the refractive index in high intensity regions in addi-
tion to that caused by the relativistic effect. The critical
power is, of course, just a necessary condition for self-
focusing of a laser beam. The sufficient condition is related
with some globally conserved quantities of the bd&@24].
Taking into account the magnetic field generation, it should
also be modified.

B. Stationary solutions

Assuming that no cavitation occurs, we $&{= 1+VL¢

One finds that the evolution equations for right-and left-in Eq. (38) and find
circularly polarized laser beams are the same, although the

magnetic fields have opposite signs for the two cases.
V. EFFECT OF SELF-GENERATED MAGNETIC FIELD
ON THE PROPAGATION OF LASER BEAMS
A. Critical power of self-trapping

The stationary equation is

1d
p dp

da nNg
—|+oca=——a, 38
P dp 5 (39)

which is similar to the one given by Swat al. except for the
different forms ofNg, y, and 5. Here, we take to be real.
The critical power is calculated as follows. Near the critical
therefore

power, |a|<1, and the beam radlusp8
N~1+a/pi~1, o~1, and wJw~—\a w2/(2w2)<1
To the order ofO(|a|2) we have p~1-a’w5/(207),
y~1+a?2, and Eq.(38) reduces to

Ld (a1 % alaco. (o

[_)% p& ag E F a‘la=0. (39

Assuming K¥=1—ao, 0=12(1+wjlw?), and
a=(x?/6)YH(«kp), one has
1d dH

- —H+H3=0, (40)
pdp P dp

with the boundary conditiondH/dp|,_,=0 andH|, ,..=0.
The solution of this equation is well knowjr22,23. From
this, the critical power is calculated as

d2a+1da N d (wc , da da\?
R — —— —_— — a —— J— —_—
dp2 pdp BlIBSdp dp BlBZ S dp
2 7
+B1Y5 0'—; a=0, (42

where

(1, @ (6+a?)a?| !

= © 2y '
1 . 6—9a’—a*
BZ_ 2)_)/8 l

and B3 as defined following Eq(37). To obtain the station-
ary eigenmode, Eq42) should be solved together with the
density equation and magnetic field equation. The magnetic
field equation is given by Eq(17), which we rewrite by
substitutingf with Ng as

(43

pla’ =
a y
7 dp

with
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B —(1+ 3 eNea®) 1.010
® 2 ¥ '
1.005 | e 1
@We 3) —2 ——- =08
=[1+2xn — :
Bz ( o Yo | Yo 1000 |
2 2 3
a wWe 4—11a 2 Z 0995
Bg—(l ?'f')\ 32—’)/8 ’yo y
0.990
By=BeB7. Bs=PBsBs, and e=wj/w’ is the factor for the
unperturbed plasma density. In the density equafi@g. 0.985 - 1
(34)], the scalar potential is given by E(R7), which can be (@)
simplified by substituting with Eq42) 0.980 ) . (
0.0 5.0 10.0 15.0 20.0
Bs (da\? P
VZp=—Blyo(oc—nly)a+ = | —
1¢=—PB1volo—7ly) 7\ dp
AB; d [w da . ) .
+_3_(_C 292 (44) 0.50
Yo dp | @/ dp
, ) , , 0.40 | 10"
with B1=B1B4, B3=Bs+ B1B3Bsa%, Bs=Bs+ B1B2B4sa°. an
Substituting Eq(43) into Eq. (44), we finally find the equa- ——- =08
tion for the electron density, 030 [ :
Q.
eBsB; . da)| dN eByBy [da)? ©
(ﬁ a® — —S+[1+ Pabs ol 92 N, 0.20 |
Yo dp/ dp Yo dp
Bs (da 2 n 0.10
—— | ==| +Biyel o——]a?—1=0. (45) b
7 ldp) TP (b)
g . 0.00 ' .
We note that, due to the magnetic field generation through 0.0 10.0 20.0 30.0 40.0
inverse Faraday effect, the electron density is now deter- p
mined by an ordinary differential equation. This equation
and Eq.(42) are valid forN,>0. Otherwise, when electron
cavitation occurs, Eq(42) has to be replaced by E438) 0.01 :
settingNg=0. By electron cavitation, we mean that the elec-
tron density becomes zero in some region as us¢f|inNe
emphasize that foe—0 (and thereforew./o—0), all equa- 0.00 s
tions in this and the previous sections reduce to those given //" //’ .
by Sunet al. Equations(42), (43), and (45) are now to be 001 L o e e ]
completed with the boundary conditions & L-=" // ——- =08
= /
0 da © 02} //
a(p)|pﬂ°°_ ) E p:()_ ) //
/
003 v ©
w /.
Ne,_.=1, —| =O0. -
gl PR -0.04 ' : :
0.0 5.0 10.0 15.0 20.0
They are solved numerically by the shooting metta8]. p

