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Many of the physical pictures used to rationalize the phenomenology of glassy dynamics rest upon a
consideration of spatial fluctuations in the relaxation kinetics of the glass-forming liquid. We examine the wide
ranging consequences which flow from assuming the existence of transient kinetic inhomogeneities. These
consequences include: strong and fragile behavior, two-step relaxation processes, nonlinear relaxation follow-
ing temperature jumps, spatially correlated kinetics and non-Gaussian behavior of incoherent processes. These
general predictions are explored in simulations in which relaxation is governed by diffusing defects.
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I. INTRODUCTION

The theoretical description and experimental characteriza-
tion of the collective dynamics of glass-forming liquids re-
mains the central problem posed by the glassy state. The
ubiquity of glassy dynamics leads us to expect that the major
features of this relaxation can be described without explicit
reference to specific molecular interactions or internal de-
grees of freedom. In this paper we examine a description of
cooperative dynamics which focuses on the spatial correla-
tion and dynamics of the transient distribution of local relax-
ation times in the glass-forming liquid. For a simple model
glass@1–4#, we have recently demonstrated that a number of
characteristic features including non-Arrhenius temperature
dependence of relaxation times, stretched exponential relax-
ation, and nonlinear behavior following temperature jumps
are the result of the transient spatial inhomogeneities of the
relaxation process. These fluctuations arise from the strong
dependence of the local relaxation time on local configura-
tions. Their presence isinevitable in any system probed on
time scales shorter than the structural relaxation time—a de-
fining feature of glass experiments. What remains to be es-
tablished is whether or not these fluctuations play the same
central role in the relaxation ofreal materials as they do in
the simulated models.

Our goal in this paper is to present the wide range of
physical consequences which flow from a quite general as-
sumption concerning the existence of kinetic inhomogene-
ities. While some of these consequences are already well
established in the literature in connection with specific mod-
els, we shall argue that many of these features are indepen-
dent of the details of the models with which they are associ-
ated. This work is motivated by a belief that the recognition
of the central role that kinetic inhomogeneities play in many
theoretical models of glassy relaxation is both useful and
little appreciated. By establishing the generic consequences
arising from the existence of such transient distribution, we
would also like to identify explicit tests~by experiment or

simulation! of the relevance of these inhomogeneities to real
glasses.

II. BACKGROUND

The proposal that glassy relaxation reflects spatial inho-
mogeneities has a long history. Glass theories based on the
existence of a thermodynamic singularity@5–7# have, either
explicitly or implicitly, accounted for the glassy dynamics in
terms of the kinetics of the clusters of the new phase. In the
language of kinetic inhomogeneities, such cluster models fo-
cus on the localization of the particles undergoing slow re-
laxation. On the other hand, it is the fast regions which con-
stitute the localized objects in free volume@8# and diffusing
defect models@9–12#. A number of authors@13# have ex-
plored models based on fluctuations in local bond numbers.
These models, along with a number of recent lattice models
of glasses@14#, underline the role of local environments in
establishing the local dynamics through short range interac-
tions. The spatial distribution of relaxation times in such
models is typically a nonlinear and nonlocal~in time and/or
space! function of the local environment fluctuations. The
central role played by inhomogeneous kinetics is made ex-
plicit in ‘‘two-fluid’’ models proposed recently@15–17#
where the cooperative dynamics is characterized by slow and
fast subpopulations of particles. All these theoretical ap-
proaches have focused on different explanations of the dis-
tribution of relaxation rates. We argue here that the conse-
quences of the spatial inhomogeneities themselves~the
common feature of all the models mentioned! have not been
fully explored.

The idea of heterogeneous kinetics figures prominently in
the physical interpretation of a number of important experi-
ments. Johari and Goldstein@18# invoked localized fast do-
mains in accounting for the relaxation of intermediate fre-
quency, processes these authors labeled asb, distinguishing
them from the long time relaxationa. Cavaille, Perez, and
Johari @19# have developed a heterogeneous model of the
rheology of glasses. The fact that slow and fast relaxation are
associated with different particle subpopulations has been
established for some polymer systems by Spiess and co-
workers@20# using an elegant four dimensional~4D! nuclear
magnetic resonance~NMR! experiment. Cicerone and Ediger
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@21# have also shown, via selective photobleaching of probe
molecules, that there exists a long-lived distribution of mo-
bilities in supercooled ortho-terphenyl. This kinetic differen-
tiation of particles, which persisted for times of the order of
the structural relaxation, is termed ‘‘heterogeneous relax-
ation.’’ Sillescu et al. @16# have established the surprising
result that the translational diffusion constant of molecular
probes in ortho-terphenyl apparently decreases more slowly
with decreasing temperature, at large supercooling, than does
the rotational diffusion constant. These authors propose that
the formation of fast localized aggregates that decay on the
time scale of the structural relaxation time may account for
this observation. A number of alternative explanations of
these measurements have been developed@15,17,22# around
the general idea that translational motion averages over a
spatially varying environment quite differently from rota-
tional motion. As a final example, it has been recently sug-
gested@23# that kinetic inhomogeneities are responsible for
the deviation of crystallization kinetics at large supercoolings
in lithium disilicate from that described by classical nucle-
ation theory. The idea is that nucleation is effectively re-
stricted to the fast regions. In fragile liquids it is the scarcity
of these regions, rather than the probability of crystalline
fluctuations, which comes to dominate the rate of crystal
formation.

