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Atrial fibrillation is a common cardiac arrhythmia in which there is an irregular heartbeat. This paper
develops a theoretical model for the intervals between successive heartbeats during atrial fibrillation based on
the following ideas. There is an irregular pattern of activation of the upper chambers~atria! of the heart.
Excitation travels from the atria through the specialized conducting tissue called the atrioventricular node to the
lower chamber of the heart~ventricles!. We model this situation by a stochastic map. If the map is linear, then
it is possible to compute analytically the probability density for the timings between ventricular activations.
Numerical simulations of nonlinear maps show correspondences with clinical data. Thus this work casts a
clinical medical problem in the context of stochastic maps.@S1063-651X~96!00108-0#

PACS number~s!: 87.22.2q, 02.50.Ey, 87.10.1e

I. INTRODUCTION

In the normal human heart, the rhythm is set by an au-
tonomous pacemaker the sinus node that is located in one of
the upper chambers of the heart, the right atrium. The rhythm
set by the sinus node propagates through the right and left
atria, and then through a specialized region of the heart
called the atrioventricular node which provides an electrical
pathway between the atria and the main pumping chambers
of the heart~the ventricles!. In the healthy heart, each im-
pulse generated in the sinus node is conducted down to the
ventricles leading to ventricular excitation and contraction~a
heartbeat! @1#.

This paper deals with atrial fibrillation, a common cardiac
arrhythmia in which the rhythm in the atria is no longer set
by the sinus node. During atrial fibrillation, irregular patterns
of electrical activation are usually found in the atria. These
are believed to be associated with fractionated and multiple
waves, circulating and propagating through the atria@2,3#.
The usual circumstance is that some of the excitations in the
atria are propagated through the atrioventricular node to the
ventricles while others are blocked. The combination of ir-
regular inputs and blocked propagation results in an irregular
heartbeat. The irregular heartbeat can be easily monitored—
either by feeling the pulse, or by measuring the electrocar-
diogram, a measure of potential differences on the body sur-
face associated with the cardiac electrical activity.

There is an extensive literature in cardiology that docu-
ments the statistical properties of the ventricular activity dur-
ing atrial fibrillation, with emphasis on measurement of the
histograms~probability density! @3–9# and autocorrelation
functions@5–7,9,10# of interbeat intervals.

Despite the medical importance of atrial fibrillation, there
have been limited attempts to develop theoretical models to
analyze the probability density or autocorrelation function of
interbeat intervals during this arrhythmia. An early attempt
in this direction was carried out by Cohen, Berger, and Dus-
hane who assumed that the atrioventricular node was a spon-
taneous oscillator subject to random small inputs@7#. How-
ever there is much debate concerning whether in usual
circumstances the atrioventricular node is a spontaneous os-
cillator @9,11,12#, and we consider a different approach that

deals in a more direct fashion with measurable physiological
properties of the atrioventricular node.

An alternative theoretical approach to studying the physi-
ological properties of the atrioventricular node is to model it
by a nonlinear finite difference equation. Shrier and col-
leagues showed how to experimentally measure the nonlin-
ear functions underlying atrioventricular nodal activity and
demonstrated that this formulation successfully describes the
ventricular response during stimulation of the atria with pe-
riodic inputs@13#. A review of this approach is in@14#.

During atrial fibrillation, the atrioventricular node is not
subjected to periodic inputs, but rather to irregular inputs
resulting from irregular activity in the atria. Therefore, a
theoretical model that is appropriate for this situation is a
stochastic difference equation. This class of equations has
been studied extensively because of its relevance to a variety
of problems in mathematics and physics@15–19#.

In Sec. II we give some additional information concerning
the physiology of the atrioventricular node, and statistical
properties of atrial and ventricular activity during atrial fi-
brillation. In Sec. III, we consider special cases in which the
atrioventricular node is modeled by a linear stochastic differ-
ence equation. The equation for the probability density and
the autocorrelation function of the ventricular interbeat inter-
val can be solved analytically. Section IV considers more
realistic examples and treats these analytically and numeri-
cally. We discuss the limitations of our approach in Sec. V.

