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Connection of microstructure to rheology in a microemulsion model
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The rheological properties of self-assembling fluids are studied within the framework of a simple time-
dependent Landau-Ginzburg model. In addition to the Langevin relaxation dynamics, the order parameter field
is subject to a kinematic deformation process due to a shear velocity field. The Hamiltonian contains a
Gaussian part which has proven to be important in the study of self-assembly, as wéllaasl ¢*(V ¢)?
contributions. In the disordered phase and for low shear rate, the relevant rheological coeffecierts
viscosity, first and second normal stress coeffigiean be calculated perturbatively. The essential ingredient
is the one-loop, self-consistent solution of the evolution equation for the quasistatic structure factor. In the case
of steady shear, we find shear thinning behavior, a positive first, and a negative second normal stress difference
for all values of the shear rate. For oscillatory shear, it turns out that the self-assembling structures give rise to
viscoelastic behavior. Analytic results are derived for the limiting cases of low and high frequency. For low
steady shear, all results can be expressed in scaling form using the correlation ragtds originally
defined for microemulsion under equilibrium conditions and scaling functions already known from the pure
Gaussian treatment. This suggests a class of experiments where neutron scattering data can be compared to
viscosity results. For low to high shear rates, the one-loop equations have also been solved numerically, and we
display the nonequilibrium structure factors arising from this approc@t063-651X96)08708-9

PACS numbegps): 82.70.Kj, 83.70.Hq, 83.50.Ax, 83.20.Jp

INTRODUCTION assembled phases it is already of interest to understand the
problem somewhat away from the critical point. Much of
As a reasonable understanding of equilibrium self-what we describe below finds its roots in a lattice model due
assembly phenomena has emerged it has become more dp-Widom [1] whose subsequent success in equilibrium ra-
parent that many of the most important issues for technologitionalizations provides the basis for much modern work.
cal applications have hardly been studied, let alone In a previous papdi2], we have investigated the rheology
understood. One of these, the connection between micraf self-assembled fluids based on a Gaussian model both
structure and rheology, or stress relaxation, is of fundamentaheoretically and, in particular, by direct Langevin simulation
importance in diverse areas such as, for example, undeof a two-dimensional microemulsion with nonconserved or-
standing of consistency in the food industry, the quality ofder parameter under shear. We now turn to three space di-
paints, cosmetics, and numerous other products. We wish t@ensions with conserved order parameter and have also in-
contribute some theoretical and numerical results, but emeluded non-Gaussian terms to account for the effect of large
phasize that there remains much uncertainty even about tHfeictuations and to study the consequences of mode coupling.
validity of various models. What follows must be viewed asThe direct Langevin simulations are a much greater compu-
part of the process of defining the model, and the tools thatation challenge in three dimensions, so we restrict ourselves
can be applied in this field. to the level of a self-consistent closed evolution equation for
In self-assembling fluids, correlated mesoscopic structurethe quasistatic structure factor. Otherwise the extensive pa-
exist even far from criticality. The deformation of these do-rameter studies to check scaling behavior and the treatment
mains under an imposed flow gives rise to excess stressest. oscillatory shear would not have been possible.
This results in rheological behavior that is quite differentto  The behavior of self-assembled phases in nonequilibrium
that familiar from simple Newtonian liquids. When the com- conditions was first addressed in Rigf] on rheology andi4]
plex fluid approaches criticality, the correlation length de-on kinetics, but the discussion is now being broadened by
scribing the linear extension of the mesoscopic structuresthers[5—7]. Related rheological investigations have been
diverges. Then even weak shear leads to significant structurahrried out for critical binary mixturels8] and for block co-
deformations, since any diffusion process is slow to restor@olymer melts, first in the mean field approximatih10],
the displacements caused by the kinematics of the flow fieldand later on including mode coupling and fluctuation effects
Clearly changes in the rheological properties become evehoth in the order parameter and the velocity figld]. Ques-
more pronounced on approach to criticality, but for self-tions similar to the ones considered by us also arise in the
investigation of the effects of shear flow on the turbidity of
critical colloidal dispersion§12].
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field. The velocity field is then fixed in order to subject the The Gaussian part of this functional has proven to be the
fluid to the simplest viscometric flow. We state the function-essential ingredient when modeling the basic features of self-
als which relate the rheological coefficients—excess viscosassembling fluids such as microemulsions. It is suggested by
ity, first and second normal stress coefficient—to the quasithe fitting of scattering dat@l3] and by the analysis of a
static structure factor. The section closes with the fulllattice model due to Widom1,14]. The higher-order terms
nonlinear stochastic evolution equation for the order paramhave been proposed based upon phenomenological reason-
eter under shear flow and the equation for the quasistatimg. Extensive work has been carried out on this and other
structure factor derived self-consistently in the one-loop apformulations of the theonf1,14,13 and a consensus has
proximation. been reached that the equilibrium structure is reasonably

The next section is concerned with the case of steadyell understood. In the following, we are mainly interested
shear. For completeness, we first turn to the Gaussian cagethe disordered but structured region of the phase diagram
and derive an integral representation for the steady-stat@herea,>0 andg3=<4a,c. The non-Gaussian terms in Eq.
structure factor under shear flow. As a preliminary step, wegl) allow us to consider two types of phase transitions ob-
then compute the self-consistent, loop-corrected structurserved in self-assembling systems. Firsg.fbecomes nega-
factor with the shear set to zero. The result can be freed frortive, we enter the three-phase coexistence region and meet
the microscopic parameters in favor of the experimentallyspinodal decomposition. In order to have a Hamiltonian that
accessible correlation lengths. We then pursue the perturb& bounded from below in this region, and furthermore to
tive calculation of the structure factor for small values of thecapture the fluctuation effects in the critical region, the quar-
shear rate and in the presence of loop corrections. We calctic term (\/4!)¢" is included. Second, negative values of the
late up to second order in the shear rate and derive scalingare interfacial tensiog, favor the formation of interfaces.
forms for excess viscosity and the normal stress coefficientddowever, this effect of decreased effective interfacial tension
The scaling relations are checked by numerical work, whictshould only be present where the gradient of the order pa-
becomes essential when studying the non-Newtonian behavameter is large, that is in the region where surfactant gath-
ior, that is the shear-rate dependence of the rheological cars, but not within the bulk phases. Furthermoregfis
efficients, of the model. For comparison to experimentaldecreased such thgy=< — \4a,c, we expect the formation
work, we also show grey-scale plots of the structure factoof lamellar phases. We therefore also include the term
for various shear rates. We finally discuss the asymptoti¢g,/2)¢$3(V ¢)? for completeness, but it is numerically not
scaling for very high shear. very significant in much of what follows.