The paper is organized as follows. In the next section we
describe, qualitatively, the consequences arising from gen-
eral considerations of the inhomogeneous picture. While the
results of Sec. III stand on their own, they give little indica-
tion of the magnitude of the effects described. To examine
this quantitative question, we present an explicit model of
glassy relaxation involving the simulation of relaxation me-
diated by diffusing defects whose waiting times obey an al-
gebraic distribution as described by Shlesinger and Montroll
@10#. Details of the calculations are provided in Sec. IV. In
Sec. V we present the results of the simulations in the form
of relaxation functions and their scaling, the relationship be-
tween fragility and the stretching of the relaxation, the non-
linear response following temperature jumps, and the spatial
distribution of the kinetic processes in strong and fragile flu-
ids. We conclude with a discussion.

III. CONSEQUENCES OF KINETIC INHOMOGENEITIES

We shall consider a bimodal distribution of local environ-
ments, characterized as ‘‘slow’’ and ‘‘fast,’’ in a dense ma-
terial. Such a picture impliesat leasttwo characteristic tem-
peratures, one to establish a time scale and another to
determine the distribution of slow and fast environments. Let
the relaxation time in a fast region be given by
t j5t j (T/T1), whereT is the temperature andT1 is the char-
acteristic temperature of this fast kinetics. We shall assume
that the kinetics of the slow regions is so much slower than
in the fast regions that it does not contribute to relaxation.
Instead, relaxation takes place by the exchange of environ-
ments between the slow and the fast. This exchange is a
complex process and is the origin of the complex dynamics.
For simplicity, letC(T/Th) be the volume fraction of fast
regions, a decreasing function ofT, with Th the single char-
acteristic temperature of this volume fraction.~The following
analysis does not depend crucially on this assumption of a

single characteristic temperature forC.! The following fea-
tures arise as consequences of this minimal picture.

~1! Strong and fragile behavior. The overall relaxation
time t is given by

t~T!5t f~T/T1! f ~T/Th!, ~1!

where f (T/Th) is proportional to the time scale of the envi-
ronment exchange process and is expected to be a decreasing
function ofC, approaching one from above asC approaches
one. Results of both the facilitated kinetic Ising model@1#
and the diffusing defect model@12# indicate thatf (T/Th) is
proportional toC2l wherel.1. The relaxation time is gov-
erned by these two temperatures. IfT1@Th then, over the
accessible time scales,f (T/Th) remains at its higher tem-
perature value~i.e., limT→` f51) and the temperature de-
pendence is determined by that of the relaxation time in the
fast regions. Given that this relaxation takes place, by defi-
nition, without the need for any extended cooperativity, we
can assume thatt f has an Arrhenius temperature depen-
dence. Hence a liquid characterized by the above inequality
would resemble astrong liquid. Conversely, ifT1!Th the
relaxation time is dominated by the exchange of the slow and
fast environments which, as a result of the complex extended
correlations in such dynamics, is typically non-Arrhenius.
We shall regard this as afragile liquid.

This picture of fragility is of immediate relevance to ex-
periments in restricted geometries and to computer simula-
tions of glasses in general. As the temperature drops and the
equilibrium density of fast environments decreases, the aver-
age distance between these mobile regions eventually be-
comes of the order of the system itself. At this point we
expect to see in fragile liquids~but not in strong liquids! a
system size dependence of the relaxation time—the signature
of the growth of the cooperative length scale. While this
observation is commonplace in studies of lattice models of
glass formers@1,14,24#, we are not aware of any reports of
such a size dependence in simulations of models with con-
tinuous degrees of freedom.

~2! The relaxation function is the sum of the contributions
from different environments. Central to this picture is the
idea that fast and slow dynamics arise from different tran-
sient subpopulations of particles. It follows directly that
‘‘caging,’’ defined as the transient localization of individual
particles, is a feature of a subpopulation of the particles only.
The relaxation function has the general form

f~ t !5Cf f~ t/t f !1~12C!fh~ t/t!, ~2!

reflecting the different relaxation processes. Relaxation in
the fast region is assumed to be exponential~although, in
general, this is not necessary!. fh(t/t) describes the ex-
change process throughout the medium and will extend over
a stretched range of time scales. Thea priori calculation of a
function likefh(t/t) is an important goal of a glass theory.
Our aim here is more modest—to identify generic features of
inhomogeneous relaxation in order to learn more about the
nature of the exchange between different local configura-
tions. Such insights would provide us with a deeper physical
understanding of the origins offh(t/t). The fast fraction
C establishes the faction of the system relaxed by the short
time processes, i.e., theamplitudeof the fast relaxation pro-
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cess. In fragile liquids,C also establishes the relaxation time
for the slow process@specific examples of the relationship
betweenC and t are mentioned in point~1!#. These two
different types of scaling have been explicitly demonstrated
for the facilitated kinetic Ising model@4# but we are unaware
of any other tests of its validity. We shall return to this fea-
ture in Sec. V.

~3! A positive correlation between stretched relaxation
and fragility. As, in this picture, both stretched relaxation
and fragility are characteristic of kinetics dominated by en-
vironment exchange processes, the inhomogeneous picture
implies a generally positive correlation between these two
features. This correlation is certainly consistent with the
compilation of data presented by Bo¨hmer et al. @25#. We
cannotconclude, however, that a linear or, even, monotonic
relation between any specific measures of stretched relax-
ation and fragility follows as an immediate consequence of
the inhomogeneous picture. As the fragility increases, slower
components of the environment exchange process begin to
play a significant role in relaxation. The observed width of
the relaxation process will reflect the subtleties of the par-
ticular sampling of the complex dynamics of the local envi-
ronments. In Sec. V, we shall examine the details of this
correlation between fragility and relaxation in the diffusing
defect model.