II. DIFFERENCE EQUATION MODELS
OF THE VENTRICULAR

RESPONSE DURING ATRIAL FIBRILLATION

In this paper, we analyze the ventricular response to atrial
fibrillation based on the conduction properties of the atrio-
ventricular node. The conduction time AV is defined as the
time interval from the start of activation of the atria to the
start of activation of the ventricles. The recovery time VA is
defined as the time interval from the start of activation of the
ventricles to the start of activation of the atria. Our starting
point is to assume that AV is determined by the preceding
recovery time VA, summarized by the equation

AV5 f ~VA !, ~2.1!
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wheref is an appropriate function called the recovery curve.
If the recovery time is shorter than the refractory periodu the
activation is blocked, and there is consequently no activation
of the ventricles. The recovery curve is often measured in
clinical and experimental settings@13,14,20#. An example of
an experimentally measured recovery curve in a person is
shown in Fig. 1. If the atrial inputs to the atrioventricular
node are known, and iff is known, then the ventricular re-
sponse can be iteratively determined, and the computed dy-
namics are often in good accord with experimental observa-
tions @13,14#.

During atrial fibrillation there is usually irregular activa-
tion of the atria. Experimental analysis of the dynamics of
atrial activation during atrial fibrillation is difficult since this
requires direct measurement of atrial activity from electrodes
placed on the inner or outer surfaces of the atria. Moreover,
the atrial activity will vary depending on the exact placement
of the electrodes. However in a variety of clinical circum-
stances it has been possible to measure in patients the timing
of atrial activation during atrial fibrillation@3,8# as well as
the timing of ventricular activations. In Fig. 2 we show rep-
resentative data from Kirshet al. @8#. The histogram of the
time intervals between atrial activations from a site in the
atria are approximated by a normal distribution, centered

around 146 msec with a standard deviation of about 33 msec.
The histogram representing the interbeat intervals from the
ventricles is approximated by a normal distribution with a
mean value of about 461 msec and a standard deviation of
about 98 msec. The mean value of the time intervals between
ventricular responses is significantly greater than the mean
value of the atrial activations indicating that not all atrial
activations are successfully transmitted through the atrioven-
tricular node. Thus the larger mean value of the time inter-
vals between ventricular responses is associated with the
blocking of some of the atrial activations in the atrioventricu-
lar node.

The data in Fig. 2 form the starting point of our analysis.
We are interested in developing theoretical models that can
relate the two histograms based on our understanding of the
physiology of the atrioventricular node.

III. THE LINEAR STOCHASTIC DIFFERENCE
EQUATION

A schematic representation of atrioventricular nodal con-
duction is shown in Fig. 3. Let AAi be the time interval
between the (i21)st and thei th atrial inputs and VVi the
associated ventricular interval. VAi is the recovery time,
measured from the last excitation of ventricles to the begin-
ning of the (i11)st atrial input. AVi represents the time
interval that it takes thei th atrial input to cross the atrioven-
tricular node.

In this section we first assume that each atrial impulse is
conducted to the ventricles and that there is a linear atrioven-
tricular nodal recovery curve. These assumptions are not re-
alistic, but they allow us to cast the problem of ventricular
response during atrial fibrillation into a familiar context of a
linear stochastic map for which an analytic solution is pos-
sible @16,19#. Assume that the atrioventricular nodal recov-
ery curve can be represented by

AV i115 f ~VA i !5a2bVA i , ~3.1!

FIG. 1. An example of the atrioventricular nodal recovery curve.
The conduction time AV through the atrioventricular node is given
as a function of the preceding recovery time VA. The equation of
the recovery curve is AV519111455 exp(2VA/11)
1161 exp(2VA/341), where all constants and time units are in
msec. The refractory time is 50 msec. Redrawn from Fig. 2 in@13#.