Similarly to Ref.[5], we use the asymptotic solution of Eq.
(42) at some large radiug,, as a starting point for numeri-
cally integrating inward. The asymptotic solution is the
modified Bessel function,

FIG. 5. The self-focusing eigenmode fer=0.98 at various
plasma densities(a) Electron density;(b) amplitude profile;(c)
magnetic fieldA=1) in units By=mwc/e.

a(p)~C.(xp) Yoexp(—kp) , , o
Figure 5 shows a result without electron cavitation with
for p—o andk?=1—o0. In our calculations, Eq$42) [or Eq.  the eigenvaluer=0.98. The line fore=0.0001 corresponds
(38)] and (43) are integrated using an explicit scheme, andto a very small plasma density and a small magnetic field.
Eq. (45 is solved implicitly on the consideration that the For this case, the result given by Senal. is recovered5].
coefficient ofdNy/dp may be a small quantity. With increasing plasma densit§e=0.2 and 0.8, for ex-
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FIG. 6. The self-focusing eigenmode far=o0, at various
plasma densities(a) Electron density;(b) amplitude profile;(c)

magnetic field\=1) in units Bo=mwc/e.

ample, the magnetic field increases, and its effect becomes
apparent: the maximum amplitude of the beam reduces, the
beam tends to be focused at low light intensity, and the mag-
netic field tends to prevent the electrons from being dragged
away from the high intensity region by the ponderomotive
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0.840 : .
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0.2 0.4 1.0

06 08
(o /)

FIG. 7. The eigenvaluer, as a function of plasma density
(wp/w)2 when the electron cavitation begins to occur.

force. The magnetic field distribution in this case is similar to
the result in homogeneous plasma. For left-circularly polar-
ized beam$\=—1), the distributions for the electron density
and amplitude of the laser beam do not change, and the mag-
netic field changes its sign. For this case, the magnetic field
plays a positive role for self-focusing of the laser beam as
seen from the dispersion relation EG3).

As the eigenvalue decreases, the peak amplitude of the
trapped eigenmode increases, and more electrons are dragged
out of the high intensity region. Foe=0.0001, when
0=0,=0.8784(slightly different from the value 0.8778 as
given by Sunet al), cavitation begins to occur as shown in
Fig. 6. Due to the magnetic field, the critical eigenvaige
for electron cavitation to occur is a function of plasma den-
sity. When the plasma density increases, decreases as
plotted in Fig. 7. In this case, the magnetic field distribution
is somewhat similar to the result for density proffig(r)
given in Sec. Il. Because it changes sign in the radial distri-
bution, its effect on self-focusing is indefinite: near0,
7=(1-\wlwy) 1>1, it plays a negative role for self-
focusing; but forp<<1 in the outer region, it becomes posi-
tive for self-focusing.

With the further decrease of eigenvalue, a cavitation
channel develops. One may note that, due to the magnetic
confinement, the normalized size of the cavitation channel
reduces. The higher the plasma density, the smaller the nor-
malized radius of the cavitation channel. However, the dif-
ference of the amplitude profiles for different plasma densi-
ties is not large. Inside the cavitation channel, the magnetic
field is a constant like that inside a current c@ée Fig. 8.
Outside the channel, the magnetic field changes sign in the

radial distribution, therefore its effect on self-focusing is also
indefinite, as in the last case.