~4! Nonlinear response and the relaxation of kinetic envi-
ronments. An important body of data on glassy relaxation is
based on the transient response of various properties~e.g.,
viscosity, heat capacity, thermal expansion coefficient! of the
glass former to temperature jumps@26#. A characteristic fea-
ture common to a wide range of fragile glass formers is a
dependence of the relaxation on the sign and magnitude of
the temperature changeDT. The relaxation time, in such
systems, is itself relaxing in time—a classic example of a
nonlinear effect. As thermal conductivity is one of the few
transport coefficients which shows no significant slowing
down near the glass transition, the time dependence of estab-
lishing the new temperature throughout the material can be
neglected. As a result we can assume thatt f equilibrates to
the new temperature instantaneously. The volume fraction of
fast environmentsC, however, has to relax to the new equi-
librium value over some finite time scale, and this time scale
will, of course, depend onC itself. The lag between the
actual value ofC and the equilibrium value is a measure of
the configurational nonequilibrium during the temperature
jump transient. The quantityC plays a similar conceptual
role to the fictive temperature which, in work by Moynihan
et al. @27# and Hodge@28#, has proven an elegant tool in
correlating linear and nonlinear relaxation. As the nonlinear
behavior is described here as arising from the role of the
inhomogeneities, we expect strong liquids to show less non-
linearity than fragile liquids. Further we expect relaxation at
a temperatureT following a temperatureincrease to be
slower than relaxation atT following a temperaturede-
crease. This prediction is a reflection of the different densi-
ties of fast regions at the respective initial temperatures. This
asymmetry in relaxation behavior has been observed experi-
mentally @29# and in simulations of the facilitated kinetic
Ising model@30#. In Sec. V we calculate the magnitude of
the asymmetric response of the relaxation following tem-

perature jumps of the diffusing defect model, generalized to
include defect production and annihilation.

The very picture of a long-lived inhomogeneous distribu-
tion of relaxation times resulting from the equilibrium struc-
tural fluctuations implies that relaxation involves the cou-
pling of modes. Consider the relaxation by diffusion of a
particular Fourier mode of a density fluctuation. Under linear
diffusion, each mode relaxes independently of other density
modes. A spatially dependent diffusion constant, however,
couples the dynamics of mode with different wave vectors.
The possibility that such a coupling could have interesting
and observable effects in glasses has been explored in a re-
cent study@22#.

~5! Spatial correlations and characteristic length scales
of the transient kinetic structure. We note that, while the
inhomogeneous picture itself does not specify any particular
correlations between the slow and fast regions, specification
of a mechanism for exchange between these environments
will impose certain spatial correlations. If relaxation is re-
stricted to the fast regions then so must this environment
exchange. It follows that cooperative relaxation processes
must proceed by the complex ‘‘motion’’ of fast environ-
ments throughout the material. The local relaxation time of a
particle will then depend on its proximity to a fast region.
The slowest regions, responsible for the long time tail of the
relaxation process, will tend to be clumped together in those
regions of volume maximally distanced from all fast regions
at some initial time. It is interesting that we have arrived at
such a correlation, which resembles that of the cluster mod-
els ~i.e., localized domains of slow relaxation!, from a gen-
eral kinetic argument rather than having to speculate on spe-
cific equilibrium fluctuations. An experiment which could
resolve the spatial correlations of relaxation times would be
able to test for such kinetic structure. No such experiment
currently exists. This kinetic structure has been observed in
simulations of the facilitated kinetic Ising model@1,3#, a 3D
lattice model of a simple liquid@31#, and in molecular dy-
namic simulations of a 2D liquid@32#.

~6! Non-Gaussian behavior of incoherent processes.
While many fundamental problems remain concerning single
particle dynamics and stress relaxation in the presence of
fluctuating inhomogeneities, we can offer a general observa-
tion concerning the consequences of kinetic structure. Single
particle motion is expected to exhibit a long-lived non-
Gaussian character. By way of example, consider a simple
model in which each particle starts off in an environment
characterized by a particular diffusion constant and, over
some time period, eventually samples all possible environ-
ments. It can be easily shown that the non-Gaussian param-
eterA(t) defined as

A~ t !5
3^Dr ~ t !4&
5^Dr ~ t !2&2

21, ~3!

where ^Dr (t)2& is the mean squared displacement and
^Dr (t)4& the mean quartic displacement, can only approach
zero ~and hence Gaussian behavior! for times exceeding the
time scale required for individual particles to sample the
complete distribution of kinetic environments. The decay of
A(t) then, provides us with an upper bound on a ‘‘mixing
time’’ similar to that discussed in Refs.@20# and @21#. De-
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viations from Gaussian behavior have been observed in a
number of simulations of glass forming systems@33,34#. An
analysis ofA(t) in terms of kinetic inhomogeneities is pre-
sented elsewhere@35#.

IV. SIMULATION OF THE DEFECT DIFFUSION MODEL:
BACKGROUND AND COMPUTATIONAL DETAILS

The consequences of inhomogeneous relaxation described
above follow directly from the assumption of kinetic inho-
mogeneities. They are, however, qualitative in nature, pro-
viding little in the way of quantitative estimates. To go be-
yond these general observations we must look at specific
models. In this spirit, we present simulations of dielectric
relaxation governed by diffusing defects. A brief background
to this model and the details of the calculation are presented
in this section.