FIG. 2. Histograms giving the distribution of intervals between
atrial ~left panel! and ventricular~right panel! activations in a pa-
tient with atrial fibrillation. The mean interatrial activation time is
146.2633.6 msec and the mean interventricular activation time is
461.2697.9 msec where the range is the measured standard devia-
tion. Redrawn from Fig. 2 in@8#.

FIG. 3. Schematic representation of the time intervals associated
with conduction through the atrioventricular node when each atrial
input conducts to the ventricles. The diagram represents the passage
of excitation from the atria~top of the figure! to the ventricles
~bottom of the figure!. The atrioventricular nodal recovery time
VA i , determines the conduction time AVi11 , the time interval
between atrial activations is designated AAi , and time interval be-
tween ventricular activations is designated VVi , where the sub-
scripts identify the beat numbers.
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wherea andb are positive numbers. This linear function is
consistent with the observation that the atrioventricular nodal
conduction is a monotonically decreasing function of the re-
covery time. However the decrease is usually a nonlinear
function, see Fig. 1, and the conduction is blocked if
VA i,u, whereu is the refractory period. The condition that
ensures all atrial inputs are conducted to the ventricles is that
for each i , AA i.AA c where AAc5a1u(12b). In the
next section we consider the more general case in which
some inputs are blocked.

From Eq. ~3.1! and the relationship AVi115
VV i112VA i we find

VA i5
VV i112a

12b
. ~3.2!

The relationship between AAi and VVi11 is ~Fig. 3!

VV i115AA i1AV i112AV i . ~3.3!

Substituting Eqs.~3.1! and ~3.2! into Eq. ~3.3! we obtain

VV i115~12b!AA i1bVV i . ~3.4!

We rewrite Eq.~3.4! as

xi115bxi1~12b!j i11 , ~3.5!

wherexi5VV i , andj i5AA i .
We want to determine the probability density of the inter-

ventricular intervalsxi , given a random atrial inputj i .
Equation~3.5! describes a discrete dynamical system with a
random perturbationj i . The uniqueness and asymptotical
stability for the probability density of the time sequence has
been considered by many investigators@15,17,18#. We fol-
low results developed by Talkner and Hanggi@19# who cal-
culated the probability density from the master equation.

Assume that the probability density of the intervals be-
tween atrial inputs is distributed normally

r~j!5
1

A2ps
expS 2

~j2m!2

2s2 D , ~3.6!

with standard deviations and meanm. Let W(x) be the
probability density for the interventricular intervalsx.
W(x) is given by the master equation

W~x!5
1

A2ps~12b!
E

2`

`

expS 2
~x2by2m!2

2~12b!2s2 DW~y!dy

~3.7!

for b,1. If we assume thatW(x) is a Gaussian distribution
@16#, the integral on the right can be computed by completing
the squares in the exponent. After some algebra we find

W~x!5
g

A2ps
expS 2

g2~x2m!2

2s2 D , ~3.8!

whereg5A12b 2/(12b).
Equation~3.8! shows that the probability density of inter-

ventricular intervals is a Gaussian with the same mean as the
probability density of the atrial inputs but a different stan-

dard deviation. Figure 4 illustrates the probability density of
the interatrial activation times, solid line@Eq. ~3.6!#, and in-
terventricular times, dashed line@Eq. ~3.8!# assuming nor-
mally distributed atrial inputs withm5150 msec,s530
msec, and a linear recovery curve withb50.4.

The autocorrelation function can also be readily obtained
for this example. The average value ofx is designated
^xi&5m. The autocorrelation function for a variablex is de-
fined as

Rn5
^xn1 ixi&2m2

^xi
2&2m2 . ~3.9!

It then follows from Eq.~3.9! and the lack of correlation of
the random inputs that

Rn5bn. ~3.10!

This computation shows that there is correlation between the
successive ventricular intervals. Correlations between inter-
beat intervals are sometimes observed in clinical data@10#.

