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The rheological properties of self-assembling fluids are studied within the framework of a simple time-
dependent Landau-Ginzburg model. In addition to the Langevin relaxation dynamics, the order parameter field
is subject to a kinematic deformation process due to a shear velocity field. The Hamiltonian contains a
Gaussian part which has proven to be important in the study of self-assembly, as well asf4 andf2~¹f!2

contributions. In the disordered phase and for low shear rate, the relevant rheological coefficients~excess
viscosity, first and second normal stress coefficient! can be calculated perturbatively. The essential ingredient
is the one-loop, self-consistent solution of the evolution equation for the quasistatic structure factor. In the case
of steady shear, we find shear thinning behavior, a positive first, and a negative second normal stress difference
for all values of the shear rate. For oscillatory shear, it turns out that the self-assembling structures give rise to
viscoelastic behavior. Analytic results are derived for the limiting cases of low and high frequency. For low
steady shear, all results can be expressed in scaling form using the correlation lengthsd and j originally
defined for microemulsion under equilibrium conditions and scaling functions already known from the pure
Gaussian treatment. This suggests a class of experiments where neutron scattering data can be compared to
viscosity results. For low to high shear rates, the one-loop equations have also been solved numerically, and we
display the nonequilibrium structure factors arising from this approach.@S1063-651X~96!08708-9#

PACS number~s!: 82.70.Kj, 83.70.Hq, 83.50.Ax, 83.20.Jp

INTRODUCTION

As a reasonable understanding of equilibrium self-
assembly phenomena has emerged it has become more ap-
parent that many of the most important issues for technologi-
cal applications have hardly been studied, let alone
understood. One of these, the connection between micro-
structure and rheology, or stress relaxation, is of fundamental
importance in diverse areas such as, for example, under-
standing of consistency in the food industry, the quality of
paints, cosmetics, and numerous other products. We wish to
contribute some theoretical and numerical results, but em-
phasize that there remains much uncertainty even about the
validity of various models. What follows must be viewed as
part of the process of defining the model, and the tools that
can be applied in this field.

In self-assembling fluids, correlated mesoscopic structures
exist even far from criticality. The deformation of these do-
mains under an imposed flow gives rise to excess stresses.
This results in rheological behavior that is quite different to
that familiar from simple Newtonian liquids. When the com-
plex fluid approaches criticality, the correlation length de-
scribing the linear extension of the mesoscopic structures
diverges. Then even weak shear leads to significant structural
deformations, since any diffusion process is slow to restore
the displacements caused by the kinematics of the flow field.
Clearly changes in the rheological properties become even
more pronounced on approach to criticality, but for self-

assembled phases it is already of interest to understand the
problem somewhat away from the critical point. Much of
what we describe below finds its roots in a lattice model due
to Widom @1# whose subsequent success in equilibrium ra-
tionalizations provides the basis for much modern work.

In a previous paper@2#, we have investigated the rheology
of self-assembled fluids based on a Gaussian model both
theoretically and, in particular, by direct Langevin simulation
of a two-dimensional microemulsion with nonconserved or-
der parameter under shear. We now turn to three space di-
mensions with conserved order parameter and have also in-
cluded non-Gaussian terms to account for the effect of large
fluctuations and to study the consequences of mode coupling.
The direct Langevin simulations are a much greater compu-
tation challenge in three dimensions, so we restrict ourselves
to the level of a self-consistent closed evolution equation for
the quasistatic structure factor. Otherwise the extensive pa-
rameter studies to check scaling behavior and the treatment
of oscillatory shear would not have been possible.

The behavior of self-assembled phases in nonequilibrium
conditions was first addressed in Ref.@3# on rheology and@4#
on kinetics, but the discussion is now being broadened by
others @5–7#. Related rheological investigations have been
carried out for critical binary mixtures@8# and for block co-
polymer melts, first in the mean field approximation@9,10#,
and later on including mode coupling and fluctuation effects
both in the order parameter and the velocity field@11#. Ques-
tions similar to the ones considered by us also arise in the
investigation of the effects of shear flow on the turbidity of
critical colloidal dispersions@12#.

The outline of the paper is as follows. In the next section,
we introduce the model in terms of a Hamiltonian for a
single scalar order parameter and a system of time-dependent
Landau-Ginzburg equations for order parameter and velocity
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field. The velocity field is then fixed in order to subject the
fluid to the simplest viscometric flow. We state the function-
als which relate the rheological coefficients—excess viscos-
ity, first and second normal stress coefficient—to the quasi-
static structure factor. The section closes with the full
nonlinear stochastic evolution equation for the order param-
eter under shear flow and the equation for the quasistatic
structure factor derived self-consistently in the one-loop ap-
proximation.

The next section is concerned with the case of steady
shear. For completeness, we first turn to the Gaussian case
and derive an integral representation for the steady-state
structure factor under shear flow. As a preliminary step, we
then compute the self-consistent, loop-corrected structure
factor with the shear set to zero. The result can be freed from
the microscopic parameters in favor of the experimentally
accessible correlation lengths. We then pursue the perturba-
tive calculation of the structure factor for small values of the
shear rate and in the presence of loop corrections. We calcu-
late up to second order in the shear rate and derive scaling
forms for excess viscosity and the normal stress coefficients.
The scaling relations are checked by numerical work, which
becomes essential when studying the non-Newtonian behav-
ior, that is the shear-rate dependence of the rheological co-
efficients, of the model. For comparison to experimental
work, we also show grey-scale plots of the structure factor
for various shear rates. We finally discuss the asymptotic
scaling for very high shear.

The next section is devoted to oscillatory shear. We con-
sider the linear response regime and give formulations of the
stress in terms of a complex shear modulus and a complex
viscosity. We then solve the loop-corrected evolution equa-
tion for the quasistatic structure factor for oscillatory shear
up to first order in the shear rate. This allows us to derive
integral representations in wave number space for the
frequency-dependent real and imaginary parts of the com-
plex viscosity. For arbitrary shear frequency, these integrals
have been fully evaluated numerically and viscoelastic be-
havior is discussed. However, for small frequency, a Taylor
expansion with the steady-state result for the viscosity as the
zeroth-order term is valid. Also an asymptotic result for very
high frequency is presented.

Numerical methods have been useful to check analytical
results and to make progress where an explicit solution could
not be found. We therefore include a short section to discuss
some schemes to solve the self-consistent evolution equation
for the quasistatic structure factor numerically. Finally, in a
concluding section, we summarize and discuss the results
found and indicate the possibilities for further work.

MODEL

In this paper, we are concerned with the rheological prop-
erties of self-assembling fluids as far as they can be derived
from a simple Landau-Ginzburg model for a scalar order
parameter based on the Hamiltonian

H@f#5E dDxF c2 ~¹W 2f!21
1

2
~g01g2f

2!~¹W f!21
a2
2

f2

1
l

4!
f4G . ~1!