The next section is devoted to oscillatory shear. We con- The time-dependent Landau-Ginzburg equations for order
sider the linear response regime and give formulations of thparameter and velocity field constitute a stochastic gradient
stress in terms of a complex shear modulus and a complegdynamics with mode coupling terni6],
viscosity. We then solve the loop-corrected evolution equa-
tion for the quasistatic structure factor for oscillatory shear ad
up to first order in the shear rate. This allows us to derive
integral representations in wave number space for the
frequency-dependent real and imaginary parts of the com-
plex viscosity. For arbitrary shear frequency, these integrals dv . - - - R
have been fully evaluated numerically and viscoelastic be- g; TV (00) =70V 0+0oV(V-0) =V g M
havior is discussed. However, for small frequency, a Taylor ©)
expansion with the steady-state result for the viscosity as the

zeroth-order term is valid. Also an asymptotic result for very,, particular, the order parameter fiefdis convected by the

high frequency is presented. a;(elocity field 5. We assume that in the absence of fluctua-

N:Jmengal metEOdS have beﬁ” useful tol_c_hecll< gnalytlcl ons the fluid can be characterized by a bare shear viscosity
results and to make progress where an explicit solution cou %0 and a bare bulk viscosity,. However, we only treat the

not be found. We therefore include a short section to discus .

some schemes to solve the self-consistent evolution equatidHcompressmle casE -5'=0 in what follows, and the bulk

for the quasistatic structure factor numerically. Finally, in aV'SCES.'W is of no further rellevance. The cquplmg betvyeﬁen
concluding section, we summarize and discuss the resul dv in Eq. (2) implies a third term on the right-hand side of

> o g. (3) such that expf H— fdPx(|v]?/2)] is the joint equi-
found and indicate the possibilities for further work. librium distribution of ¢ and [10,16). This coupling term

in the velocity equation also gives rise to the excess stress
MODEL ; - ; . .
tensor to be considered in the following discussion. We re-
In this paper, we are concerned with the rheological propstrict ourselves to the physically most relevant case, that of

erties of self-assembling fluids as far as they can be derivethree space dimensions and conserved order parameter. The
from a simple Landau-Ginzburg model for a scalar orderkinetic coefficient is then given bWQS:rV*Z, and the
parameter based on the Hamiltonian fluctuation-dissipation theorem requires the correlations for
the Gaussian noise terms,

N
E“‘V'(QSU)—R/)%"‘%&, 2

>

c - 1 - a
5 (V20)24 5 (0o + 0292 (V) 2+ 5 ¢?

H[¢]=f dPx
(7g(X, D) (X' 1)) ==2TI 4 6(X=X") 8(t=t"), (4

A
+W"4}' @ (&) 7% 1)) = —2TL S(R—%)8(t—t'),  (5)



54 CONNECTION OF MICROSTRUCTURE TO RHEOLOGWI. . . 1671
whereL ;= n0€25ij +Uov*iv*l., and the “temperature’T is  the shear term in the evolution equation for the quasistatic

a free parameter that adjusts the noise intensity. We neglegtructure factor. However, its appropriateness will be dem-
hydrodynamic fluctuations and subject the system to the simPnstrated for low shear rates to the order of one loop below.

plest viscometric shear flofid.7], Physically one can argue that the energies involved in the
fluctuation processes that give rise to excess stresses stem

v="y(t)y&,, (6) from interfacial stretching and bending contributions. Mac-
. ) roscopically observable stresses should then not depend on

where the shear ratg,(t), may depend on time. the very microscopic details of the particular model under

As shown previously by others in a related contextconsideration but on these effective energy scales.
[8-10], and made explicit for self-assembly in our previous  ynder the influence of the shear velocity fi¢&l, in Fou-

papers[2,3], there is, in a system which is spatially homo- rier space the order parameter follows the stochastic evolu-
geneous on average, a close link between the structure factgpn equation

and the excess stresses of rheological interest. Starting from

the coupling in Eq(3), it can be shown that the stresses are

given as integrals of the nonequilibrium structure factor, j(k) | 9

dressed with characteristic weight factors, over wave number—— = y(t)ky T qb(k)—F(k)[ K(k)¢(k)
y

space. To be explicit, we calculate the shear stress, the first, o
and the second normal stress difference according to A dk; dk,
+—= | w—p5=5—01 ok k k—k;—k
dk 6 (27T)D (27T)D (:b( l)¢( 2)¢( 1 2)
ny(t): - J W kxky(gR+ 2Ck2)S(k1t)v (7) dk,  dk,

- ‘ k. — 2 .
+0> 2mP (27)P (Jk—ki—ko|*+kq-ky)

N1(t) = oy(t) — O'yy(t)

dk X ¢(K2) p(K1) p(k—ki—k3) [+ 74(K), (10
=—f Zap (KK (grt+2ekDS(k,D), (8 v N
Na(t) = ayy(t) =0 {1) where K (k) =ck*+gok?+a, is the bare two-point vertex
dk function. This equation generalizes the result for the pure
:_f (2m)P (kj—k2)(grt2ck?)S(k,t). (9)  Gaussian case as given in REZ]. In order to proceed, we

approximate the nonlocal terms in Fourier space on a level

For the case of steady shear flow, we define the excess vifat has already been successfully used to study fluctuations
cosity A77=ny/5’1 the first normal stress coefficient IN @ Lgndau—Gm;burg—Wnson theory of_ microemulsions
y1=N,/%°, and the second normal stress coefficientl18l- It_|s also believed to capture essential feat_ures of the
W,=N,/ 2. For oscillatory shear, we will introduce a com- relaxation process occurring when self-assembly is qgenched
plex viscosity later on. However, Eq&7)—(9) already in- from the uns_tructured _reglon_of the phase diagram into the
volve some assumptions and therefore require commengtructured microemulsion regidd]. The one-loop approxi-
Starting from a general Hamiltonian, every term that is fregmation for the evolution equation of the quasistatic structure

of space derivatives gives an isotropic contribution to the@ctor,

pressure tensor, which is, however, not of interest here. In

addition, each term containing space derivatives influences

the components of the pressure tensor in a more general way. S(k,t)=((k,t) p(—k,1)), 11

