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Fast penetration of a magnetic field into a collisionless plasma
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The Hall-effect-driven fast penetration of the magnetic field into a collisionless plasma is studied in a
two-dimensional geometry. The magnetic field penetrates in the form of a shock wave, leaving behind the
shock an electron vortex. If the plasma density varies by a large factor, the magnetic field penetrates only in a
narrow stripe at a certain value of the density. The specific location of that stripe depends on the degree of
resistivity of the cathode. The magnetic field can be nonlinearly enhanced during the penetration.
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It is widely accepted that the early evolution of a mag-field behind the front and the region where the penetration
netic field in high energy plasma devices, such as the plasmaccurs, are determined by the boundary conditions at the
opening switches and the z pinches, is governed by the Hadlathode.
effect. The penetration of the magnetic field depends on the We restrict ourselves to the two-dimensional geometry
local profile of the ion density and on the curvature of the where all quantities depend on the spatial coordinataad
magnetic field lines. A shocklike penetration is typical, they, the magnetic field is parallel to the z-aBs=Bz, and the
velocity of the shock being of the order of the mean currenplasma fills the regiox>0. However, this should not be a
velocity, multiplied by a geometry-dependent factor very limiting assumption. Indeed, it has been shdwi [2])
u~I/\?ne. Herel denotes the total curren the electron that the case of cylindrical geometry with circular field lines
chargen the ion density, and the characteristic size of the can be reduced to the two-dimensiof2D) geometry with
plasma. The respective energy dissipation is to be related wtraight field lines and modified, effective ion density. Fur-
the so-called electron magnetohydrodynan{ld#iD) resis- thermore, it has been argugd] that in the case of an arbi-
tance: the integrals of motion prohibit the electron flow with-trary 3D geometry the penetration of the magnetic field into
out losing a part of its energy, associated with the magnetiplasma is qualitatively the same as in the 2D case. Also, in
field [1]. The phenomenon is quite well understood in theorder to avoid the delicate problem of boundary conditions at
case of a nonzero resistivityp >, *>vac/\, Where the electrodes, they are considered sufficiently remote. Let
w.e=€By/mc is the electron cyclotron frequency, the the plasma density profile be of the form
electron collision timepae=Bg/V4mmn the electron Al-

fven velocity,m the electron masg;, the speed of light, and Nc, y<O0
B, the magnetic field at the plasma boundan| tP]. n=1{ n(y), 0<y<a,
The integrals of motion of the electron MHD predict a Na y>a

fast penetration in the collisionless limit, as wédlssuming

that the cathode is resistivehowever, despite several at- \yhere n(y) is a monotonically increasing function whose
tempts[3—-6], the existing mathematical models have failed characteristic space scale is much longer than the collision-
to provide a consistent scenario of the process in this limitjess skin deptit/w,.. We also assume the following in-

In review [1] it was argued that the excess of the magnetiGqualities for the space scalesanda, the time scaler, and
energy is transferred to the electron vortices, but there was g¢ penetration spead of the magnetic field:

complete uncertainty about the characteristics of these vorti-

ces. The main difficulty is that the process cannot be under- W <T<w0g", N a<clwpi, U>V,. (1)

stood in the framework of a one-dimensional model; the one-

dimensional solutions do exi$B], but cannot be tailored Here w,; denotes the ion plasma frequen&f, the Alfven

with realistic boundary conditions. velocity, and\ the characteristic scale of the density varia-
In the present paper we use a quasi-one-dimensional déions in thex direction. Then the ions can be considered

scription of the shock penetration of magnetic fields. Unlikemotionless and the current is created by a quasineutral flow

the quasi-one-dimensional models used in Rpfs:6], we  of electronsj=—nev. Hence Ampere’'s law allows us to

secure the conservation of the vorticity, which is conservedxpress the velocity of electrons as

by the exact two-dimensional equations. It is shown that the R

collisionless fast penetration takes place in the form of a _ Vbxz

shock wave with the width of the front of order of the colli- VT T )

sionless skin depth. The value of the magnetic field behind

the shockB, is different from its value at the boundaBy ~ Here we have introduced the dimensionless quantities, where

and varies in space, so that the region behind the shock cdhe velocities are measured in the units of the electron Alfven

be considered as an electron vortex. The detailed shape welocity v e, the magnetic field in the units of the mag-