The Gaussian part of this functional has proven to be the
essential ingredient when modeling the basic features of self-
assembling fluids such as microemulsions. It is suggested by
the fitting of scattering data@13# and by the analysis of a
lattice model due to Widom@1,14#. The higher-order terms
have been proposed based upon phenomenological reason-
ing. Extensive work has been carried out on this and other
formulations of the theory@1,14,15# and a consensus has
been reached that the equilibrium structure is reasonably
well understood. In the following, we are mainly interested
in the disordered but structured region of the phase diagram
wherea2.0 andg 0

2&4a2c. The non-Gaussian terms in Eq.
~1! allow us to consider two types of phase transitions ob-
served in self-assembling systems. First, ifa2 becomes nega-
tive, we enter the three-phase coexistence region and meet
spinodal decomposition. In order to have a Hamiltonian that
is bounded from below in this region, and furthermore to
capture the fluctuation effects in the critical region, the quar-
tic term ~l/4!!f4 is included. Second, negative values of the
bare interfacial tensiong0 favor the formation of interfaces.
However, this effect of decreased effective interfacial tension
should only be present where the gradient of the order pa-
rameter is large, that is in the region where surfactant gath-
ers, but not within the bulk phases. Furthermore, ifg0 is
decreased such thatg0&2A4a2c, we expect the formation
of lamellar phases. We therefore also include the term
(g2/2)f

2(¹f)2 for completeness, but it is numerically not
very significant in much of what follows.

The time-dependent Landau-Ginzburg equations for order
parameter and velocity field constitute a stochastic gradient
dynamics with mode coupling terms@16#,

]f

]t
1¹W •~fvW !5Gf

dH
df

1hf , ~2!

]vW
]t

1¹W •~vWvW !5h0¹W
2vW 1s0¹W ~¹W •vW !2f¹W

dH
df

1hW v .

~3!

In particular, the order parameter fieldf is convected by the
velocity field vW . We assume that in the absence of fluctua-
tions the fluid can be characterized by a bare shear viscosity
h0 and a bare bulk viscositys0. However, we only treat the
incompressible case¹W •vW 50 in what follows, and the bulk
viscosity is of no further relevance. The coupling betweenf
andvW in Eq. ~2! implies a third term on the right-hand side of
Eq. ~3! such that exp[2H2*dDx(uvW u2/2)] is the joint equi-
librium distribution off andvW @10,16#. This coupling term
in the velocity equation also gives rise to the excess stress
tensor to be considered in the following discussion. We re-
strict ourselves to the physically most relevant case, that of
three space dimensions and conserved order parameter. The
kinetic coefficient is then given byGf5G¹W 2, and the
fluctuation-dissipation theorem requires the correlations for
the Gaussian noise terms,

^hf~xW ,t !hf~xW8,t8!&522TGfd~xW2xW8!d~ t2t8!, ~4!

^h i~xW ,t !h j~xW8,t8!&522TLi jd~xW2xW8!d~ t2t8!, ~5!
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whereLi j5h0¹W
2d i j1s0¹W i¹W j , and the ‘‘temperature’’T is

a free parameter that adjusts the noise intensity. We neglect
hydrodynamic fluctuations and subject the system to the sim-
plest viscometric shear flow@17#,

vW 5ġ~ t !yeW x , ~6!

where the shear rate,ġ(t), may depend on time.
As shown previously by others in a related context

@8–10#, and made explicit for self-assembly in our previous
papers@2,3#, there is, in a system which is spatially homo-
geneous on average, a close link between the structure factor
and the excess stresses of rheological interest. Starting from
the coupling in Eq.~3!, it can be shown that the stresses are
given as integrals of the nonequilibrium structure factor,
dressed with characteristic weight factors, over wave number
space. To be explicit, we calculate the shear stress, the first,
and the second normal stress difference according to

sxy~ t !52E dk

~2p!D
kxky~gR12ck2!S~k,t !, ~7!

N1~ t !5sxx~ t !2syy~ t !

52E dk

~2p!D
~kx

22ky
2!~gR12ck2!S~k,t !, ~8!

N2~ t !5syy~ t !2szz~ t !

52E dk

~2p!D
~ky

22kz
2!~gR12ck2!S~k,t !. ~9!

For the case of steady shear flow, we define the excess vis-
cosity Dh5sxy/ġ, the first normal stress coefficient
c15N1/ġ

2, and the second normal stress coefficient
c25N2/ġ

2. For oscillatory shear, we will introduce a com-
plex viscosity later on. However, Eqs.~7!–~9! already in-
volve some assumptions and therefore require comment.
Starting from a general Hamiltonian, every term that is free
of space derivatives gives an isotropic contribution to the
pressure tensor, which is, however, not of interest here. In
addition, each term containing space derivatives influences
the components of the pressure tensor in a more general way.
A Gaussian Hamiltonian yields a tensor that is quadratic in
the order parameter field as given in@2,3#. Shear and princi-
pal stresses can then be expressed exactly in terms of the
quasistatic structure factor. Theg2 term invalidates this
simple picture and adds quartic terms inf to the stresses.
However, we here propose not to consider these terms in
detail but to generalize the Gaussian result in an appropriate
way. Instead of the bare interfacial tensiong0 we will calcu-
late the stresses on the basis of a renormalized interfacial
tensiongR . In field-theoretical language, this amounts to first
determining a loop corrected two-point vertex function with
the shear rate set to zero, a task which can be accomplished
by standard methods. This dressed two-point function then
permits us to construct an effective Gaussian model, formu-
lated in terms of renormalized coefficients or even directly in
terms of correlation lengths. One then calculates the shear
response of this effective model by use of the functionals
~7!–~9!. The weak point of such an approach is the neglect of
any coupling between the Langevin relaxation dynamics and

the shear term in the evolution equation for the quasistatic
structure factor. However, its appropriateness will be dem-
onstrated for low shear rates to the order of one loop below.
Physically one can argue that the energies involved in the
fluctuation processes that give rise to excess stresses stem
from interfacial stretching and bending contributions. Mac-
roscopically observable stresses should then not depend on
the very microscopic details of the particular model under
consideration but on these effective energy scales.

Under the influence of the shear velocity field~6!, in Fou-
rier space the order parameter follows the stochastic evolu-
tion equation

]f~k!

]t
5ġ~ t !kx

]

]ky
f~k!2G~k!FK~k!f~k!

1
l

6 E dk1
~2p!D

dk2
~2p!D

f~k1!f~k2!f~k2k12k2!

1g2E dk1
~2p!D

dk2
~2p!D

~ uk2k12k2u21k1•k2!