A Gaussian Hamiltonian yields a tensor that is quadratic in

the order parameter field as given[3]. Shear and princi- amounts to applying Wick's theorem for the Gaussian clo-
pal stresses can then be expressed exactly in terms of tig&ire of fourth-order moments, so that

quasistatic structure factor. Thg, term invalidates this
simple picture and adds quartic terms dnto the stresses.
However, we here propose not to consider these terms in
detail but to generalize the Gaussian result in an appropriate
way. Instead of the bare interfacial tensiggwe will calcu-

late the stresses on the basis of a renormalized interfacial
tensiongg . In field-theoretical language, this amounts to first
determining a loop corrected two-point vertex function with
the shear rate set to zero, a task which can be accomplished . ) .
by standard methods. This dressed two-point function theif'n€re the term in the inner square brackets is the one-loop
permits us to construct an effective Gaussian model, formy@PProximation for the two-point vertex function. For the
lated in terms of renormalized coefficients or even directly in/Ully dressed one-loop theonG, and G, are defined in
terms of correlation lengths. One then calculates the shedgMs of the relations

response of this effective model by use of the functionals

(7)—(9). The weak point of such an approach is the neglect of G (t):J dq S(a0) (13)

any coupling between the Langevin relaxation dynamics and 0 (2m)P e

ot

d A
iy 2F(k){ K(k) +g2K?*Go(t) + 5 Go(O)+ ngz(t)> }

, d
— (kg K, S(k,t)

=2I'(K)T, (12
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dq ) Self-consistent solution for\,g,#0 but y=0
GZ(t):J (2m)° a"sta.0), (149 Before we combine the influences of shear and nonlineari-
ties on the solution of Eq12), it is useful to consider the
thereby yielding a self-consistent theory. role of the latter first. For zero shear, we have

STEADY SHEAR K (K)+ g,k?Gq +

A

In this section we are concerned with the steady-state so-
lutions of the evolution equatiofl2) for the quasistatic As usual, the solution for the structure factor is given by the
structure factor. We impose a shear velocity field that is coninverse of the loop-corrected two-point vertex function, the
stant in time, having applied in the past, and all transientgexpression in the square brackets. This can be written as
have vanished. Thus, we here do not consider the kinetic
stage where the fluid adapts to the nonequilibrium conditions S(k) = I 1 21)
but assume that the asymptotic regime has been reached c k4+gk7+a’

where the structure factor is time independent.
where we have introduced the renormalized coefficients,

Gaussian caseA=g,=0 and y=const+0

90, 92
Before dealing with the loop corrections, let us make QZF’LFGO* (22
some comments on the Gaussian case,
2T (KK (k) = yky | S(k)=2T'(k)T, (15 c 2c C

* ok
y
However, we note that the foregoing definitions contain the

which has also been treated in our previous pgRBiin part  ge it consistent expressions for the loop integrals in terms of
by direct simulation of the Langevin equation for the ordery,q solution(21) itself, requiring

parameter. Note that Eq15) is an ordinary, linear, first-

order differential equation ik, , so dg T = g3dq
- o~ | o $9= 775 |, o
=A(k)S(k) —B(k), (16)
dk, T 1 2
with 4TC 2 farg’
2T (K)K (k) _f dg , T f/\ g'dg  TA
A(k):T, (17) GZ_ (27T)Dq S(q)_Zﬂ'ZC 0 q4+gq2+a~2ﬂ_20'
(29
2T (k)T . . . : . .
B(k)= (18)  The second integral is UV divergent in three dimensions and

YKy we have had to introduce a cutoff. We leave the equations in
this form since a renormalization group treatment is not
ithin the scope of this paper but we hope to comment on
is aspect at a later time. The combination of E88)—(25)
ields a pair of coupled nonlinear equations for the renormal-
ed coefficientgy anda,

In a plane of fixedk, andk,, these wave number compo-
nents merely enter as additional parameters. For physic%%
reasons, we have the boundary conditi@(s- )= S(x)

=0. The given inhomogeneous problem then has the form

solution,
T 1
ky ' ' ky " "’ g= %_"gi—; (26)
S(ky)=—f_wdkyB(ky)ex;{ fk; A(ky)dwy} (19 " 1n? T
The inner integral under the exponential is over a polynomial a2 AT 1 N 92T A 27
in k. However, the outer integral cannot be performed by C  8mc? 2 ja+g 27%c?

elementary means. Also note that this representation is prob-

lematic in the regionk,y~0, since A(k) and B(k) grow  Equations of this kind have been derived and studied previ-
beyond all limits in this case, whereas the original problemously in the diagrammatic expansion of the self-energy for
(15) has a trivial solution fok,y=0. In the following per- the self-consistent treatment of fluctuation effects in micro-
turbative treatment, the idea is to write the structure factor asmulsiong 18], in connection with relaxation phenomena in
a straightforward power series in the shear rafestarting  self-assembled systerfy], and for largeN models both for
with the equilibrium structure factor as the zero-order termgrowth kinetic§5] and self-assembled fluidi6]. The natural
This approach has been followed in our previous pa@gr choice for the cutoffA is known to be the length of the
and will again be used in connection with the loop correc-amphiphile moleculd14]. This given, the nonlinear equa-
tions later on. tions can be solved numerically by fixed-point iteration. It is
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more significant to note that we can formulate the resultsvhere

directly in terms of the physical correlation lengths, thereby

maklng direct comparisons to experiment possible. In the Kn(K)=c[k*+gk?+a] (36)
disordered region of the phase diagram, the real space corre-

lation function for the bicontinuous microemulsion is given ) )
is the loop-corrected two-point vertex function as already

b
y introduced implicitly in Eq.(21) with renormalized coeffi-
e " 2ar cients according to Eq26) and(27). On the level linear in
g(r)=——sin——. (28)  the shear rate, we must comp@gk) from
The physical correlation lengthandd are computed from T L
the renormalized coefficients according to 2L (K)Kg(K)Sy(k)+2T'(K)| g2k“Gg™' +| 7 Go
d 2 dSo(k)
=, 29 + G(l)” k)—k =0, 3
2 e (29 965" | |Solk) ko 5 (37)
2 whereG Y andG{Y denote contributions linear ify to the
= \/m- (30 loop integrals. The solution is given by
The nonlinear couplings andg, given, we can now elimi- T kxky(g+2k2)
nate the bare coefficients, anda, from the theory, SK=-Fz% KT gkera)y (38)
9o _[(1)? [2m\?] g.T¢
?=2 g \d) | 8nc? (31) Due to the spherical symmetry, the loop corrections vanish
on this level G {M'=G{Y=0, as can be seen by inserting Eq.
a, 1\2 [27\2]2 ATé g9,T (38) into Egs.(13) and (14). On the level quadratic in the
<= (E) + (F “1enc? 2,22 A. (32  shear rate, we find
Thus, independent of bare coefficients, except for an overall B Ky 3S1(K)
factor, the equilibrium structure factor expressed in terms of Sy(k)= 2T (K)Kr(k)  dk,

A
T gzk2652>+(§ Géz>+gze<§>”so<k>. (39
S(k)= K4+2

the correlation lengths is
112 [2.,\2]2]-1 +
RN
(33 Atthis stage, the loop integra@® (2) andG ) do not vanish.