the front of the shock, as well as the value of the magnetimetic fieldB, at the plasma boundary, the ion densitin the
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units of the densityi¢ in the vicinity of the cathode, the time Thus, starting from some certain valye-y,, there is no

t in the units of the reciprocal electron gyrofrequencysolution to Eq.(6). A more detailed definition o is given

w.4, and the space lengths in the units of the electron skitiater, see Eq(8). So we can expect that at larger plasma

depthc/wpe: \/mz The electron equation of mo- densitiemn>ngy=n(y,) the magnetic field penetrates into the

tion, bulk, and the liney=y, presents the lower boundary of the

shock(see Fig. 1L Quite naturally, the magnetic field does

v VP, not penetrate into the regigrn>a with constant plasma den-

i FWv=—E-vXb———, sity. In fact, the upper boundary of the shogky, can be
located at even smaller values pfy,<a (see below.

upon applying curl to both sides and substituting the electric Thus, the lower boundary of the shock can be found as the

field from Faraday’s law;— db/dgt=VXE, can be rewritten smallest coordinatg,, such that the equation

as

b
b%=2n(yo)llg(bg), Tle(b)= [ ‘(b (8)

d 3 1 (Vb)
EJr(vV))Q—O, Q—ﬁ b—V

n

: ()

has a real solutios. Equivalently, the critical valuegg
Here we have neglected the electron-ion collisions, which iendbg can be defined by the system
legitimate under the condition 5

bs=2nelIy(bs), bs=neQ(bsg), 9
UpeTe> N\, (4)
where it is assumed thhg<<1 (the opposite situation will be

and used the “polytropic” approximation for the electron discussed beloy Then the boundary condition closing the
pressure P(X,y)=PJn(x,y)]. Equation (3) should be system(3), (5), can be written as
supplemented with boundary conditions. The first two
boundary conditions are rather natural, QX,Y)|y=y,= Qolb(X,y0)]. (10)

bly=o=1, b|y-..=0, (5) We wish to find a shocklike solution of the systdB),
(5), and(10).

the third one needs a detailed derivation. First of all we note Equation(3) can be simplified by neglecting the curvature
that in the regions outside the varying density profile one cawf the current lines. This approximation is justified in the
expect a stationary one-dimensional distribution of the mageurrent layer at the front of the shock, under the assumption
netic field, defined by the simple collisionless skin effect. Inthat the width of the shock is much smaller than its curva-
the case of a stationary solution, according to B), the  ture. Switching from the independent variableandy to the
vorticity () is constant along the streamlineéx,y) = const, magnetic field b and the logarithm of the density

hence N=In(n/ny) we have
1 %b PR e N j2
b— = T =n(y)Q(xy), 6 2+ ]a=0, 0=eMNb-— 2|
o2 - naxy) (6) (Wab+§N =0, O=e (b 5 &b) (11
where Here w=w(N)=u/(dn"*/dy), u=u(y) is the velocity of
the shock in the direction of thg axis, j=0db/d¢ is the
Q(x,y)=Qo[b(X,y)]. current density¢ the coordinate across the front, and the
time derivative al ot is substituted by

The particular form of the functional depender@g(b) 5/ 55— yj(dg/dx)a/ab. The boundary conditions in the
is defined by the processes at the cathode, which are NQL\w variabies are

considered here. Instead, we assume this function to be

specified. Qn=0=Q0(b), Qfy—o=0, (1239
As was indicated in papdi], in the case of a collision-

less cathode and a collisionless plasma, the fast penetration Qlpp (N):bseiNv (12b

will be suppressed. Indeed, the low collisionality of the cath- s

ode means tha€)y(b)<b. Then the systent5), (6) has a s (y)ze"\‘b§/2, (129

guasi-one-dimensional solution at all valuesyaind system

(3), (5) has a stationary solution. h N h ic fiel hind the f
Now we assume that the cathode is resistive so that in itW ereby(N) denotes the magnetic field behind the friso

e o : that bs=b(0)], and the potentiall(b,N) is given by Eq.
vicinity v ae7e=A\, ? (;]ondlmon Opposggvtmt)). Ihben, atleast )" conditions(12b) and (129 express the continuity of the
in some regions of the plasma, we hdvg(b)~b/n. Equa- | qricity and the current density, respectively. However, de-
tion (6) has a solution, consistent with the boundary condi