3f~k2!f~k1!f~k2k12k2!G1hf~k!, ~10!

where K(k)5ck41g0k
21a2 is the bare two-point vertex

function. This equation generalizes the result for the pure
Gaussian case as given in Ref.@2#. In order to proceed, we
approximate the nonlocal terms in Fourier space on a level
that has already been successfully used to study fluctuations
in a Landau-Ginzburg-Wilson theory of microemulsions
@18#. It is also believed to capture essential features of the
relaxation process occurring when self-assembly is quenched
from the unstructured region of the phase diagram into the
structured microemulsion region@4#. The one-loop approxi-
mation for the evolution equation of the quasistatic structure
factor,

S~k,t !5^f~k,t !f~2k,t !&, ~11!

amounts to applying Wick’s theorem for the Gaussian clo-
sure of fourth-order moments, so that

F ]

]t
12G~k!FK~k!1g2k

2G0~ t !1S l

2
G0~ t !1g2G2~ t ! D G

2ġ~ t !kx
]

]ky
GS~k,t !

52G~k!T, ~12!

where the term in the inner square brackets is the one-loop
approximation for the two-point vertex function. For the
fully dressed one-loop theory,G0 and G2 are defined in
terms of the relations

G0~ t !5E dq

~2p!D
S~q,t !, ~13!
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G2~ t !5E dq

~2p!D
q2S~q,t !, ~14!

thereby yielding a self-consistent theory.

STEADY SHEAR

In this section we are concerned with the steady-state so-
lutions of the evolution equation~12! for the quasistatic
structure factor. We impose a shear velocity field that is con-
stant in time, having applied in the past, and all transients
have vanished. Thus, we here do not consider the kinetic
stage where the fluid adapts to the nonequilibrium conditions
but assume that the asymptotic regime has been reached
where the structure factor is time independent.

Gaussian case:l5g250 and ġ5constÞ0

Before dealing with the loop corrections, let us make
some comments on the Gaussian case,

F2G~k!K~k!2ġkx
]

]ky
GS~k!52G~k!T, ~15!

which has also been treated in our previous paper@2#, in part
by direct simulation of the Langevin equation for the order
parameter. Note that Eq.~15! is an ordinary, linear, first-
order differential equation inky , so

dS~k!

dky
5A~k!S~k!2B~k!, ~16!

with

A~k!5
2G~k!K~k!

ġkx
, ~17!

B~k!5
2G~k!T

ġkx
. ~18!

In a plane of fixedkx and kz , these wave number compo-
nents merely enter as additional parameters. For physical
reasons, we have the boundary conditionsS(2`)5S(`)
50. The given inhomogeneous problem then has the formal
solution,

S~ky!52E
2`

ky
dky8B~ky8!expF E

ky8

ky
A~ky9!dky9G . ~19!

The inner integral under the exponential is over a polynomial
in ky9 . However, the outer integral cannot be performed by
elementary means. Also note that this representation is prob-
lematic in the regionkxġ'0, sinceA~k! and B~k! grow
beyond all limits in this case, whereas the original problem
~15! has a trivial solution forkxġ50. In the following per-
turbative treatment, the idea is to write the structure factor as
a straightforward power series in the shear rateġ, starting
with the equilibrium structure factor as the zero-order term.
This approach has been followed in our previous paper@2#,
and will again be used in connection with the loop correc-
tions later on.

Self-consistent solution forl,g2Þ0 but ġ50

Before we combine the influences of shear and nonlineari-
ties on the solution of Eq.~12!, it is useful to consider the
role of the latter first. For zero shear, we have

FK~k!1g2k
2G01S l

2
G01g2G2D GS~k!5T. ~20!

As usual, the solution for the structure factor is given by the
inverse of the loop-corrected two-point vertex function, the
expression in the square brackets. This can be written as

S~k!5
T

c

1

k41gk21a
, ~21!

where we have introduced the renormalized coefficients,

g5
g0
c

1
g2
c
G0 , ~22!

a5
a2
c

1
l

2c
G01

g2
c
G2 . ~23!

However, we note that the foregoing definitions contain the
self-consistent expressions for the loop integrals in terms of
the solution~21! itself, requiring

G05E dq

~2p!D
S~q!5

T

2p2c E0
` q2dq

q41gq21a

5
T

4pc
1

A2Aa1g
, ~24!

G25E dq

~2p!D
q2S~q!5

T

2p2c E0
L q4dq

q41gq21a
'

TL

2p2c
.

~25!

The second integral is UV divergent in three dimensions and
we have had to introduce a cutoff. We leave the equations in
this form since a renormalization group treatment is not
within the scope of this paper but we hope to comment on
this aspect at a later time. The combination of Eqs.~22!–~25!
yields a pair of coupled nonlinear equations for the renormal-
ized coefficientsg anda,

g5
g0
c 1

g2T

4pc2
1

A2Aa1g
, ~26!

a5
a2
c 1

lT

8pc2
1

A2Aa1g
1

g2T

2p2c2
L. ~27!

Equations of this kind have been derived and studied previ-
ously in the diagrammatic expansion of the self-energy for
the self-consistent treatment of fluctuation effects in micro-
emulsions@18#, in connection with relaxation phenomena in
self-assembled systems@4#, and for large-N models both for
growth kinetics@5# and self-assembled fluids@6#. The natural
choice for the cutoffL is known to be the length of the
amphiphile molecule@14#. This given, the nonlinear equa-
tions can be solved numerically by fixed-point iteration. It is
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more significant to note that we can formulate the results
directly in terms of the physical correlation lengths, thereby
making direct comparisons to experiment possible. In the
disordered region of the phase diagram, the real space corre-
lation function for the bicontinuous microemulsion is given
by

g~r !5
e2r /j

r
sin

2pr

d
. ~28!

The physical correlation lengthsj andd are computed from
the renormalized coefficients according to

d
2p 5

2

A2Aa2g
, ~29!

j5
2

A2Aa1g
. ~30!

The nonlinear couplingsl andg2 given, we can now elimi-
nate the bare coefficientsg0 anda2 from the theory,

g0
c

52F S 1j D 22S 2p

d D 2G2
g2Tj

8pc2
~31!

a2
c

5F S 1j D 21S 2p

d D 2G22 lTj

16pc2
2

g2T

2p2c2
L. ~32!

Thus, independent of bare coefficients, except for an overall
factor, the equilibrium structure factor expressed in terms of
the correlation lengths is

S~k!5
T

c
Fk412F S 1j D 22S 2p

d D 2Gk21F S 1j D 21S 2p

d D 2G2G21

.

~33!

Perturbative solution for l,g2Þ0 and small ġÞ0

We now consider the solution of Eq.~12! for low shear
and with the nonlinearities present. The procedure relies on a
Taylor expansion of the structure factor in the shear rateġ,

S~k!5S0~k!1ġS1~k!1ġ2S2~k!1O~ ġ3!. ~34!