1\2 [2m)?2 2
= == +
3 d
_ However, the second term in the above sum again has spheri-
Perturbative solution for \,g,#0 and small y#0 cal symmetry. Because of the overall factorkxk),

2 2 2 2 . . . .
We now consider the solution of EqL2) for low shear (Kx—ky), and ky—kz) in the integrands, this term yields

and with the nonlinearities present. The procedure relies on B0 contribution to the functional§)—(9) for the shear stress
Taylor expansion of the structure factor in the shear ate and the normal stress differences. We do not calculate these

corrections to the zero-order loop integrals here and only
S(k)=Sp(K)+ ¥Si(K) + ¥2S,(k)+O(¥®). (34  give the first term in Eq(39) explicitly,

However, in the case of a conserved order parameter, this TI2
series is problematic, since we meet infrar@R) diver- Sy(K)~— =532 4X > 4
gences when we attempt to use the resulting structure factor 2l c’k*(k"+gk°+a)
to derive expansions of the rheological coeffiqients in the g(K4+ gk2+a) + 3K(g + 2k?)2

shear rate. The reason is that due to conservation, the relax- —2k?2 T 5 } (40)

ation dynamics slows down proportionally ¢ on small Y k“(k*+gk“+a)

wave humber scales, whereas the shear term only scales lin-

early withk, . On the other hand, a series expansion of theSymmetry considerations again reveal the first term in the
structure factor at least to second order in the shear rate igjuare brackets combined with the facté? ¢ kf,) in Eq.
necessary to obtain analytic estimates for the rheological ca8) gives rise to a nonzero first normal stress difference, and,
efficients at zeroth order. Note also that the loop integ&ls  similarly, the second term to a nonzero second normal stress
andG, according to Eqs(13) and(14) have an expansion in difference. Also note the overall factoks 2 in Eq. (38) and

y now. We first consider terms in E(L2) that are indepen- k™ * in Eq. (40) that indicate the buildup of IR divergences as

(g+2k?)

dent of the shear rate. At zero order, we obtain mentioned earlier.
The origin of the IR divergences can be traced back to the
Sy(k) = T (35) conservative nature of the used model. Conservation of mat-
Kgr(k)’ ter results in the slowing down of shear deformations on
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large spatial or small wave number scales. As noted most 052 —
clearly in Ref.[12], Eq.(12) is a singularly perturbed differ- )
ential equation with a boundary layer lat=0. This feature hla) o5
stems from the fact that the small quantityk, , multiplies

the highest derivative in the equation. We therefore have to
expect a qualitative change in the properties of the solution
betweenyk,—0 and yk,=0. Any regular perturbation se-
ries like Eq.(34) gives the so-called outer solution which is

a bad approximation in the inner region. The inner solution
which is valid in the boundary layer cannot be calculated by
use of regular perturbation methdd®]. On the other hand,
the dominant contributions when calculating the rheological
coefficients come from a region in wave number space which
is bounded away from zerf@]. This means that we are ob-
viously in a somewhat lucky situation, since the functionals
(7)—(9) for the rheological coefficients involve integration
over all wave number space which smears the error due to
the boundary layer somewhat. Therefore we do not want to

go so far as Ill?ef[12] and decl?'re th";t ther? IS fno linear merical data for the excess viscosity. The main figure is restricted to
reSponse at all, because we b? ieve the scaling (ﬁ@)s— the values ofa observed in experiments, the inset shows a larger
(43) will be useful when analyzing weak shear experiments it of the scaling function. The data points come from numerical

From what has been computed so far, we see that the loaRyutions of Eq(12) for different values ofx andd betweerd=4.5
corrections will not have a direct influence on the values ofangd=55 (\=g,=1).
)

the rheological coefficients, in the sense tBdf’ and G §

are zero an@ {¥) andG {?) do not contribute to the function-
als(7)—(9) due to symmetry. The only effect that changes the
result compared to the Gaussian case is the modification of
the zero-order structure factor caused by the appearance of
the dressed two-point vertex function according to &%).

The formulas derived for the Gaussian case in our previous
paper[2] therefore remain valid if we use them in scaling
form and expressed in terms of the physical correlation
lengths. These we either simply prescribe or compute ac-
cording to Eqs(29) and(30) with the one-loop renormalized

048 r

046 | o

044 | o
042
04
038 |

0.36 |

0.34 . . . . ! L . . . .
24 26 28 3 32 34 36 38 4 42 44 46

FIG. 1. Scaling functiorf(«) according to Eq(41) and nu-

B T§5d4 .
V2= 53760mT2c7 2 *)

3687°+3767*a?+ 5172’ + 63’
(4772+ a2)5

fa(a)= (43

coefficientsg anda given self-consistently by Eq§26) and
(27). This is equivalent to first computing the loop correc-

tions for zero shear, then constructing an effective Gaussia%

model with Eq.(36) as the vertex function, and finally com-
puting its shear response by use of the functiof@ls(9).

This establishes the approach already discussed in the Intr
duction. For comparison, we give the expressions for the
excess viscosity and the first normal stress coefficient as a}é

ready derived irf2] and present a new formula for the sec-
ond normal stress coefficient,

TE

An=m fi(a), (41)

2+ a?

e =72

B T§5d4 .
V1= 38407122 ().

32784 327% a2+ 2m2a* + 7a®
(4% + a?)® !

(42

fo(a)=

Here a=d/¢ is the ratio of the correlation lengths, which,
ractically, varies between 2.6 and 4.5 in experim¢ge.

he relation(41) has first been derived if8] for the pure
Gaussian case from the zero-frequency limit of the complex
shear modulus, which describes the stress response to oscil-
%itory shear, see below.