A defect diffusion model of dielectric relaxation was first
introduced by Glarum@9# in 1960. It was proposed that the
reorientation of a dipole occurred as soon as a defect diffused
to the site of the dipole. Glarum showed that in 1D this
model gave a stretched exponential dielectric relaxation,
similar to that seen experimentally. Bordewijk@36#, in 1975,
applied a similar model to relaxation in 3D only to find the
long time relaxation decayed via a simple exponential pro-
cess. With this failure to model glassy relaxation in 3D, the
model languished until Shlesinger and Montroll@10# demon-
strated that stretched exponential relaxation could be recov-
ered in 3D if the defect motion was characterized by an
algebraic waiting time distribution~as opposed to the expo-
nential distributions assumed by Glarum and Bordewijk!. In
subsequent papers, Bendler and Schlesinger@11,12# applied
this model to the problem of glassy kinetics, drawing heavily
on asymptotic analysis of the relaxation function. To our
knowledge, however, the model has not been previously
studied by numerical simulation.

The stimulated system consist of a cubic lattice of dimen-
sions 10031003100 lattice spacings. Each defect occupies
a finite spherical volume of radius one lattice spacingl and is
free to move off lattice. Initially the defects are randomly
distributed in the simulation box. The defects are allowed to
jump a fixed lengthl in any direction and are permitted to
overlap one another~i.e., we neglect any defect-defect inter-
action!. The defect concentration,

CD5ND /V, ~4!

whereND is the number of defects andV is the total number
of lattice sites, remains constant during a simulation run.

The waiting time distribution of the defects is given by

C~ t !5atmin
a t212a, ~5!

wheretmin is the short time cutoff of the distribution and the
exponenta is selected from the range 0,a<1. It follows
directly from Eq. ~5! that the mean waiting time between
jumps for a given defect is infinite. This lack of a character-
istic time scale associated with the hopping process has re-
sulted in its description as ‘‘fractal’’ and leads to stretched
exponential relaxation. We use the distribution in Eq.~5! in
this paper~without anya priori justification! to provide a

simple model of the kinetic consequences of the complex
dynamics associated with environment exchange.

In order to simulate dielectric relaxation, we assign each
site i on the lattice with a states i which can take on one of
two valuess i50 or s i51 depending on whether the site is
in a relaxed or unrelaxed state, respectively. Initially all
s i ’s are set to 1, i.e., all sites are in an unrelaxed state. We
assume that the instantaneous relaxation of a site occurs with
probability

p~ t !512exp~2t/tmin!, ~6!

when it lies within a single lattice spacing from the center of
a defect with waiting timet. Note that the choice ofp(t) in
Eq. ~6! is equivalent to assuming exponential relaxation
within a fast region. The time scaletmin is equivalent tot f
from the previous discussion and so we assume that its tem-
perature dependence is Arrhenius, i.e.,

tmin5t0exp~T1 /T!. ~7!

The choice of the temperature dependence of the defect
concentrationCD remains. Here we have set

CD5CD
0 expF 2B

~T2T0!
1.5G , ~8!

chosen explicitly so that the model will reasonably mimic the
temperature dependence of a range of fragile liquids over a
restricted temperature range. Wedo notmean to imply that
there is necessarily a nonzero temperature at which mobile
fast environments will vanish. This specific form comes from
Bendler and Shlesinger@11#. We note that this temperature
dependence of the generalized Vogel-Fulcher form requires
two characteristic temperatures, as opposed to the singleTh
used in the preceding section. The temperature independent
prefactorCD

0 allows us to ‘‘fit’’ the defect density into the
range available to our simulations. In the simulations the
defect density is bounded from below as we cannot drop to a
density below one defect in the simulation cell. For the sys-
tem size used here that density is 1026 defects per lattice
site.

The relaxation of the system is monitored through the
function

f~ t !5Ns51~ t !/V, ~9!

whereNs51 is the number of sites for whichs i51 ~i.e., the
number of unrelaxed sites! andV is defined as above.f(t) is
then the fraction of unrelaxed sites at timet. A relaxation
time t is defined as the area underf(t).

In summary, a simulation run consists of spherical, non-
interacting, ‘‘ghostlike’’ defects of fixed volume undergoing
an off-lattice random walk. All defects are assigned a waiting
time according to the distributionC(t) in Eq. ~5!. Only
when a defect’s waiting time expires, is it allowed to take a
jump of fixed length in any direction. Hence the defect with
the shortest waiting time jumps first. It is then assigned a
new waiting time and the system is advanced in time to the
next jump. Each time a defect overlaps a site, it has a prob-
ability p(t) in Eq. ~6! of relaxing that site. The diffusive
motion of the defects is activated only abovetmin . For
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t<tmin , the system is assumed to relax exponentially accord-
ing to Eq.~6!, that is the fraction of relaxed sites is given by

12f~ t !5p~ t !C0 0<t<tmin , ~10!

whereC0 is the fraction of sites covered by the defects at
t50.