However, in the case of a conserved order parameter, this
series is problematic, since we meet infrared~IR! diver-
gences when we attempt to use the resulting structure factor
to derive expansions of the rheological coefficients in the
shear rate. The reason is that due to conservation, the relax-
ation dynamics slows down proportionally tok2 on small
wave number scales, whereas the shear term only scales lin-
early with kx . On the other hand, a series expansion of the
structure factor at least to second order in the shear rate is
necessary to obtain analytic estimates for the rheological co-
efficients at zeroth order. Note also that the loop integralsG0
andG2 according to Eqs.~13! and~14! have an expansion in
ġ now. We first consider terms in Eq.~12! that are indepen-
dent of the shear rate. At zero order, we obtain

S0~k!5
T

KR~k!
, ~35!

where

KR~k!5c@k41gk21a# ~36!

is the loop-corrected two-point vertex function as already
introduced implicitly in Eq.~21! with renormalized coeffi-
cients according to Eq.~26! and ~27!. On the level linear in
the shear rate, we must computeS1~k! from

2G~k!KR~k!S1~k!12G~k!Fg2k2G0
~1!1S l

2
G0

~1!

1g2G2
~1!D GS0~k!2kx

]S0~k!

]ky
50, ~37!

whereG 0
(1) andG 2

(1) denote contributions linear inġ to the
loop integrals. The solution is given by

S1~k!52
T

Gc2
kxky~g12k2!

k2~k41gk21a!3
. ~38!

Due to the spherical symmetry, the loop corrections vanish
on this level,G 0

(1)5G 2
(1)50, as can be seen by inserting Eq.

~38! into Eqs. ~13! and ~14!. On the level quadratic in the
shear rate, we find

S2~k!5
kx

2G~k!KR~k!

]S1~k!

]ky

1Fg2k2G0
~2!1S l

2
G0

~2!1g2G2
~2!D GS0~k!. ~39!

At this stage, the loop integralsG 0
(2) andG 2

(2) do not vanish.
However, the second term in the above sum again has spheri-
cal symmetry. Because of the overall factors (kxky),
(k x

22k y
2), and (k y

22k z
2) in the integrands, this term yields

no contribution to the functionals~7!–~9! for the shear stress
and the normal stress differences. We do not calculate these
corrections to the zero-order loop integrals here and only
give the first term in Eq.~39! explicitly,

S2~k!'2
Tkx

2

2G2c3k4~k41gk21a!4 F ~g12k2!

22ky
2 g~k41gk21a!13k2~g12k2!2

k2~k41gk21a! G . ~40!

Symmetry considerations again reveal the first term in the
square brackets combined with the factor (k x

22k y
2) in Eq.

~8! gives rise to a nonzero first normal stress difference, and,
similarly, the second term to a nonzero second normal stress
difference. Also note the overall factorsk22 in Eq. ~38! and
k24 in Eq. ~40! that indicate the buildup of IR divergences as
mentioned earlier.

The origin of the IR divergences can be traced back to the
conservative nature of the used model. Conservation of mat-
ter results in the slowing down of shear deformations on
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large spatial or small wave number scales. As noted most
clearly in Ref.@12#, Eq. ~12! is a singularly perturbed differ-
ential equation with a boundary layer atkx50. This feature
stems from the fact that the small quantity,ġkx , multiplies
the highest derivative in the equation. We therefore have to
expect a qualitative change in the properties of the solution
betweenġkx→0 and ġkx50. Any regular perturbation se-
ries like Eq.~34! gives the so-called outer solution which is
a bad approximation in the inner region. The inner solution
which is valid in the boundary layer cannot be calculated by
use of regular perturbation methods@19#. On the other hand,
the dominant contributions when calculating the rheological
coefficients come from a region in wave number space which
is bounded away from zero@2#. This means that we are ob-
viously in a somewhat lucky situation, since the functionals
~7!–~9! for the rheological coefficients involve integration
over all wave number space which smears the error due to
the boundary layer somewhat. Therefore we do not want to
go so far as Ref.@12# and declare that there is no linear
response at all, because we believe the scaling forms~41!–
~43! will be useful when analyzing weak shear experiments.

From what has been computed so far, we see that the loop
corrections will not have a direct influence on the values of
the rheological coefficients, in the sense thatG 0

(1) andG 2
(1)

are zero andG 0
(2) andG 2

(2) do not contribute to the function-
als~7!–~9! due to symmetry. The only effect that changes the
result compared to the Gaussian case is the modification of
the zero-order structure factor caused by the appearance of
the dressed two-point vertex function according to Eq.~35!.
The formulas derived for the Gaussian case in our previous
paper@2# therefore remain valid if we use them in scaling
form and expressed in terms of the physical correlation
lengths. These we either simply prescribe or compute ac-
cording to Eqs.~29! and~30! with the one-loop renormalized
coefficientsg anda given self-consistently by Eqs.~26! and
~27!. This is equivalent to first computing the loop correc-
tions for zero shear, then constructing an effective Gaussian
model with Eq.~36! as the vertex function, and finally com-
puting its shear response by use of the functionals~7!–~9!.
This establishes the approach already discussed in the Intro-
duction. For comparison, we give the expressions for the
excess viscosity and the first normal stress coefficient as al-
ready derived in@2# and present a new formula for the sec-
ond normal stress coefficient,

Dh5
Tj3

240pGc
f 1~a!, ~41!

f 1~a!5
p21a2

4p21a2 ,

c15
Tj5d4

3840pG2c2
f 2~a!,

f 2~a!5
32p6132p4a212p2a417a6

~4p21a2!5
, ~42!

c25
Tj5d4

53760pG2c2
f 3~a!,

f 3~a!5
368p61376p4a2151p2a4163a6

~4p21a2!5
. ~43!

Herea5d/j is the ratio of the correlation lengths, which,
practically, varies between 2.6 and 4.5 in experiments@20#.
The relation~41! has first been derived in@3# for the pure
Gaussian case from the zero-frequency limit of the complex
shear modulus, which describes the stress response to oscil-
latory shear, see below.