The scaling functionf,(«) for the excess viscosity and
sults from numerical solutions of equati@t?) have been
plotted in Fig. 1. In this and the two following figures, the
scaling laws have been tested numerically fer2.5 to
a=4.5. There is apparently a dispersion of the scaling data
for increasinga which can be explained as follows. The
functional (7) for the shear stress,, receives its essential
contribution from a shell of wave numbers somewhat higher
than those corresponding to the maximum of the structure
factor. Obviously, there is an error due to the truncation of
the numerical solution in wave number space. For higher
values ofe, the structure factor shows the tendency to spread
out to larger|k|. Therefore this error increases with fixed
numerical truncation for larger values af The comparison
between the scaling functiof,(«) and numerical data in
Fig. 2 for the first normal stress coefficient shows dispersion
for low values ofa. This happens because the functiof&l

for the first normal stress difference receives its main contri-
bution from the low wave number region. Working with a
fixed numerical grid, this region is somewhat more poorly
represented for large values @fand &, resulting in smalla
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d FIG. 4. The decrease of the excess viscosity with increasing
@ :g shear rate, a signature of non-Newtonian behavior. To obtain this

figure, Eqg.(12) was first solved numerically for a shear rate of

y1=0.2, and then fory,=2.0. The figure shows the contours of the

FIG. 2. Scaling functiorf,(«) according to Eq(42) and nu-  ratio between the two excess viscosities determined in this way.
merical data for the first normal stress coefficient. The main figure

is restricted to the values af observed in experiments, the inset 946
. X : dAn T&
shows a larger part of the scaling function. The data points come —=— fila)
i i i ay* 688128arI3c 4"
from numerical solutions of Eq12) for different values ofx andd Y

betweend=4.5 andd=5.5 \=g,=1).
1
fi(a)= ————5 [ 716807 %+ 199680r%>

(A7°+ a”)
whe_re the structure factor concentrates its _intensity at the + 2718721844+ 2629127548+ 32767274 a8
origin. The same remarks apply to the numerical data for the
second normal stress coefficient compared to the scaling —2079487%a %+ 42757 "?]. (44)

functionfs(«) in Fig. 3. Note that the model considered here o o _
predicts a negative second normal stress coefficient, which i§he derivative is less than zero, which indicates shear thin-
in accordance with general experimental experience nowdling. Corresponding expressions for the normal stress coef-
days[17,21]. ficients cannot be derived due to IR divergence of the inte-
For completeness we mention that without meeting IRI"@IS:

divergence, we can also compute the derivative of the excess
viscosity with respect to the shear rate at the origin, Non-Newtonian behavior

The perturbative solutions computed so far are valid only

for small values of the shear rate. Thinking in terms of a
series expansion of the rheological coefficientsyjrthe re-

-0.0023 T T T .
fo(a) sults(41)—(43) represent the zero-order termsyat 0. How-
-0.0024 | 1 ever, because of infrared divergences in the conservative
-0.0025 (5 = 2.0)
h(y=02)
-0.0026 | 030 64
6.1 d
-0.0027 F 0.40 58
0.0028 | 0% 5.5
0.60 52
0.0029 - o 49
-0.003 . 0s0 46
-0.004 43
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d d
o =— I
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FIG. 3. Scaling functiorf;(«) according to Eq(43) and nu- FIG. 5. As expected from the result for the viscosity, the normal

merical data for the second normal stress coefficient. The maistress coefficients are shear rate dependent, too. This is documented
figure is restricted to the values ef observed in experiments, the here fory, . The figure shows the contours of the ratio between two
inset shows a larger part of the scaling function. The data pointsalues of the first normal stress coefficient obtained for increasing
come from numerical solutions of E¢L2) for different values ofx shear in just the same way as the data for the viscosity in the
andd betweend=4.5 andd=5.5 \=g,=1). previous figure.
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FIG. 6. The shear rate dependency of the second normal stress
coefficient. The figure shows the contours of the ratio between two + = 1.255 = 3.81 v = 1.25% = 5.96 v = 1.2510 = 9.31
values of the second normal stress coefficient obtained in just the

same way as the data for the two previous figures. FIG. 7. Sequence of slices through the structure factor in the
case, it is not clear whether an ordinary power series exparfianekz=0. For increasing moderate values of the shearyatae
sion for the rheological coefficients can be devised at allPiclures are based on the numerical solution of &@). For y=0
Before more powerful analytical methods have been found, §"d ¢ and @ and a=d/¢ given, the ring of maxima is at wave
possible way out if this difficulty is to obtain the structure "UMPerk™=(1/&)7(2m/ @)"=1].
factor by numerical solution of Eq12) and to compute the .
rheologi)éal coefficients by numericcq:al)integration oFE@é}.— of the shear fat_él?yﬂli Because the shear stress is then
(9). We have followed this approach and present some rediVen by o, =7y~7""", the exponenn must be greater
sults in Figs. 4—7. In general, we observe that all rheologicaif@n —1 for physical stability. It is now of interest whether
coefficients decrease with increasing shear rate. the model considered here leads to such an extended range of
To obtain F|g 4, Eq(lZ) was first solved numerica”y for shear thlnnlng Unfortunately, this is not the case. As ex-
a shear rate ofy;=0.2, and then fory,=2.0. The figure pected we will find that the model is dominated by the de-
shows the contours of the ratibzy,/A7, between the two rivative term,yk,(d/dk,) S(k) in Eq.(12), at large values for
excess viscosities determined in this way. This ratio is althe shear rate, and any signature of the Hamiltonian vanishes
ways less than one, the fluid behaves shear-thinning. Furtheasymptotically. To see this, we consider the laggleehavior
more, the shear-thinning effect becomes stronger in thef the steady state structure fac®(k) computed from
highly structured region, that is for large values dfand
even larger ones d@fresulting in small values at. In Fig. 5
we plotted the contours of the ratio between two values for
the first normal stress coefficient obtained for increasing
shear in just the same way as the data for the viscosity in Fig\e use the loop-corrected vertex functisi(k) here, but
4. The shear-rate dependency of the normal stress coeffihis is not essential for the argument. It should be noted that
cients is found to be stronger than that for the excess viscoshe structure factor fok,=0 is not affected by the shear at
ity. Again, this effect becomes more pronounced in theall. Now we first restrict our attention to a neighborhoodin
highly structured region. Figure 6 then shows the behavior opace next to the plank,=0 and consider the situation
the second normal stress coefficient. The strong shear-rafgherek, ~0 but yk,=const for y—. The transformation:
dependency a_nd the sm'c_lll absolute_m_agmtudzg)z_cﬁfpm the y—>sy, ke—>k,/s, s>1 leaves|k|? essentially unchanged,
overall numerical factor in Eq43) will it make difficult to sincek, ~0. Equation(45) is therefore approximately invari-

capture this quantity experimentally. . antin the given region under the transformation, which leads
A sequence of slices through the structure factor in thei0 the relation

planek,=0 for increasing moderate values of the shear rate
v can be seen in Fig. 7. The above perturbative analytical
treatment is successful up tp~1 (I'=c=1). Here the S
structure factor shows an ellipsoidal deformation with re-
spect to its equilibrium appearance. For higher values of th
shear rate, one observes that the intensity on the maximu
ring varies significantly. Finally the structure factor concen-
trates intensity in two regions with finite, and smallk,

corresponding to elongated structures in hdirection in-

duced by the shear velocity field. At present we possess n?)y

2T (K) K g(K) — YKy 0% S(k)=2I'(K)T. (45
y

Ky . .
E,S'}’):S(kx,'y). (46)