. . S “‘pending on the behavior of the characteristics of @d), the
tions (5) |f,ff0; all values ofb < (0,1), the following inequal-  5p5ye boundary conditions may be insufficient. If the elec-
ity is satisfied:

trons behind the front move faster than the frse Fig.
1(a) and Fig. Za)], the following condition should be added:

b
2 — ’ ’
b= 2ntl®), H(b)_fo (b7)dbr @ Q[bs(N),N]=Qo[bs(N)], bs(N)<1,  (12d
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cathode cathode

FIG. 1. Qualitative picture of the penetration. Darker regions correspond to stronger magnetic fields. The current created behind the shock
can be faste(a) or slower(b) than the shock. Besides, if the plasma density varies straaglyhe magnetic field penetrates only in a thin
stripe at certain values of the density.

Q[by(N),N]=Q[bg(N),N;], bg(N)>1, (128 Equation(11) is integrated along the characteristics, as
shown in Fig. 2
where we have used the notatibig=N(y,).
The velocity of the frontv can be found from the bound- Q(b,N)=Q[bg(b,N)],
ary condition(12¢ by differentiating it with respect to the

coordinatey and taking into account conditiond2b) and 1(N , o
), b0=b—§Jo b (N")dN’, if by(b,N)<bg, (143
w=by2, u=(bg2)an"ay. (13 and
It is worth emphasizing that the boundary-value problem . )
(11) and(12) does not depend on the density profilgy). Q(strf bs(N )dN’) =Q(by), if bo(b,N)>bs.
N(bg)

(14b

Here N(b,) is the inverse of the functiobg(N). In the
expression(14g the functionQy(b) is implied to be ex-
trapolated to the negative values b0 to a constant
Qy(b)=0.

Still, our solution (14) includes the unknown function
bs(N). The method to determine this function depends on
the behavior of the characteristi¢Big. 2). Let us consider
some patrticular cases. If the front moves faster than the elec-
trons behind the fronftdbs/dN<w; Fig. 2(b)], one can in-
troduce the auxiliary functiorbgo(N)=Dbg[bs,N(bs)], so
that

FIG. 2. A sketch of characteristiddold dotted lines of Eq. Nb(N')
(12). The exact Eq(3) enables us to continue the characteristics bs(N)=bso(N)+f S
beyond the shock fror(thin dotted lineg The characteristics origi- 0 2
nating at the cathode are designateddyand those terminating at
the anode, byA. H is the integral(19). Formula(15) can be rewritten in a differential form as

dN’'. (15
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(d/dN)[beexp(—N/2)]=exp — N/2)dbg /dN. n(yy)~en(yo). (20)

. . In other words, the front of the shock will terminate before
findll (bs) =1ITy(bg), so that ) ; :
Solution (143 can be used to findl (bs) =11o(bs), s tha reaching the liney=a if In[n(a)/n(yo)]=1. In the plasma
opening switches, the overall density variation can be more
B than an order of magnitude. In that case, the magnetic field
F(b)=dy2Ilo(b)/db. (16) will penetrate only into a narrow layer of the plasma in the

vicinity of the cathode. The width of the layer is given by the
Equation (16) defines implicitly the functionbgy(N). Fi-  estimate(20).

the boundary conditioi12¢) yields

exp(—N/2)=F(bgp),

nally, the functionbg(N) is found from the boundary condi- The problem is more complicated, if E¢8) formally
tion (12b): yieldsbg=1. In this case, the formally obtained value of the
lower boundary of the shock/,, would contradict the
bs=exp(N)Qq(bgp). (17)  boundary conditiong12b) and (12¢). Here the real lower

boundary of the shock is somewhat closer to the cathode, and
If the front is slower than the electrons behind it the penetrating magnetic fiela is larger than the magnetic
dbs/dN>w the unknown function can be found from the field at the plasma boundatys>1. The lower boundary of
boundary conditions(12b), (12d), (128. The case of the shock is to be found from the syste®), where the
bs(N)<1 immediately results in extrapolatedto the regiorb>1) functionQy(b) should sat-
isfy the following functional equation:

Dol bs(N)Jexp(N) =bg(N). (18 Qo(b)=Qg(b—H), if dby/dN>0,

If the opposite inequality holds, there are two different Qo(bg)=hg, if dbs/dN<O.
regimes of penetration, depending on the extent of the
plasma density variation. The electrons caught by the shock practice it may be difficult to solve this equation. How-
have never been at the resistive cathode and thus carry zegeer, it is possible to show that the shocklike solution does
vorticity. In Fig. 2, these electrons correspond to the characexist in that case as well. A possible scheme of currents is
teristics, originating from the bottom. Moving along the front shown in Fig. 1b).
towards the abode, the electrons “climb up” towards higher As an illustration, we present the explicit solution for the
values ofb (Fig. 2). In the case of a strong density variation, model vorticity function
there is a pointN=N; where they attain the valub=1.
Thus, at that point, the electrons of zero vorticity occupy the Q=b;0(b—by), by,by<1,
whole interval p<[0,1]); further, they continue their mo-
tion towards the anode at the plasma boundary. Cons
quently in the regiony>y, there will be the collisionless n(y)=exp ay).
skin layerb=exp(—x). The other electrond(>1) turn back
towards the cathode, and start rotating in the electron vorteXhen in the region of the shock we have
[Fig. 1(@]. The upper boundary of the shock is then found

ea_nd the density profile

from the condition YoSYSY1, Yo=a 'In(2by/b;), yi=yo—In(by),
N:b and the magnetic field is given by
S
H= —dN=1. 19
o 2 19 fl(2x=tbya)/2yn(y)], Yo=Yy=Y1,

o _ _ B b=b,n(y) fL(yo—y)/Nn(yo) ], Y=~Yo,

In other words, the pointti=0, b=0 andN=N;, b=1
lie on the same characteristEig. 2). fL(y—y)/Vn(y)], y=~Yi,

In the case of weak density variations, Ef9) cannot be
satisfied. Indeed, upon substitutifdy, =In(n,y), we obtain  where the notation is introduced,
H<1. Then the shock penetrates in the whole region of vary-
ing density, so thay;=a. 1-expx), x<O

In both cases, the desired functitig(N) can be found fog= exp—x), x>0
from the equatiorbg=expMN—N;)Q(bs,N;) [which follows
from Eqgs.(12b) and(126], where the functiof)(bg,N;) is At the plasma boundar.e., in the region 82x<1), there is
to be found from the expressiori$4) and (18). Thus the a simple collisionless skin layer.
function bg(N) can be constructed step by step towards Thus we have proposed a simple model capturing essen-
higher values of the magnetic field, as is shown in Figp).1 tial features of 2D nonlinear collisionless penetration of the
The procedure is rather sophisticated and is not presentedagnetic field into electron MHD plasmas. The magnetic
here. Still, Eq.(19) provides a simple and useful estimate of field penetrates in the form of a growing electron vortex with
the upper boundary of the shod¥ . For bs~1 we obtain  a self-consistent profile of the magnetic field inside the vor-
H=Nj,=In[n(y))/n(yp)]. In the case of strong density varia- tex . The location and detailed structure of the vortex depend
tions, the upper boundary is given by the conditids=1, on the boundary conditions on the cathode. In the case of
hence strong ion density variations, the vortex is localized over an
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octave of the density variation. So, the magnetic field pen- The main part of this paper has been prepared owing to
etrates only in a narrow stripe in the vicinity of the cathode.the hospitality of the Centre de Physique ®Hgue, Ecole
The theory also predicts a nonlinear enhancement of th€olytechnique. | am grateful to L.l. Rudakov, M.N. Bussac,
magnetic field. and J.F. Luciani for stimulating and useful discussions.

[1] A. V. Gordeev, A. S. Kingsep, and L. I. Rudakov, Phys. Rep. [4] A. Fruchtman and L. I. Rudakov, Phys. Rev. L&, 2070

243 215(1994. (1992.
[2] A. S. Kingsep, L. I. Rudakov, and K. V. Chukbar, Sov. Dokl. [5] L. I. Rudakov, Plasma Phys. Rep®, 433(1993.

AN SSSR262 1131(1982. [6] A. Fruchtman and L. |. Rudakov, Phys. Rev. 3B, 2997
[3] J. Kalda and A. S. Kingsep, Fiz. Plasr, 874(1989 [Sov. (1994.

J. Plasma Physdl5, 508(1989]. [7] J. Kalda, Phys. Fluids B, 4327(1993.