V. SIMULATION OF THE DEFECT DIFFUSION
MODEL: RESULTS

A. Relaxation and scaling in strong and fragile liquids

The defect diffusion model, as presented above, has six
parameters for which values must be chosen:a, T1 , t0 , B,
T0, andCD

0 . We begin with a set of parameter values which
has been selected to loosely model the behavior of glycerol,
i.e., a50.7, T150 K, t051027 s, B51.43793104 K 3/2,
T05112.7 K, andCD

0 52.73343103. By settingT1 to zero
we ensure that the relaxation will be governed by the kinetics
of defect migration. The resulting frequency dependent dis-
sipative component of the generalized susceptibilityx9(v),
which is related to the relaxation functionf(t) by

x9~v!5vE
0

`

f~ t !cos~vt !dt, ~11!

is presented in Fig. 1~a! for 199 K<T<258 K. Each curve
is averaged over ten runs. The experimental glass transition
temperatureTg for glycerol is 193 K@37#.

We note the two main features of these curves. The first is
the large low frequency peak, corresponding to thea relax-
ation, with a width roughly twice that of an exponential pro-
cess. The position of this peakvmax exhibits a dramatic de-
crease with decreasing temperature over a narrow
temperature interval of 59 K. Over this same temperature
range the defect densityCD changes by four orders of mag-
nitude. The second feature is the high frequency peak, aris-
ing from the exponential relaxation within the defects, which
shows no temperature dependent shift in peak position~a
result of neglecting any temperature variation oftmin). This
high frequency peak which emerges atT;233 K
(CD55.16%) does, however, display a rapid increase in its
amplitude with increasing temperature. This is a reflection of
the increasing contribution of the exponential relaxation be-
low tmin to the global relaxation of the system with increas-
ing defect density. We shall refer to this peak as theb peak,

FIG. 1. ~a! The susceptibility spectrumx9(v) as a function of angular frequencyv for a system modeled with ‘‘glycerol’’ parameters
~Sec. V A!. The temperatures of the curves from left to right are 199, 203, 208, 213, 223, 233, 243, 253, and 258 K, respectively. The
experimental glass transition temperatureTg5193 K @37#. Note the distinct low frequency (a) peak whose position exhibits a striking
temperature dependence. At higher temperatures, a high frequency (b) peak appears with a peak position which shows little variation with
temperature due to the constraint of constanttmin . ~b! The susceptibility spectrum for a system modeled as a ‘‘strong liquid’’ with parameters
as in~a! above, except thatRT15300 kJ mol21 andtmin is now temperature dependent. The temperature of the curves from left to right are
1110, 1200, 1350, 1500, 1700, and 1800 K, respectively.Tg51110 K, the temperature at whicht5100s. Only a singleb peak whose width
decreases with increasing temperature is observed.
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in keeping with the original definition of a similar feature by
Johari @18#. Above T5253 K (CD;50%), it becomes the
dominant peak.

In Fig. 2~a! we present the temperature dependence of the
a peak positionvmax in an Arrhenius plot. Also included are
the dielectric relaxation times from Davidson and Cole@38#
and McDuffe and Litovitz@39# which have been converted to
angular frequencies. The agreement between the experimen-
tal results and the model is a direct consequence of our
choice for the temperature dependence of the defect density
in Eq. ~8!.

The connection betweenvmax andC is demonstrated ex-
plicitly in Fig. 3 where we find the power law relation

vmax}C
1.58. ~12!

Both the facilitated kinetic Ising model@1# and the defect
diffusing model of Bendler and Shlesinger@12# exhibit a
power law relation as well, but with different exponents. Fol-
lowing on from the discussion in point~2! of Sec. III, we can
test whether the amplitude of theb peak is proportional to
the volume fraction of fast environments. Due to the overlap
of defects, this volume fractionC is a nonlinear function of
the defect densityCD . In Fig. 4 we plotC ~calculated di-
rectly from the simulated systems! against theb peak height
and find a reasonably linear relationship until we approach

saturation of the system by fast environments. This dual scal-
ing role played byC ~or CD), in establishing both the time
scale of the slowest relaxation@see Eq.~12!# and the ampli-
tude of the fastest relaxation~see Fig. 4!, presents some in-
teresting possibilities. It is possible that a scaling relationship
exists betweenvmax and theb peak height. We have not
been able to test this prediction in our simulations, however,
as there is only a limited range of temperatures over which
vmax and theb peak height can both be measured.

Examples of the simulated relaxation functionf(t) for
glycerol at four different temperatures are shown in Fig. 5. A
Kohlrausch-Williams-Watts~KWW! @40# stretched exponen-
tial function of the form

FIG. 2. ~a! The positionvmax of thea peak in Fig. 1~a! for the
glycerol system as a function of inverse temperature in an Arrhen-
ius plot. The experimental results from Davidson and Coles@38#,
and McDuffie and Litovitz@39# have been converted to angular
frequencies. Notice the non-Arrhenius temperature dependence of
vmax for glycerol. ~b! The positionvmax of theb peak in Fig. 1~b!
for the strong liquid as a function of inverse temperature. The peak
position now varies with an Arrhenius temperature dependence.
The solid line is a linear regression through the data points. The
slope of this line yields an effective activation energy of 300 kJ
mol21, consistent with our choice ofT1.

FIG. 3. The dependence ofvmax of thea peak in Fig. 1~a! for
glycerol on the ‘‘fast’’ volume fractionC. Note the approximate
linearity of the log-log plot. The solid line is a linear regression
through the data points with a slope of 1.58.