Bor increasing shear rate, E@6) describes the behavior of
He structure factor in a shrinking region in wave number
space. Now let us investigate the consequence of this relation
for the shear stress. If we use it in the expresginwe find

a simple substitutior@-xy(sy)=(1/sz_)oxy('y), and there-

> ; -3 '
analytical procedure for this regime. re ayy~y " or equivalently Ap~y~". We also find
y p g Nl~yX and N,~y 1, which means ¢;~% ® and
Yo~y 3

Scaling behavior for large shear rates However, because for increasing shear rate this behavior

Common shear-thinning fluids often show a power lawstems from a region of shrinking integration measurein
for the viscosity,7~ y", which extends over several decadesspace, we must also consider the behavior of the structure
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FIG. 8. Behavior of the shear stress for large values of the shear
rate y confirming the scaling result E¢47) presented in the text. FIG. 9. The structure factor in the plakg= 0 for high values of
The dashed line has a slope ofl. the shear rate. The structure factor degenerates into a strip of de-
creasing width along thé, axis. Asymptotically, there is a rota-

factor well away from the plank,=0. Now for some finite  tional symmetry with respect to thig, axis. Fory=0 and ¢ and
value ofk, , we can always find some large enough value fore=d/¢ given, the ring of maxima is at wave numbée
the shear rate such that the contribution coming from the=(1/&)?[(2m/a)?~1].
Hamiltonian in Eq.(45) becomes irrelevant and the right-
hand side is balanced essentially by the derivative term. This ¥(t) = yocog wt). (48
implies the scalingS(k)~y~* and simply giveso,,~y ",
N, ~ 'y‘l, and N,~ 'y‘l, and thereforeA n»~ 'y‘z, whereas Again we are not interested in any transient behavior but
Y1~ v 2 andy,~ v~ 2 as before. From the two scaling casessuppose that a steady, oscillatory stress response has built up.
considered, we expect for very high shear rates the slowdn the previous section, we used the linear term i ax-
laws to survive. This argument applies especially for the expansion of the shear stress to compute the excess viscosity.

cess viscosity. We expect the final laws Accordingly, we now assume that we are in the oscillatory
) - linear response regime. It is then customary to introduce the
o~y L Ap~y7? (47 complex shear modulus* (») and to write

which come from the scaling away from the pldge=0 and 1 o
are independent of the form of the Hamiltonian. The normal Txy(t)= RE{E G* () yoe'"
stress coefficients are expected to decay WitH.

Figure 8 shows the behavior of the shear stress for largg,y G*(w)=G'(w)+iG"(w), and the shear stress is ex-
values of the shear rate and confirms the scaling argumerﬁ,qicmy given by
just given. In interpreting this result, one should, however,
remember thal 7 is the excess viscosity ang,,, as defined Yo _
in this paper, is the excess stress caused by the fluids internal Txy=" [G'(w)siNwt)+G"(w)cogwt)].  (50)
fluctuating structure. The full stress is given by this contri-
bution and the one coming from the background ViSCO8ity e contribution proportional to the storage moduGig w)
in Eq. (3). The seemingly paradoxical decrease of the EXCeSF in phase with the strain, whereas the one proportional to

stress for large shear rate does not necessarily mean an CT_F:-e loss modulusG”(w) is in phase with the shear rate.
owever, the formulation using the complex shear modulus

stability of the model as long as the Newtonian backgroun
Ys more appropriate if we originally prescribe not the shear

. (49

viscosity is the dominant contribution. The decrease merel
reflects the certainly overestimated adaption of the fluids in'rate but the strain. Here we prefer to work with a complex
Fernal interfacial 'structure 'to the preferrgd dlrect!on of theviscosity, 7*(@)=17'(w)—i7"(w), and to use the represen-
imposed flow. This can be inferred from Fig. 9, which shows, o

the structure factor for high shear rates. It degenerates into a

strip of decreasing width along thg axis. The pictures rep- oo () =Re 7* ¥0€'“1]
resent cuts fok,= 0, but there is a rotational symmetry with Y .
respect to the, axis. =yl 7’ (w)coq wt) + 7" (w)si(wt)].  (52)

The dynamic viscosityy' (w) multiplies the portion of the
response which is in phase with the shear rate, whereas the
As the simplest time-dependent situation, which is neverdynamic elasticity7’(w) gives the stress response in phase
theless of significant experimental relevance especially whewith the strain. The connection to the complex shear modu-
probing viscoelastic properties, we now consider the shedus is given byG'=w#" andG"=w#’. Another common

stress induced by oscillatory shear flow, where representation of the stress response is, of course,

OSCILLATORY SHEAR
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Ty () =A(0)siM ot + ¢(w)]. (52) ) K, 9Sy(K)
1K) = IRk ik,

(62)
The connection between Eq&1) and(52) is given by

A=yo\Nn'*+ 5" (53)  We insert into the functional7) for the shear stress,
and dk
, 7= | 30 k(G 20KSH(K) + RA S (K,0)
Sing= ——, (54) .
V't —iST(k,»))yo€e'"1. (63)
7" ) ) ) . L
cosp= —————. 5 Comparison with Eq(51) then results in the identifications
MR CrE o
The phase anglé(w) has been introduced with reference to , _ _J dk 2\ o
the time-dependency of the strain. Thereforegit0, the 7' (@)= (2m)° ky(Gr+2¢K)Sy(k, ), (64)

stress anticipates the strain, andg#i&0, the stress follows
the strain. Pure viscous behavior correspondssten/2, dk
pure elastic behavior t¢=0. weoN 23

We now solve Eq(12) with a shear rate given by Eq. 7 (w)__f (27)P kxky(gr+2¢k)S1(k ). (65)
(48). Loop corrections arising from the nonlinear terms will
lead to mode coupling. However, we will not treat the cas
of strong coupling here. In that case the assumption of
linear response without frequency shift would no longer be
satisfied. On the other hand, we have seen previously that ®
non-Newtonian effects like a shear-rate-dependent viscosity 0= e’ (66)
and normal stress differences are already present at the
Gaussian level. They certainly do not depend on specific
higher-order terms in the Hamiltonian. It therefore does notarry out the angular integrals in Eq&4) and (65), and
come as a surprise that we will be able to establish viscoelaswrive at
tic behavior by use of an effective Gaussian model as intro-
duced in the previous section. To be specific, the first im- T "
provement with regard to the bare Gaussian treatment /()= ——W\— f dk
consists in solving 157°T'c Jo

e:BJ(Ve introduce a normalized frequency,

9 _ 9 2k8(g+2k?)?
7t T2 OKRIO =¥k 5 |S)=2T (KT, (56 XA (K gk a) [k + gkot al’
6
whereKg(k) is the loop-corrected two-point vertex function (67)
as defined above in E¢36). In the linear response regime,
0.1
S(k,t)=Sp(k) + Re 7S, (k,w)€'“']. (57)
The background part of the structure factor is again given by 001 b
k)= ! 58
and the time-dependent correction is easily found to be
0.0001
Ky 9So(K)
S1k @)= TSR OK(K) K, (59
We split into real and imaginary part, R 10 100 1000 10000 100000
Si(k,w)=S;(k,0)—iS]|(k,») (60) w
and obtain FIG. 10. The development of the complex viscosity for large
values of the shear rate frequenoy The curves forp'(w), 7'(w),
and |77* (w)| have been obtained by numerical integration of Egs.
Si(k,w)Z 2kd (KK (k) 3So(k) (61) (67) and (68). They confirm the asymptotic resul(g1) and (72).