Considering now the data shown in Fig. 2, we see that the
probability density of the atrial inputs is centered at 146.2
msec with a standard deviation 33.6 msec. The probability
density of ventricular beats is centered at 461.20 msec with a
standard deviation of 97.9 msec. These data suggest that
there may be three atrial inputs for each ventricular output
since the ventricular rate is about one third of the atrial rate.
Although a consideration of this situation in detail requires
iteration of the appropriate finite difference equation consid-
ering conduction block~see Sec. IV!, a simple computation
allows us to approximate the probability density of the ven-
tricular interbeat intervals.

Assume thatn atrial impulses always combine together
for each ventricular beat. Then, if the interatrial activation
times are normally distributed with a standard deviations
and Eq.~3.1! holds, the probability density of the interven-
tricular responses is

W~x!5
g

A2pns
expS 2

g2~x2nm!2

2ns2 D , ~3.11!

FIG. 4. Probability density of the interatrial activation times,
@solid line, Eq.~3.6!# and interventricular times, dashed line@Eq.
~3.8!# assuming normally distributed atrial inputs withm5150
msec,s530 msec, and a linear recovery curve withb50.4.
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wheres is the standard deviation of the atrial inputs.
According to this simplified theoretical approach, the

standard deviation of the ventricular response is

sAn
g

.

For 0,b,1, the maximum value of the standard deviation
occurs whenb50, so that for a combination of three atrial
activations, according to Eq.~3.11! the maximum value of
the standard deviation of the ventricular response would
A3s. For the data in Fig. 2, this would be'58 msec. This is
much smaller than the observed value of 97.9 msec.

IV. CONDUCTION BLOCK

We now assume that there is a refractory timeu. If the
recovery time since the passage of the last atrial input
through the ventricles is less thanu, conduction is blocked.
Call t i the recovery time that determines whether the
( i11)st atrial input will be conducted to the ventricles. No-
tice that if thei th atrial input was conducted to the ventricles,
t i5VA i as in Sec. III. If thei th atrial input was not con-
ducted to the ventricles then we determinet i recursively by
the expression

t i5t i211AA i . ~4.1!

Given any sequence of atrial inputs, a recovery curve, and a
refractory time, the conduction through the atrioventricular
node can be explicitly computed

AV i115 f ~t i ! for t i.u. ~4.2!

If the recovery time is less thanu the atrial input is blocked
and the recovery time to the next atrial input is computed
from Eq. ~4.1!.

A. Fixed conduction times and single blocked inputs

We first consider a special case to illustrate a way in
which multimodal probability densities can arise in an ana-
lytically tractable situation. We assume that for conducted
beats,b50 in Eq. ~3.1! so that the conduction timea is a
constant. We also assume that there can be conduction block
of a single atrial input, but not of two consecutive inputs.
Assume that conduction block occurs when the first atrial
input arrives at the atrioventricular node during its refractory
state. Assuming the linear recovery curve, we find that

VV i115AA i211AA i . ~4.3!

To simplify notation, call AAi5j i . An atrial input will be
blocked if j i,AA c , where AAc5a1u. Assume that the
probability density of the atrial inputs is normally distributed
as in Eq.~3.6!. The fraction of blocked impulsesc is

c5E
0

AAc
r~j!dj. ~4.4!

The probability density for the interventricular intervals is
given

W~x!5H~x2AA c!r~x!1E
0

AAc
r~x2j!r~j!dj, ~4.5!

where the Heaviside functionH(u)50 for u,0, and
H(u)51 for u>0. Substituting Eq.~3.6! into Eq. ~4.5! we
compute

W~x!5
H~x2AA c!

A2ps
expS 2

~x2m!2

2s2 D
1

B~x!

2Aps
expS 2

~x22m!2

4s2 D , ~4.6!

where

B~x!5
1

Aps
E
0

AAc
expS 2

S j2
x

2D
2

s2
D dj. ~4.7!

Figure 5 shows the probability density from Eq.~4.6! as-
sumingm5150 msec,s530 msec, AAc5150 msec. The
theoretical curve is superimposed on the results from a simu-
lation ~histogram! with 8000 atrial inputs. The peak at about
160 msec is associated with conduction of a single atrial
input. The peak at about 280 msec arises as a consequence of
blocking of a single atrial input due to the refractory period
of the atrioventricular node.