FIG. 4. The relationship between theb peak height and the
‘‘fast’’ volume fractionC of the glycerol system. Note the approxi-
mate linearity for all but the highest temperatures (C→1) where
the system approaches saturation by the mobile regions.
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f~ t !5A exp@2~ t/tKWW!g# 0,g<1, ~13!

provides a good fit tof(t) for times greater thantmin . The
initial region of thea part of the relaxation can also be fitted
reasonably well by a von Schweidler~VS! law @41#

f~ t !5 f2h~ t/tVS!b 0,b,1, ~14!

where f is the Debye-Waller or nonergodicity factor and
h;1 is a temperature dependent material constant. We set
f51 and tabulate in Table I the KWW and VS fits to the
relaxation functions in Fig. 5.

The analysis of Sec. III suggests that we can generate a
strong liquid simply by increasingT1, the characteristic tem-
perature of the ‘‘fast’’ relaxation timet f . To demonstrate
this feature of the inhomogeneous picture we have set
RT15300 kJ mol21 (R is the gas constant! while leaving all
the other parameters at their ‘‘glycerol’’ values, except that
t053.7154310213 s andCD

0 51. The glass transition tem-
perature for the strong liquid is chosen to be the temperature

at which t5100 s, a characteristic relaxation temperature
which is often quoted in the literature@25#. This corresponds
to Tg51110 K and is comparable to the glass transition tem-
peratures of network glasses such as SiO2, GeO2, and
NaAlSiO8 @42#. The resulting susceptibility curves are plot-
ted in Fig. 1~b! for 1110 K<T<1800 K. Now we find only
ab peak whose width decreases with increasing temperature.
The b peak position varies with an Arrhenius temperature
dependence as illustrated in Fig. 2~b!, with an effective acti-
vation energy of 300 kJ mol21 which coincides with our
choice of T1. This implies that a majority of sites in the
system are relaxed exponentially within the defects below
tmin . Over this temperature range of 690 K the defect density
varies by only 28% in contrast to the four orders of magni-
tude variation seen in the fragile liquid over a 59 K interval.
The relaxation curves are nearly exponential and the time-
temperature superposition is obeyed over the whole time
range abovetmin .

B. On the relation between fragility and stretched relaxation

A general correlation has long been noted between the
magnitude of the deviation of the relaxation time away from
an Arrhenius temperature dependence~the so-called fragil-
ity! and the degree of ‘‘stretching’’ of the relaxation process
away from a single exponential form@25,28#. Here we ex-
amine this correlation in the context of the diffusing defect
model. To avoid the vagrancies of nonlinear curve fitting, we
measure the degree of ‘‘stretching’’ of the relaxation by the
interval W in log10(t/s) betweenf(t1)50.01 andf(t2)
50.99 at the temperature at whicht5100 s, i.e.,W5 log
10(t1 /t2). This widthWexp52.661 for an exponential func-
tion and is broader in the case of stretched exponential re-

FIG. 5. The relaxation function
f(t) ~solid line! for the glycerol
system at four different tempera-
tures. The ‘‘kinks’’ appearing in
the high temperature~223 and 233
K! curves att5tmin are due to the
abrupt change in the relaxation
mechanism attmin . Below tmin ,
relaxation occurs exponentially
within the defects but abovetmin ,
relaxation is governed solely by
defect diffusion. The KWW
~dashed line! and VS~dotted line!
fits to f(t) are compiled in Table
I. The KWW function provides a
good fit to the relaxation curves
abovet min , whereas the VS law is
a reasonable fit only for the initial
part of thea relaxation.

TABLE I. KWW: fKWW(t)5A exp@2(t/t KWW)
g# and von Sch-

weidler ~VS!: fVS(t)512(t/tVS)
b fits to the relaxation function

f(t) for the ‘‘glycerol’’ system at four temperatures as shown in
Fig. 5.

KWW VS
T/K A tKWW g tVS b

199 1.00 0.496 0.69 0.665 0.65
213 0.99 2.04631023 0.67 3.59531023 0.56
223 0.97 1.02931024 0.63 2.03031024 0.50
233 0.97 8.13331026 0.58 1.87731025 0.44
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laxation. With regards to fragility, we shall follow Bo¨hmer
et al. @25# and define a fragility parameterm such that

m5
] log10~t!

]~Tg /T!
U
T5Tg

, ~15!

also evaluated at the temperature at whicht5100 s. Follow-
ing the discussion in Sec. III, we shall adjust the fragility of
the model by varyingT1, the characteristic temperature of
the fast Arrhenius process, while leaving the parameters
which determine the temperature dependence of the defect
density unchanged at the values given above. The effect of
increasingT1 is to increase the simulatedTg and hence re-
ducem.

The relationship betweenT1 and the fragilitym is shown
in Fig. 6~a! and the variation of the widthW with the fragil-
ity m is plotted in Fig. 6~b!. As expected,W is a generally
increasing function ofm, but this dependence is not mono-
tonic. The origin of this behavior appears to lie in the details
of the defect dynamics applied here. As the defect density is
decreased, increasingly slower aspects~longer waiting times!
of the defect dynamics begin to play a significant role in the
relaxation which result in an increase inW. Below
CD;0.5%, however, there is an effective narrowing of the
relaxation time distribution associated with some intermedi-
ate time scale feature of the defect motions. This increase in
W with increasingCD at low defect densities is not well
understood but could be connected to the initial appearance
of theb peak in the susceptibility spectrum which leads to a

broader overall susceptibility curve. This feature is still un-
der study.