w’+4I'%(k)K?(k) aky The straight line has a slope of3.
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FIG. 11. The development of the phase angle) in units of FIG. 12. The real part of the dynamic viscosity according to Eq.
of the stress response for large values of the shear rate frequency(51) obtained by numerical ADI solution of E¢66). Also shown in
as obtained by numerical integration of E¢87) and (68). The the figure are the result from the numerical integration of B)
asymptotic resul(72), ¢(w)—m/4 (w—) is confirmed. Note, how-  (dashed ling and the parabolic approximation based on Hg4)
ever, that¢(w) approaches the asymptotic value from below, be-and(75) (dotted ling.
cause the fluid is slightly more elastic than viscoy4w)>7'(w),

for large w. T . T 1
7'(w)=7"(w)= 25 TC Q =15+ (Tcw) " w—x).
® 71
n"(w)ZWf dk _ - ( ).
m-1C Jo This means that we will find a small stress response with a
OKE(g+ 2K?)2 phase shift in the middle between shear rate and strain,
" [OF 4K (K + gk2+ a) 2] K+ gke+ a2’ .
(0= YTV 1 - 12gie] ot T (72)
(68) Tyy 457 w gl

From this we see thag'(w) and 7/'(w) are non-negative, as Thege predictions have been checked by numerical integra-
could be anticipated from stability considerations, and thgjop of Eqgs.(67) and (68). The results fory' (), 7'(w), and

phase angle can simply be computed from |7* (w)| are shown in Fig. 10, the result for the phase angle
, ¢(w) in Fig. 11. At the other extreme, for smadl a Taylor
tand(w) = M (69) expansion is valid. Aw=0, the dynamic viscosity;'(0) is
7"(w) identical with the steady state excess viscodity as given

in (41), and the dynamic elasticity’(0) is zero from(68). In
addition, we obtain the derivatives
For arbitraryw, the expressions fory and 7%’ were finally 5, -
evaluated by numerical integration. However, the asymptoti¢” 7 ( ” (g+2k°)

behavior forw— can be addressed if we use the substitu-gw? (“~ %)=~ 807T'c fo (k*+gk’+a)®’ 73
tion
an’ (0=0) T fwdk k?(g+2k?)? 74
k ——(w=U)= oo a2 s
K:W' (70) Jw 607I'c Jo (k4+gk +a)4
The integrals can be carried out using the calculus of resi-
For both integrals, the limiting expressions coincide, dues with the result
&277/((0) Td8§7
7 =~ fs(a@),
dw 1228807I'c

12807194 332878 a2+ 444878 o* + 64487 a8 — 41472 o8 + 858210

42+ a?)° , (75

fs(a)=

(977//(00) Td4§5
= fa(a),
Jw 7680rT'c
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3278+ 327 a? + 22t + 7a®

fo(a)= (477% a?)5 . (76)
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FIG. 13. The imaginary part of the dynamic viscosity according  FIG. 15. The modulus of the dynamic viscosity, as obtained
to Eq. (51) from the numerical ADI solution of Eq(56). Also from the numerical solution of Eq56) and numerical integration
shown are the result from the numerical integration of E&g)  ©f Eds.(67) and(68) (dashed ling
(dashed lingand the linear approximation based on E&p) (dot-
ted ling. cuss some ideas used in the numerical schemes. The equa-

tion was solved on a DEC Alpha system, Model 2100 4/275.
Here again we meet the scaling functibsfe) introduced in ~ We did not use a parallel computer here, but quite a fast
Eq. (42). serial machine with appreciable core memory. We exploited
The behavior of the complex viscosity for small values ofthe symmetry under the replaceméwt>—k, which allows
the shear frequency has been summarized in Figs. 12—15.Us to reduce the problem size by a factor of 4.
The data have been obtained Be=c=\=g,=1, d=5, The first idea to compute the steady-state solution for the
and é=2 (a=5/2). We see that in the double limit of small Structure factor under shear is to accurately compute the ki-
shear ratey, and small frequency, the situation is well netic regime after the shear has switched on, starting with the
described by the perturbative treatment given above. structure factor at equilibrium. This requires correct wave
number and time discretization. However, the broad spec-
trum of the operator P(k)Kg(k) makes this difficult. One
SOME COMPUTATIONAL REMARKS would have to use a very small time step, resulting in a

Many results in this paper have been obtained or were éfrOhlbltlvely Iarge number of iteration Steps to reach the

least checked by the numerical solution of the one-loopsteady state result.

equation(12) for the structure factor. We now want to dis-  This problem can be met with a Fourier accelerated relax-
ation dynamicg22]. Here we use an appropriately weighted

time step,
0.5
d(w) 0495 | ) 1 At
v A K@ T (k) 0
0485
048 t . Large wave number components now relax with the same
ol ] effective speed as the small ones. The relaxation process
047 | does not reflect any real physical evolution, but the steady-
' state result is unchanged.
0.465 | ] The next idea is to replace any relaxation method by a
046 | 1 direct linear solver. The matrix formulation of E(.2) aris-
0455 | ing from finite difference discretization amounts to solving a
045 , , , ‘ ‘ large number of tridiagonal systems coming from the deriva-
o 03 1 15 2 25 3 tive with respect tdk, . This problems are parametrized by

the wave number componerks andk, . Using the approxi-
mate boundary conditio§(k)=0 for the limiting k, , these
FIG. 14. Phase angle according to E69) in units of 7. Also  tridiagonal systems can be readily solved by standard meth-

shown the result based on numerical integration of E6# and  0ds. We have found this approach to compute the steady-
(69) (dashed ling For low frequencies, the shear response of theState solution is the most efficient one.