The scaling functionf 1(a) for the excess viscosity and
results from numerical solutions of equation~12! have been
plotted in Fig. 1. In this and the two following figures, the
scaling laws have been tested numerically fora52.5 to
a54.5. There is apparently a dispersion of the scaling data
for increasinga which can be explained as follows. The
functional ~7! for the shear stresssxy receives its essential
contribution from a shell of wave numbers somewhat higher
than those corresponding to the maximum of the structure
factor. Obviously, there is an error due to the truncation of
the numerical solution in wave number space. For higher
values ofa, the structure factor shows the tendency to spread
out to larger uku. Therefore this error increases with fixed
numerical truncation for larger values ofa. The comparison
between the scaling functionf 2(a) and numerical data in
Fig. 2 for the first normal stress coefficient shows dispersion
for low values ofa. This happens because the functional~8!
for the first normal stress difference receives its main contri-
bution from the low wave number region. Working with a
fixed numerical grid, this region is somewhat more poorly
represented for large values ofd andj, resulting in smalla

FIG. 1. Scaling functionf 1(a) according to Eq.~41! and nu-
merical data for the excess viscosity. The main figure is restricted to
the values ofa observed in experiments, the inset shows a larger
part of the scaling function. The data points come from numerical
solutions of Eq.~12! for different values ofa andd betweend54.5
andd55.5 (l5g251).
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where the structure factor concentrates its intensity at the
origin. The same remarks apply to the numerical data for the
second normal stress coefficient compared to the scaling
function f 3(a) in Fig. 3. Note that the model considered here
predicts a negative second normal stress coefficient, which is
in accordance with general experimental experience nowa-
days@17,21#.

For completeness we mention that without meeting IR
divergence, we can also compute the derivative of the excess
viscosity with respect to the shear rate at the origin,

]Dh

]ġ2 52
Tj9d6

6881280pG3c3
f 4~a!,

f 4~a!5
1

~4p21a2!9
@71680p121199680p10a2

1271872p8a41262912p6a61327672p4a8

2207948p2a10142757a12#. ~44!

The derivative is less than zero, which indicates shear thin-
ning. Corresponding expressions for the normal stress coef-
ficients cannot be derived due to IR divergence of the inte-
grals.

Non-Newtonian behavior

The perturbative solutions computed so far are valid only
for small values of the shear rate. Thinking in terms of a
series expansion of the rheological coefficients inġ, the re-
sults~41!–~43! represent the zero-order terms atġ50. How-
ever, because of infrared divergences in the conservative

FIG. 2. Scaling functionf 2(a) according to Eq.~42! and nu-
merical data for the first normal stress coefficient. The main figure
is restricted to the values ofa observed in experiments, the inset
shows a larger part of the scaling function. The data points come
from numerical solutions of Eq.~12! for different values ofa andd
betweend54.5 andd55.5 (l5g251).

FIG. 3. Scaling functionf 3(a) according to Eq.~43! and nu-
merical data for the second normal stress coefficient. The main
figure is restricted to the values ofa observed in experiments, the
inset shows a larger part of the scaling function. The data points
come from numerical solutions of Eq.~12! for different values ofa
andd betweend54.5 andd55.5 (l5g251).

FIG. 4. The decrease of the excess viscosity with increasing
shear rate, a signature of non-Newtonian behavior. To obtain this
figure, Eq. ~12! was first solved numerically for a shear rate of
ġ150.2, and then forġ252.0. The figure shows the contours of the
ratio between the two excess viscosities determined in this way.

FIG. 5. As expected from the result for the viscosity, the normal
stress coefficients are shear rate dependent, too. This is documented
here forc1. The figure shows the contours of the ratio between two
values of the first normal stress coefficient obtained for increasing
shear in just the same way as the data for the viscosity in the
previous figure.
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case, it is not clear whether an ordinary power series expan-
sion for the rheological coefficients can be devised at all.
Before more powerful analytical methods have been found, a
possible way out if this difficulty is to obtain the structure
factor by numerical solution of Eq.~12! and to compute the
rheological coefficients by numerical integration of Eqs.~7!–
~9!. We have followed this approach and present some re-
sults in Figs. 4–7. In general, we observe that all rheological
coefficients decrease with increasing shear rate.

To obtain Fig. 4, Eq.~12! was first solved numerically for
a shear rate ofġ150.2, and then forġ252.0. The figure
shows the contours of the ratioDh2/Dh1 between the two
excess viscosities determined in this way. This ratio is al-
ways less than one, the fluid behaves shear-thinning. Further-
more, the shear-thinning effect becomes stronger in the
highly structured region, that is for large values ofd and
even larger ones ofj resulting in small values ofa. In Fig. 5
we plotted the contours of the ratio between two values for
the first normal stress coefficient obtained for increasing
shear in just the same way as the data for the viscosity in Fig.
4. The shear-rate dependency of the normal stress coeffi-
cients is found to be stronger than that for the excess viscos-
ity. Again, this effect becomes more pronounced in the
highly structured region. Figure 6 then shows the behavior of
the second normal stress coefficient. The strong shear-rate
dependency and the small absolute magnitude ofc2 from the
overall numerical factor in Eq.~43! will it make difficult to
capture this quantity experimentally.

A sequence of slices through the structure factor in the
planekz50 for increasing moderate values of the shear rate
ġ can be seen in Fig. 7. The above perturbative analytical
treatment is successful up toġ'1 (G5c51). Here the
structure factor shows an ellipsoidal deformation with re-
spect to its equilibrium appearance. For higher values of the
shear rate, one observes that the intensity on the maximum
ring varies significantly. Finally the structure factor concen-
trates intensity in two regions with finiteky and smallkx
corresponding to elongated structures in thex direction in-
duced by the shear velocity field. At present we possess no
analytical procedure for this regime.

Scaling behavior for large shear rates

Common shear-thinning fluids often show a power law
for the viscosity,h;ġn, which extends over several decades

of the shear rate@17,21#. Because the shear stress is then
given by sxy5hġ;ġn11, the exponentn must be greater
than21 for physical stability. It is now of interest whether
the model considered here leads to such an extended range of
shear thinning. Unfortunately, this is not the case. As ex-
pected we will find that the model is dominated by the de-
rivative term,ġkx(]/]ky)S~k! in Eq. ~12!, at large values for
the shear rate, and any signature of the Hamiltonian vanishes
asymptotically. To see this, we consider the large-ġ behavior
of the steady state structure factorS~k! computed from

F2G~k!KR~k!2ġkx
]

]ky
GS~k!52G~k!T. ~45!

We use the loop-corrected vertex functionKR(k) here, but
this is not essential for the argument. It should be noted that
the structure factor forkx50 is not affected by the shear at
all. Now we first restrict our attention to a neighborhood ink
space next to the planekx50 and consider the situation
wherekx'0 but ġkx5const forġ→`. The transformation:
ġ°sġ, kx°kx/s, s.1 leavesuku2 essentially unchanged,
sincekx'0. Equation~45! is therefore approximately invari-
ant in the given region under the transformation, which leads
to the relation

SS kxs ,sġ D5S~kx ,ġ !. ~46!

For increasing shear rate, Eq.~46! describes the behavior of
the structure factor in a shrinking region in wave number
space. Now let us investigate the consequence of this relation
for the shear stress. If we use it in the expression~7!, we find
by a simple substitutionsxy(sġ)5(1/s2)sxy(ġ), and there-
fore sxy;ġ22 or equivalently Dh;ġ23. We also find
N1;ġ21 and N2;ġ21, which means c1;ġ23 and
c2;ġ23.