C. Transient relaxation following temperature jumps

Inherently a nonequilibrium and nonlinear phenomenon,
the transient relaxation of glass formers following a tempera-
ture jump has not received the same theoretical attention as
has the temperature dependence of the relaxation time and
the shape of the relaxation function. Narayanaswamy@43#
has proposed a useful theory, reviewed and analyzed recently
by Moynihanet al. @27#, in which the nonlinear relaxation is
described as linear relaxation occurring at a fictive tempera-
ture which, itself, is relaxing in time. The fictive temperature,
which is used in this approach as an economical parametri-
zation of nonequilibrium configurations, is assumed to relax
via the same linear relaxation function. The resulting self-
consistent equations reproduce the nonlinear relaxation func-
tion quite well.

In order to model transient relaxation using the diffusing
defect model we must extend it to include dynamic mecha-
nisms for defect creation and annihilation. Our model is
based on the idea that defect creation or annihilation, like
any other relaxation process, can only take place in the pres-
ence of a defect. From this it follows that defect creation can
only take place at a site already covered by a defect. The
increase in defect numbers following a temperature increase
is assumed to be accomplished within the timetmin by adding
new defects onto randomly selected existing defects until the
new equilibrium defect number is reached. Microscopic re-
versibility requires that a defect can only be destroyed when
a second defect is present. Following a temperature drop,
every such binary encounter is assumed to result in the dis-
appearance of one of the defects involved in the encounter
until the new equilibrium number is reached. A more consis-
tent picture of relaxation would incorporate the continuous
fluctuation of defect numbers. We have as yet carried out
only preliminary calculations for this more general model.

There is a clear kinetic asymmetry of the processes by
which defect numbers change in this model. Note that while
defect numberscan increase rapidly to a new equilibrium
value, their initialspatial distribution is that of the existing
defects and so there will be some delay until the full influ-
ence of this increase is felt by the system. A decrease in
defect numbers, however, is a slower process and becomes
increasingly so as the temperature~and, hence, defect den-
sity! is decreased.

In Fig. 7 we present the relaxation functions obtained im-
mediately following temperature jumps of 5 K~both up and
down! to T5253 K, 233 K, and 203 K for a fragile system
modeled with the ‘‘glycerol’’ parameters. The solid lines are
the constant temperatureTeq relaxation curves, whereas the
dashed lines are due to the temperature jump experiments.
There are a number of interesting features in this figure. For
the lowest temperatureTeq5203 K, we see a distinct asym-
metry between the relaxation functions following positive
and negative temperature changes. Relaxation from the
higher initial temperature (208→203 K! is faster than from
the lower temperature (198→203 K!, a consequence of the
higher initial defect density in the former case. This density
difference and its relatively slow relaxation via pairwise an-

FIG. 6. ~a! The variation ofT1 ~the characteristic temperature of
the fast Arrhenius process! with the fragility parameterm as defined
in Eq. ~15!. ~b! The widthW ~defined in the text! of the relaxation
functionf(t) as a function of the fragility parameterm. The width
W has been scaled by the exponential widthWexp52.661. Note the
nonmonotonic relationship.
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nihilation is clearly seen in Fig. 8. We also note that the
system initially at 198 K exhibits a relaxation almost identi-
cal to that of the equilibrated system at 203 K. This can be
rationalized as a result of the rapidincreasein defect density
permitted by this model. At low defect densities, the main
relaxation mechanism is defect migration. Only a very small
fraction of the system is relaxed within the defects below
tmin . Consequently, as the initially overlapping defects in the
198→203 K system start to disperse, they quickly encounter
sites not already relaxed by other defects and the system
rapidly equilibrates toTeq.

An inversion of this effect is seen as the temperature
T eq is increased. At the highest temperatureTeq5253 K, we
now find that the liquid initially at the lower temperature
(248→253 K! relaxes significantly slower than the equili-
brated liquid, in spite of the fact that the two liquids have
equal defect densities. This is because at high defect densi-
ties, a major portion of the system is relaxed exponentially
by the defects in their initial positions before defect diffusion
takes place. Addition of new defects to the positions of pre-
existing ones in the system initially at 248 K results in a
lesser fraction of the system being relaxed attmin . Due to the
high defect density, relaxation of the whole system is com-
pleted before all the added defects are able to contribute to
the relaxation process. Equilibration of the system cannot be
accomplished before the entire system is relaxed. Hence the
slower relaxation of the initially colder liquid. For the
258→253 K temperature jump, annihilation of defect pairs
occurs extremely fast, due to the high degree of defect over-
lap. As a result of the rapid equilibration, the relaxation
curve of the initially warmer liquid is essentially identical to
that of the equilibrated system.

In summary, for positive temperature jumps
(Tlow→Teq), equilibration becomes slower asTeq is in-
creased. The reverse is true for the negative temperature
jumps (Thigh→T eq). This is due to the increase in defect
density and degree of overlap between defects with increas-
ing T eq. These trends have opposite effects on the relaxation
of the system depending on the sign of the perturbation.

On decreasing the fragility~e.g., increasingT1), we find
relaxation taking place at higher defect densities which is
less sensitive to temperature variation. As a result we ob-
serve a decrease both in the asymmetry of the transient effect
and in the magnitude of the transient variation from the equi-
librium relaxation. In this model, defect density provides the
only system memory of thermal history.