systems is nearly that of a liquid. For increasing frequency, the In the case of oscillatory shear one could first think of
phase angle decreases, indicating that the self-assembled structutategrating Eq.(12) in time until some steady response is
give rise to viscoelastic behavior. reached. However, the same remarks as for the accurate time
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integration to reach a time-independent steady-state applgally the dynamic viscosity and elasticity approach the same
We have applied another approach and exploited the larginction of the shear frequency, and the phase of the stress
core memory of our computer to run a full four-dimensionalresponse lies in the middle between shear and strain.
simulation with periodic boundary conditions in the time di-  Integral representations like E(L9) for the steady qua-
rection. Now again we have a choice. Either we can implesistatic structure factor under shear have been reported pre-
ment an artificial relaxation dynamics where the relaxatior\,iou3|y_ One either starts from the steady-state problem and
coordinate no longer corresponds to any physical dimensionses the variation of parameters technique or equivalent
Or, corresponding to the direct solution of the time- methodg12] to derive an integral representation for the so-
independent steady-state problem, we can use an alternatingtion of the emerging linear first-order differential equation.
dlr_ectlons |mpI|C|'F met_hod with respect @/ dk, a”O_' alat. Or one treats the time-dependent problem, employs the
This takes a fevx_/ iteration loops _to converge, but gives us th ethod of characteristics, and extends the time integration to
structure factor in a number of time slices over one period o nfinity such that the steady state is reachedd.

thelr?rt]ﬁarr:]npmt.d involving th lution of t of linear A demanding issue remains the better characterization of
€ methods Involving the solution of a Set ot inear y,q general shear-rate dependence of the excess stresses.

'Erom the experimental point of view, it should be clarified

erations to implement the loop corrections. We compute th%vhether self-assembly shows an extended range of power-

loop integrals on the basis of the current result for the StrUCI\ behavior for the viscosity as known from common non-

ture f_actor and use t.hese value; in the next instance of thﬁewtonian liquids. Based on numerical investigation and as-
iteration process. Doing so, we did not have any convergen ptotic scaling analysis, we have seen that our model does
problems f°T reasonable. valugs qf the problem paramete ot have this feature, and it remains an open question as to
and appropriaté-space discretization. how such a behavior could eventually be built in.
There are a striking number of similarities between the
CONCLUSION treatment of sglf-assgmbly, block copolymer m'elts, and criti-
cal colloidal dispersions under shear. But with respect to

The special nature of the shear problem considered herelf-assembly, there is one crucial complication: the presence
stems from the fact that the shear term is a product of @f two correlation lengths in the theory. Here we could not
coordinate function and a gradient operator, both in reakxpress our results in terms of only one dimensionless group
space and in Fourier space. On transformation to Fourigthat involves the shear rate and the correlation lengths. In the
space, the associated coordinate directions merely exchangealing forms, varying combinations of the correlation
their roles. The appearance of such mixed terms is not shardengths appear. Furthermore, these are the correlation lengths
by common Landau-Ginzburg models, and shear flow is avhich are strictly defined only under equilibrium conditions.
simple representative of a whole class of problems that in©Obviously, for strong shear, new modified length scales will
volve composite terms of this kind. Others will arise if the appear, which will also be direction dependent due to the
order parameter field is subject to other deformations such amnisotropic nature of the flow field. A more complete theory
elongational flow. should make reference to these inherent scales.

The inclusion of non-Gaussian terms has been accom- Another interesting point that has not been touched here is
plished here in a two-stage process. We first used standatbe transient kinetic behavior. This concerns both the buildup
methods from statistical field theory to compute the dressedf the excess stresses when the shear has been switched on
two-point vertex function for zero shear. This vertex functionand the relaxation to the equilibrium state after the shearing
was then used to set up an effective Gaussian model. lisas been stopped. Results in this direction are of appreciable
stress response could be computed from the functionalinportance, since in practice the fluids are rarely exposed to
which were readily derived for the Gaussian case. Doing ssuch ideal steady-state conditions as can only be realized in
we neglected the effect of the shear term on mode couplingcarefully set up laboratory experiments.

However, the validity of the approach could be demonstrated To obtain a better understanding of the phenomena con-
perturbatively for small shear rate. Central results of the pasidered in the present paper, it would be helpful to conduct a
per include the scaling forms for the rheological coefficientsseries of experiments that record the structure factor under
under weak shear. The existence of nonzero normal streshear and the mechanical stress response simultaneously.
differences already indicates the non-Newtonian nature ofhe experimental verification of the results presented above
self-assembly. can be split into two parts. It must first be checked if, at least

Formally due to IR divergences, which indicate howeverfor low shear rates, the structure factor undergoes the defor-
the singular nature of the problem, the information that cammations calculated above. In our opinion, this is essentially a
be gained by Taylor expansions in the shear rate is limitedgeometrical issue, since the modification of the structure fac-
We have therefore computed the nonequilibrium structuréor must reflect the kinematics of the applied flow field. We
factor numerically to further study the shear-rate dependencherefore have some confidence in the results present in this
of the rheological coefficients. We found shear thinning andoaper. Secondly, the relations between stresses or rheological
a positive first as well as a negative second normal stressoefficients and the observed asymmetry of the structure fac-
coefficient for all values of the shear rate. For increasingor have to be established, a more complex issue.
shear, both coefficients approach zero. On the more theoretical side, one could think about a

For oscillatory shear, viscoelastic behavior was estabrenormalization-group treatment to get rid of the cutoff in
lished. In a first linear response approximation for low fre-wave number space introduced above. Moreover, the influ-
guency, the dynamic elasticity increases linearly. Asymptoti-ence of hydrodynamic fluctuations and the effect of introduc-
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ing a separate field for the surfactant have still to be invesstudying a simple model of bicontinuous microemulsion. We
tigated. It must for example be clarified if hydrodynamic have outlined the directions in that the model might be pro-
fluctuations have a stabilizing or a destabilizing effect on thegressed. Also, we comment that the most anomalous rheo-
shear induced structures. Of more concern are the possiblggical behavior in microemulsion comes near the percola-
implications of hydrodynamic coupling between the aggre+ion transitions, a matter to which we will turn in future
gates. works. The issues we discuss here, that is the connection
Up to now, we also have confined ourselves to the case Q{etween microstructure and rheology, are at the foundations
a bicontinuous microemu|Si0n, Where the Ham”tonian iS in'of many important techno'ogica' fields from the food indus-

variant under sign reversal of the order parameter. It woulgry to paints and oil recovery. It will be important to pursue
be interesting to derive the consequences if this symmetry igyany of the ideas in depth.

broken, as in the oil-rich and water-rich regimes. We know
from preliminary experimental evidence that there are novel
features there. Furthermore, up to now only the structured
but disordered region of the phase diagram has been consid-
ered. Further work should also be concerned with the three- One of the author§G.P) is supported by EEC Grant No.
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In summation, then, we have made moderate progress iputational resources.
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