However, because for increasing shear rate this behavior
stems from a region of shrinking integration measure ink
space, we must also consider the behavior of the structure

FIG. 6. The shear rate dependency of the second normal stress
coefficient. The figure shows the contours of the ratio between two
values of the second normal stress coefficient obtained in just the
same way as the data for the two previous figures. FIG. 7. Sequence of slices through the structure factor in the

planekz50. For increasing moderate values of the shear rateġ, the
pictures are based on the numerical solution of Eq.~12!. For ġ50
and j and a and a5d/j given, the ring of maxima is at wave
numberk25(1/j)2@(2p/a)221#.
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factor well away from the planekx50. Now for some finite
value ofkx , we can always find some large enough value for
the shear rate such that the contribution coming from the
Hamiltonian in Eq.~45! becomes irrelevant and the right-
hand side is balanced essentially by the derivative term. This
implies the scalingS~k!;ġ21 and simply givessxy;ġ21,
N1;ġ21, andN2;ġ21, and thereforeDh;ġ22, whereas
c1;ġ23 andc2;ġ23 as before. From the two scaling cases
considered, we expect for very high shear rates the slower
laws to survive. This argument applies especially for the ex-
cess viscosity. We expect the final laws

sxy;ġ21, Dh;ġ22, ~47!

which come from the scaling away from the planekx50 and
are independent of the form of the Hamiltonian. The normal
stress coefficients are expected to decay withġ23.

Figure 8 shows the behavior of the shear stress for large
values of the shear rate and confirms the scaling argument
just given. In interpreting this result, one should, however,
remember thatDh is the excess viscosity andsxy , as defined
in this paper, is the excess stress caused by the fluids internal
fluctuating structure. The full stress is given by this contri-
bution and the one coming from the background viscosityh0
in Eq. ~3!. The seemingly paradoxical decrease of the excess
stress for large shear rate does not necessarily mean an in-
stability of the model as long as the Newtonian background
viscosity is the dominant contribution. The decrease merely
reflects the certainly overestimated adaption of the fluids in-
ternal interfacial structure to the preferred direction of the
imposed flow. This can be inferred from Fig. 9, which shows
the structure factor for high shear rates. It degenerates into a
strip of decreasing width along theky axis. The pictures rep-
resent cuts forkz50, but there is a rotational symmetry with
respect to thekx axis.

OSCILLATORY SHEAR

As the simplest time-dependent situation, which is never-
theless of significant experimental relevance especially when
probing viscoelastic properties, we now consider the shear
stress induced by oscillatory shear flow, where

ġ~ t !5ġ0cos~vt !. ~48!

Again we are not interested in any transient behavior but
suppose that a steady, oscillatory stress response has built up.
In the previous section, we used the linear term in aġ ex-
pansion of the shear stress to compute the excess viscosity.
Accordingly, we now assume that we are in the oscillatory
linear response regime. It is then customary to introduce the
complex shear modulusG* (v) and to write

sxy~ t !5ReF 1iv G* ~v!ġ0e
ivtG . ~49!

Now G* (v)5G8(v)1 iG9(v), and the shear stress is ex-
plicitly given by

sxy5
ġ0

v
@G8~v!sin~vt !1G9~v!cos~vt !#. ~50!

The contribution proportional to the storage modulusG8(v)
is in phase with the strain, whereas the one proportional to
the loss modulusG9(v) is in phase with the shear rate.
However, the formulation using the complex shear modulus
is more appropriate if we originally prescribe not the shear
rate but the strain. Here we prefer to work with a complex
viscosity,h* (v)5h8(v)2 ih9(v), and to use the represen-
tation

sxy~ t !5Re@h* ġ0e
ivt#

5ġ0@h8~v!cos~vt !1h9~v!sin~vt !#. ~51!

The dynamic viscosityh8~v! multiplies the portion of the
response which is in phase with the shear rate, whereas the
dynamic elasticityh9~v! gives the stress response in phase
with the strain. The connection to the complex shear modu-
lus is given byG85vh9 andG95vh8. Another common
representation of the stress response is, of course,

FIG. 8. Behavior of the shear stress for large values of the shear
rate ġ confirming the scaling result Eq.~47! presented in the text.
The dashed line has a slope of21.

FIG. 9. The structure factor in the planekz50 for high values of
the shear rate. The structure factor degenerates into a strip of de-
creasing width along theky axis. Asymptotically, there is a rota-
tional symmetry with respect to thekx axis. For ġ50 and j and
a5d/j given, the ring of maxima is at wave numberk2

5(1/j)2@(2p/a)221#.
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sxy~ t !5A~v!sin@vt1f~v!#. ~52!

The connection between Eqs.~51! and ~52! is given by

A5ġ0Ah821h92 ~53!

and

sinf5
h8

Ah821h92
, ~54!

cosf5
h9

Ah821h92
. ~55!

The phase anglef~v! has been introduced with reference to
the time-dependency of the strain. Therefore, iff.0, the
stress anticipates the strain, and iff,0, the stress follows
the strain. Pure viscous behavior corresponds tof5p/2,
pure elastic behavior tof50.

We now solve Eq.~12! with a shear rate given by Eq.
~48!. Loop corrections arising from the nonlinear terms will
lead to mode coupling. However, we will not treat the case
of strong coupling here. In that case the assumption of a
linear response without frequency shift would no longer be
satisfied. On the other hand, we have seen previously that
non-Newtonian effects like a shear-rate-dependent viscosity
and normal stress differences are already present at the
Gaussian level. They certainly do not depend on specific
higher-order terms in the Hamiltonian. It therefore does not
come as a surprise that we will be able to establish viscoelas-
tic behavior by use of an effective Gaussian model as intro-
duced in the previous section. To be specific, the first im-
provement with regard to the bare Gaussian treatment
consists in solving

F ]

]t
12G~k!KR~k!2ġ~ t !kx

]

]ky
GS~k,t !52G~k!T, ~56!

whereKR(k) is the loop-corrected two-point vertex function
as defined above in Eq.~36!. In the linear response regime,

S~k,t !5S0~k!1Re@ ġ0S1~k,v!eivt#. ~57!

The background part of the structure factor is again given by

S0~k!5
T

KR~k!
, ~58!

and the time-dependent correction is easily found to be

S1~k,v!5
kx

iv12G~k!K~k!

]S0~k!

]ky
. ~59!

We split into real and imaginary part,

S1~k,v!5S18~k,v!2 iS19~k,v! ~60!

and obtain

S18~k,v!5
2kxG~k!K~k!

v214G2~k!K2~k!

]S0~k!

]ky
, ~61!

S19~k,v!5
kxv

v214G2~k!K2~k!

]S0~k!

]ky
. ~62!