D. Spatial correlations in relaxation kinetics

As indicated in Sec. III, the assumption that relaxation is
restricted to the fast environments implies that relaxation

FIG. 7. The relaxation func-
tionsf(t) for the glycerol system
at three temperatures:Teq5253,
233, and 203 K. For each tempera-
ture, three relaxation functions are
presented with different thermal
histories:~a! follows a temperature
jump DT515 K to the final
Teq, ~b! follows a jumpDT525
K to the final Teq, and the third
corresponds to the system equili-
brated at the temperatureTeq. The
relaxation curves following tem-
perature jumps are given by the
dashed lines, while the relaxation
functions of the equilibrated sys-
tems are shown by the solid lines.

FIG. 8. The change in defect densityDCD for the glycerol sys-
tem following a 5 K temperature jump from the initial temperature
T0 ~198 and 208 K! to the final temperatureTeq ~203 K!. DCD is
scaled by the final defect densityCD(Teq). Notice the slow decay of
CD toCD(Teq) for the system initially at the higher temperature 208
K. For the initially colder liquid, although there is an instantaneous
increase inCD to CD(Teq), the added defects occupy the same
positions as existing defects, and so the full influence of this in-
crease inCD is not felt until all the extra defects have migrated
away from their initial positions.
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must ‘‘propagate’’ out from the initial sites of relaxation.
Such a process is the basis of the diffusing defect model.
This requirement means that spatial correlations between dif-
ferent environments must become stronger as the defect den-
sity decreases. We are unaware of any previous discussion of
this point. In order to quantify this correlation we have moni-
tored the spatial distribution of the relaxation as it proceeds
in time. We imagine that, as each site relaxes, its scattering
cross section changes so that we can ‘‘observe’’ the follow-
ing scattering functionS(qn), defined as

S~qn!5
1

V2E
V
dr1E

V
dr2cos~qnur12r2u!j~r1!j~r2!, ~16!

whereqn52pn/L with n a positive integer,L is the length
of the simulation box, andj(r )512s(r ) is the ‘‘scattering
strength.’’ There is, to our knowledge, no such physical sys-
tem for which relaxation is visible to a scattering process.
S(qn) is used here to simply characterize the various com-
plex 3D distributions of relaxed regions as a function of
time.

In Fig. 9 we have plottedS(qn) for n51 and 2 calculated
for systems with defect densities ofCD50.125%, 1%, and
10%. In order to allow comparison between systems with
different defect densities,S(qn) is determined at specific
fractions of relaxation during the simulation runs. We note,
first, that the scattering intensities are bound to go to zero at
0% and 100% relaxation, simply due to the lack of scattering
contrast. Focusing on the 50% relaxation, we report the strik-
ing observation of the substantial increase in the scattering as
the defect density is decreased. This scattering intensity de-
creases as the wave vector increases. The relaxation process
at high defect densities resembles a random Poisson process
in space and results in little long wavelength scattering. At
lower densities the increased scattering intensities are evi-
dence of a local ‘‘clumping’’ of relaxation about the few
defects present.

VI. DISCUSSION

Central to the usefulness of kinetic inhomogeneities as an
approach to understanding glassy dynamics is the question of
length scales. The general picture analyzed in Sec. III allows
for a range of length scales. The defect model introducestwo
length scales: one small, i.e., the radius of the defect, and one
which varies with temperature, i.e., the average separation
between defects. While unable to produce an absolute esti-
mate of the density of defects, the model does indicate the
variation of this characteristic length scale with temperature.
In the case of the model of glycerol we find that the defect
density changes by four orders of magnitude over the tem-
perature range of 59 K, corresponding to a change in the
average distance between defects by a factor of;20. The
strong liquid would, in this picture, not be expected to de-
velop a cooperative length scale much longer than that of the
static structural correlations over a practical temperature
range.

We have set out to accomplish two things in this paper.
The first is to demonstrate that a wide range of glassy phe-
nomena can be qualitatively accounted for as general conse-
quences of the existence of transient kinetic inhomogene-
ities. These features include the relationship between strong
and fragile behavior, the typical ‘‘two-step’’ relaxation func-
tion, the general correlation between fragility and the width
of the relaxation function and the asymmetry of relaxation
following temperature jumps. The physical picture of an in-
homogeneous distribution of relaxation rates, however, leads
to predictions which go well beyond simply reproducing the
canonical glassy phenomenology. These features described
in Sec. III include the dependence of relaxation rates on sys-
tem size, the connection between the time scale of thea
process and the amplitude of theb process via the volume
fraction of ‘‘fast’’ regions and the different cooperative
length scales in strong and fragile liquids. It is hoped that
these ideas might lead to direct tests of the basic role of
inhomogeneities. Some of these experimental strategies are
discussed in Refs.@22# and @35#.

The second aspect of this study is the presentation of a
simple model representation of structural relaxation via ki-
netic inhomogeneities to serve as a tool to explore these
strategies. We have chosen a generalized version of the dif-
fusing defect model. The model was used to calculate the
susceptibility spectra for fragile and strong liquids, the rela-
tionship between fragility and width of the relaxation pro-
cess, the transient behavior of the relaxation function follow-
ing temperature jumps, and the spatial distribution associated
with the relaxation kinetics. We have demonstrated that the
model presents a simple but quite reasonable representation
of a considerable range of glassy phenomenology and pro-
vides a useful testbed for experimental concepts.
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FIG. 9. Scattering from relaxed regions in the glycerol system as
a function of a fraction of relaxed sites in the system for
CD50.125%, 1%, and 10%. Note the large increase of smallq
scattering with a drop inCD , indicating an increase in spatial cor-
relations with decreasingCD . For a specificCD , the scattering
intensity decreases with an increase inq.
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