In the following, we define the normalized trapping power
and radius of the self-trapped eigenmode as

PIFIa(p)Izp dp, (46)
0

1 o 1/2
pa=(5 fo Ia(p)lzpsdp) : (47)
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— =10 energy, although both the relativistic and magnetic effects
e | are important for self-focusing outside the channel. For

0>0.9, the laser power becomes sensitive to the plasma den-
sity. Wheno—1, i.e., in the relativistic self-focusing limit,
the normalized trapping power scales (@s-w5/w?) ™", in
complete consistency with the analytical calculation as
shown above. The normalized focused radius is shown as a
function of the trapping power in Fig. 10. One may note that,
whenP>5.0, the radius is almost independent of power and
is slightly enhanced when the plasma density increases.

(b)

0.0 5.0 10.0 15.0 Again, this shows that most of the energy is trapped in the
p cavitation channel when the laser beam is at high intensities.
VI. CONCLUSIONS
06 The magnetic field generated through inverse Faraday ef-
I . fect by a circularly polarized light wave in plasma is studied
} el in a self-consistent way, which allows us to calculate the
04 ——- =08 1 magnetic field in plasmas for various density profiles and for
! light beams at relativistic intensities. Due to the magnetic
i
& oz} | ]
1] ----.{,‘ 15.0 T T T
1y | '
‘1“- i — e=10"
0.0 \ '\\ P : ‘: ....... £=0.2
L ees P (©) : : ---- =04
S 100 1 T =08 1
0.2 N4 : h
0.0 5.0 10.0 ¥
L
P a. \\I“
i
50 r ‘\“ T
FIG. 8. The self-focusing eigenmode fer=0.7 at various \
plasma densities(a) Electron density;(b) amplitude profile;(c) -
magnetic fieldA=1) in units By=mawc/e.
For given plasma density, a higher trapping power always 0.0 . , ‘
corresponds to a lower eigenvalue. For given value of 0.0 5.0 10.0 15.0 20.0

0<0.9, the laser power seems to be insensitive to the plasma P,
density as shown in Fig. 9. This indicates that when the light

intensity is high enough, the cavitation channel plays a fun- FIG. 10. Normalized radiug, of self-focusing eigenmodes as a
damental role in self-focusing and traps most of the beanfunction of the trapping powelP at various plasma densities.



1842 Z. M. SHENG AND J. MEYER-ter-VEHN 54

field generation, the relativistically induced transparency oHigh constant magnetic field is found inside the cavitation

an intense circularly polarized light wave in overdensechannel. In both cases, the effect of the electron displace-

plasma is modified in such a way that it can propagatanent and cavitation is reduced to some extent due to the

through a slightly denser plasma than a linearly polarizednagnetic confinement of the electrons.

light wave at the same intensity. Meanwhile, an ultra-intense Our results are limited by the assumption of long pulse

magnetic field is produced when it propagates in overdenskength. For short pulses, the magnetic field structure should

plasma through induced transparency. be modified[18]. But the magnetic field may not have a
The magnetic field generation results in a reduced criticatlirect effect on the wake field generation because the longi-

power for the self-focusing of a light beam. Generally, at lowtudinal oscillation velocity is basically parallel to the mag-

light intensities, the magnetic field plays a positive role fornetic field. The large magnetic field may be useful to guide

self-focusing of the beam. In this case, it does not changelectron beams in plasma-based particle accelerators.

sign in the radial direction, i.e., either negative for a right-

cirpularly polarizeq wave or posit.i\./e for a left-circularly po- ACKNOWLEDGMENT

larized wave. At high light intensities, the effect of the mag-

netic field on self-focusing is indefinite because it changes Z.M.S. is supported by the Alexander von Humboldt

sign in the radial direction owing to the electron cavitation. Foundation.
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