We insert into the functional~7! for the shear stress,

sxy~ t !52E dk

~2p!D
kxky~gR12ck2!†S0~k!1Re@„S18~k,v!

2 iS19~k,v!…ġ0e
ivt#‡. ~63!

Comparison with Eq.~51! then results in the identifications

h8~v!52E dk

~2p!D
kxky~gR12ck2!S18~k,v!, ~64!

h9~v!52E dk

~2p!D
kxky~gR12ck2!S19~k,v!. ~65!

We introduce a normalized frequency,

V5
v

Gc
, ~66!

carry out the angular integrals in Eqs.~64! and ~65!, and
arrive at

h8~v!5
T

15p2Gc E0
`

dk

3
2k8~g12k2!2

@V214k4~k41gk21a!2#@k41gk21a#
,

~67!

FIG. 10. The development of the complex viscosity for large
values of the shear rate frequencyv. The curves forh8~v!, h9~v!,
and uh* ~v!u have been obtained by numerical integration of Eqs.
~67! and ~68!. They confirm the asymptotic results~71! and ~72!.
The straight line has a slope of2

1
2.
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h9~v!5
T

15p2Gc E0
`

dk

3
Vk6~g12k2!2

@V214k4~k41gk21a!2#@k41gk21a#2
.

~68!

From this we see thath8~v! andh9~v! are non-negative, as
could be anticipated from stability considerations, and the
phase angle can simply be computed from

tanf~v!5
h8~v!

h9~v!
. ~69!

For arbitraryv, the expressions forh8 andh9 were finally
evaluated by numerical integration. However, the asymptotic
behavior forv→` can be addressed if we use the substitu-
tion

k5
k

V1/6. ~70!

For both integrals, the limiting expressions coincide,

h8~v!5h9~v!5
T

45pGc
V21/25

T

45p
~Gcv!21/2~v→`!.

~71!

This means that we will find a small stress response with a
phase shift in the middle between shear rate and strain,

sxy~ t !5
A2Tġ0

45p
~Gcv!21/2sinS vt1

p

4 D . ~72!

These predictions have been checked by numerical integra-
tion of Eqs.~67! and~68!. The results forh8~v!, h9~v!, and
uh* ~v!u are shown in Fig. 10, the result for the phase angle
f~v! in Fig. 11. At the other extreme, for smallv, a Taylor
expansion is valid. Atv50, the dynamic viscosityh8~0! is
identical with the steady state excess viscosityDh as given
in ~41!, and the dynamic elasticityh9~0! is zero from~68!. In
addition, we obtain the derivatives

]2h8

]v2 ~v50!52
T

60p2Gc E0
`

dk
~g12k2!2

~k41gk21a!5
, ~73!

]h9

]v
~v50!5

T

60p2Gc E0
`

dk
k2~g12k2!2

~k41gk21a!4
. ~74!

The integrals can be carried out using the calculus of resi-
dues with the result

]2h8~v!

]v2 52
Td8j7

122880pGc
f 5~a!,

f 5~a!5
1280p1013328p8a214448p6a416448p4a624147p2a81858a10

~4p21a2!9
, ~75!

]h9~v!

]v
5

Td4j5

7680pGc
f 2~a!,

FIG. 11. The development of the phase anglef~v! in units ofp
of the stress response for large values of the shear rate frequencyv
as obtained by numerical integration of Eqs.~67! and ~68!. The
asymptotic result~72!, f~v!→p/4 ~v→`! is confirmed. Note, how-
ever, thatf~v! approaches the asymptotic value from below, be-
cause the fluid is slightly more elastic than viscous,h9~v!.h8~v!,
for largev.

FIG. 12. The real part of the dynamic viscosity according to Eq.
~51! obtained by numerical ADI solution of Eq.~56!. Also shown in
the figure are the result from the numerical integration of Eq.~67!
~dashed line! and the parabolic approximation based on Eqs.~41!
and ~75! ~dotted line!.
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f 2~a!5
32p6132p4a212p2a417a6

~4p21a2!5
. ~76!

Here again we meet the scaling functionf 2(a) introduced in
Eq. ~42!.

The behavior of the complex viscosity for small values of
the shear frequencyv has been summarized in Figs. 12–15.
The data have been obtained forG5c5l5g251, d55,
and j52 ~a55/2!. We see that in the double limit of small
shear rateġ0 and small frequencyv, the situation is well
described by the perturbative treatment given above.

SOME COMPUTATIONAL REMARKS

Many results in this paper have been obtained or were at
least checked by the numerical solution of the one-loop
equation~12! for the structure factor. We now want to dis-

cuss some ideas used in the numerical schemes. The equa-
tion was solved on a DEC Alpha system, Model 2100 4/275.
We did not use a parallel computer here, but quite a fast
serial machine with appreciable core memory. We exploited
the symmetry under the replacementk°2k, which allows
us to reduce the problem size by a factor of 4.

The first idea to compute the steady-state solution for the
structure factor under shear is to accurately compute the ki-
netic regime after the shear has switched on, starting with the
structure factor at equilibrium. This requires correct wave
number and time discretization. However, the broad spec-
trum of the operator 2G(k)KR(k) makes this difficult. One
would have to use a very small time step, resulting in a
prohibitively large number of iteration steps to reach the
steady state result.

This problem can be met with a Fourier accelerated relax-
ation dynamics@22#. Here we use an appropriately weighted
time step,

Dt°
Dt

KR~k!„11G~k!…
. ~77!

Large wave number components now relax with the same
effective speed as the small ones. The relaxation process
does not reflect any real physical evolution, but the steady-
state result is unchanged.

The next idea is to replace any relaxation method by a
direct linear solver. The matrix formulation of Eq.~12! aris-
ing from finite difference discretization amounts to solving a
large number of tridiagonal systems coming from the deriva-
tive with respect toky . This problems are parametrized by
the wave number componentskx andkz . Using the approxi-
mate boundary conditionS~k!50 for the limiting ky , these
tridiagonal systems can be readily solved by standard meth-
ods. We have found this approach to compute the steady-
state solution is the most efficient one.

In the case of oscillatory shear one could first think of
integrating Eq.~12! in time until some steady response is
reached. However, the same remarks as for the accurate time

FIG. 13. The imaginary part of the dynamic viscosity according
to Eq. ~51! from the numerical ADI solution of Eq.~56!. Also
shown are the result from the numerical integration of Eq.~68!
~dashed line! and the linear approximation based on Eq.~76! ~dot-
ted line!.

FIG. 14. Phase angle according to Eq.~69! in units ofp. Also
shown the result based on numerical integration of Eqs.~67! and
~68! ~dashed line!. For low frequencies, the shear response of the
systems is nearly that of a liquid. For increasing frequency, the
phase angle decreases, indicating that the self-assembled structures
give rise to viscoelastic behavior.