If AA c@m, then the first atrial input will always be
blocked so thatc51 and we have a 2:1 conduction block
B(x)51 and we obtain Eq.~3.11! for n52 andg51 ~recall
b50).

B. Nonlinear recovery curve

We now consider the general situation in which the recov-
ery curve is a nonlinear function. We demonstrate that
changes in the recovery curve and the properties of the atrial
inputs lead to differences in the density distribution and au-
tocorrelation function of the interventricular intervals.

We first assume the recovery curve in Fig. 1 with nor-
mally distributed atrial inputs withm5150 msec and

FIG. 5. The probability density from Eq.~4.6! assuming
m5150 msec,s530 msec, AAc5150 msec. We assume a linear
recovery curve withb50. The theoretical curve is superimposed on
the results from a simulation~histogram! with 8000 atrial inputs.
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s530 msec. We further assume the refractory time of the
atrioventricular node isu550 msec. The density of interven-
tricular intervals is shown in Fig. 6~A!. In this case, there are
three atrial inputs for each ventricular response leading to a
unimodal probability density. However, the distribution is no
longer Gaussian, but is asymmetrical. The autocorrelation
function shows little structure.

Using the same parameters for the atrial inputs as in Fig.
6~A!, but increasing the refractory time so thatu5210 msec,
leads to a broadening of the probability density. There are
now sequences of both three and four conducted beats Fig.
6~B!. There is also a slight oscillation in the autocorrelation
function since there tends to be an alternation between short
and long interventricular intervals.

Finally in Fig. 6~C!, we show the effects of changing the
characteristics of the atrial input such thatm5300 msec,
s530 msec. In this case there are four atrial inputs for each
conducted beat and the autocorrelation function shows neg-
ligible structure.

V. DISCUSSION

This study analyzes the ventricular response during atrial
fibrillation based on the assumption that the conduction time

through the atrioventricular node is a function of the preced-
ing recovery time@13,14#. The theoretical model is based on
previous studies of conduction of the atrioventricular node
during periodic stimulation of the atria. Earlier results
showed that during periodic stimulation of the atria there are
regular sequences in which some beats are blocked while
others are conducted. If the fraction of conducted beats are
plotted as a function of the period of atrial stimulation, theo-
retical computations predict that the result should be a Can-
tor function@21#, a result in good agreement with experimen-
tal observations@13,14#.

The theoretical model can also be used to compute the
results using other sequences of atrial inputs. The current
study represents an attempt to apply this model using random
inputs. In this case, the model is a stochastic map. We have
shown that in some special cases in which the recovery curve
is a linear function and the probability density of the intera-
trial activation times is a Gaussian, it is possible to compute
analytically the probability density of the interventricular ac-
tivation times.

Several conclusions can be made.
~1! Techniques developed for the analysis of stochastic

maps are directly applicable to study an important medical
problem—the ventricular response during atrial fibrillation.

~2! With the application of a single linear recovery curve
of atrioventricular node, peaks in the probability density of
the ventricular response can occur at approximate multiples
of the mean value of the interatrial activation times.

~3! The autocorrelation function for the random atrial in-
put is zero. However the autocorrelation function for the
ventricular output may be nonzero. Thus, this study shows
how physiological properties of the atrioventricular node
could lead to correlations in the timing of ventricular activa-
tions even in the absence of correlations in the atrial activity.
This may partially explain correlations observed clinically
during atrial fibrillation@5,10#.

The further development of this area requires careful
analysis of ventricular responses in circumstances in which it
is possible to measure atrial activity and also to characterize
the atrioventricular node. A variety of different factors can
strongly influence the function of the atrioventricular node
including: summation of activation of the atrioventricular
node from wave fronts originating at different locations@22#,
drugs @23#, and prior stimulation history@2,20#. Future de-
velopment will be facilitated if theoretical studies are carried
out in conjunction with experimental and clinical work.
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