FIG. 15. The modulus of the dynamic viscosity, as obtained
from the numerical solution of Eq.~56! and numerical integration
of Eqs.~67! and ~68! ~dashed line!.
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integration to reach a time-independent steady-state apply.
We have applied another approach and exploited the large
core memory of our computer to run a full four-dimensional
simulation with periodic boundary conditions in the time di-
rection. Now again we have a choice. Either we can imple-
ment an artificial relaxation dynamics where the relaxation
coordinate no longer corresponds to any physical dimension.
Or, corresponding to the direct solution of the time-
independent steady-state problem, we can use an alternating-
directions implicit method with respect to]/]ky and ]/]t.
This takes a few iteration loops to converge, but gives us the
structure factor in a number of time slices over one period of
the shear input.

In the methods involving the solution of a set of linear
equations, we of course need some additional relaxation it-
erations to implement the loop corrections. We compute the
loop integrals on the basis of the current result for the struc-
ture factor and use these values in the next instance of the
iteration process. Doing so, we did not have any convergence
problems for reasonable values of the problem parameters
and appropriatek-space discretization.

CONCLUSION

The special nature of the shear problem considered here
stems from the fact that the shear term is a product of a
coordinate function and a gradient operator, both in real
space and in Fourier space. On transformation to Fourier
space, the associated coordinate directions merely exchange
their roles. The appearance of such mixed terms is not shared
by common Landau-Ginzburg models, and shear flow is a
simple representative of a whole class of problems that in-
volve composite terms of this kind. Others will arise if the
order parameter field is subject to other deformations such as
elongational flow.

The inclusion of non-Gaussian terms has been accom-
plished here in a two-stage process. We first used standard
methods from statistical field theory to compute the dressed
two-point vertex function for zero shear. This vertex function
was then used to set up an effective Gaussian model. Its
stress response could be computed from the functionals
which were readily derived for the Gaussian case. Doing so
we neglected the effect of the shear term on mode coupling.
However, the validity of the approach could be demonstrated
perturbatively for small shear rate. Central results of the pa-
per include the scaling forms for the rheological coefficients
under weak shear. The existence of nonzero normal stress
differences already indicates the non-Newtonian nature of
self-assembly.

Formally due to IR divergences, which indicate however
the singular nature of the problem, the information that can
be gained by Taylor expansions in the shear rate is limited.
We have therefore computed the nonequilibrium structure
factor numerically to further study the shear-rate dependence
of the rheological coefficients. We found shear thinning and
a positive first as well as a negative second normal stress
coefficient for all values of the shear rate. For increasing
shear, both coefficients approach zero.

For oscillatory shear, viscoelastic behavior was estab-
lished. In a first linear response approximation for low fre-
quency, the dynamic elasticity increases linearly. Asymptoti-

cally the dynamic viscosity and elasticity approach the same
function of the shear frequency, and the phase of the stress
response lies in the middle between shear and strain.

Integral representations like Eq.~19! for the steady qua-
sistatic structure factor under shear have been reported pre-
viously. One either starts from the steady-state problem and
uses the variation of parameters technique or equivalent
methods@12# to derive an integral representation for the so-
lution of the emerging linear first-order differential equation.
Or one treats the time-dependent problem, employs the
method of characteristics, and extends the time integration to
infinity such that the steady state is reached@9,10#.

A demanding issue remains the better characterization of
the general shear-rate dependence of the excess stresses.
From the experimental point of view, it should be clarified
whether self-assembly shows an extended range of power-
law behavior for the viscosity as known from common non-
Newtonian liquids. Based on numerical investigation and as-
ymptotic scaling analysis, we have seen that our model does
not have this feature, and it remains an open question as to
how such a behavior could eventually be built in.

There are a striking number of similarities between the
treatment of self-assembly, block copolymer melts, and criti-
cal colloidal dispersions under shear. But with respect to
self-assembly, there is one crucial complication: the presence
of two correlation lengths in the theory. Here we could not
express our results in terms of only one dimensionless group
that involves the shear rate and the correlation lengths. In the
scaling forms, varying combinations of the correlation
lengths appear. Furthermore, these are the correlation lengths
which are strictly defined only under equilibrium conditions.
Obviously, for strong shear, new modified length scales will
appear, which will also be direction dependent due to the
anisotropic nature of the flow field. A more complete theory
should make reference to these inherent scales.

Another interesting point that has not been touched here is
the transient kinetic behavior. This concerns both the buildup
of the excess stresses when the shear has been switched on
and the relaxation to the equilibrium state after the shearing
has been stopped. Results in this direction are of appreciable
importance, since in practice the fluids are rarely exposed to
such ideal steady-state conditions as can only be realized in
carefully set up laboratory experiments.

To obtain a better understanding of the phenomena con-
sidered in the present paper, it would be helpful to conduct a
series of experiments that record the structure factor under
shear and the mechanical stress response simultaneously.
The experimental verification of the results presented above
can be split into two parts. It must first be checked if, at least
for low shear rates, the structure factor undergoes the defor-
mations calculated above. In our opinion, this is essentially a
geometrical issue, since the modification of the structure fac-
tor must reflect the kinematics of the applied flow field. We
therefore have some confidence in the results present in this
paper. Secondly, the relations between stresses or rheological
coefficients and the observed asymmetry of the structure fac-
tor have to be established, a more complex issue.

On the more theoretical side, one could think about a
renormalization-group treatment to get rid of the cutoff in
wave number space introduced above. Moreover, the influ-
ence of hydrodynamic fluctuations and the effect of introduc-
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ing a separate field for the surfactant have still to be inves-
tigated. It must for example be clarified if hydrodynamic
fluctuations have a stabilizing or a destabilizing effect on the
shear induced structures. Of more concern are the possible
implications of hydrodynamic coupling between the aggre-
gates.

Up to now, we also have confined ourselves to the case of
a bicontinuous microemulsion, where the Hamiltonian is in-
variant under sign reversal of the order parameter. It would
be interesting to derive the consequences if this symmetry is
broken, as in the oil-rich and water-rich regimes. We know
from preliminary experimental evidence that there are novel
features there. Furthermore, up to now only the structured
but disordered region of the phase diagram has been consid-
ered. Further work should also be concerned with the three-
phase region, where effects due to shear compete with spin-
odal decomposition, and with the lamellar region.

In summation, then, we have made moderate progress in

studying a simple model of bicontinuous microemulsion. We
have outlined the directions in that the model might be pro-
gressed. Also, we comment that the most anomalous rheo-
logical behavior in microemulsion comes near the percola-
tion transitions, a matter to which we will turn in future
works. The issues we discuss here, that is the connection
between microstructure and rheology, are at the foundations
of many important technological fields from the food indus-
try to paints and oil recovery. It will be important to pursue
many of the ideas in depth.
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