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Consequences of kinetic inhomogeneities in glasses
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Many of the physical pictures used to rationalize the phenomenology of glassy dynamics rest upon a
consideration of spatial fluctuations in the relaxation kinetics of the glass-forming liquid. We examine the wide
ranging consequences which flow from assuming the existence of transient kinetic inhomogeneities. These
consequences include: strong and fragile behavior, two-step relaxation processes, nonlinear relaxation follow-
ing temperature jumps, spatially correlated kinetics and non-Gaussian behavior of incoherent processes. These
general predictions are explored in simulations in which relaxation is governed by diffusing defects.
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I. INTRODUCTION simulation) of the relevance of these inhomogeneities to real
glasses.
The theoretical description and experimental characteriza-
tion of the collective dynamics of glass-forming liquids re-
mains the central problem posed by the glassy state. The
ubiquity of glassy dynamics leads us to expect that the major The proposal that glassy relaxation reflects spatial inho-
features of this relaxation can be described without explicitnogeneities has a long history. Glass theories based on the
reference to specific molecular interactions or internal deexistence of a thermodynamic singulari~7] have, either
grees of freedom. In this paper we examine a description oxplicitly or implicitly, accounted for the glassy dynamics in
cooperative dynamics which focuses on the spatial correlg€rms of the kinetics of the clusters of the new phase. In the
tion and dynamics of the transient distribution of local relax-language of kinetic inhomogeneities, such cluster models fo-
ation times in the glass-forming liquid. For a simple modelCUS on the localization of the particles undergoing slow re-
glass|1—4], we have recently demonstrated that a number of2xation. On the other hand, it is the fast regions which con-
characteristic features including non-Arrhenius temperatur§ttute the localized objects in free volurff] and diffusing
dependence of relaxation times, stretched exponential reIaQ—FfeC(; mogells{%—lz]a A nftImeer .Of agthlor$1|3l]3 he:jve exi)
ation, and nonlinear behavior following temperature jump k?éze mg ng: aellcs))r?g \(/)v?th :C;lﬂt:ggfé? rgggnt Ic;rt]ticgurrr?o;élsg
e oranl desse€14) nderine he ol o bcalenonment
dependence of the local relaxation time on local configura stablishing the local dynamics through short range interac-

. ) T : tions. The spatial distribution of relaxation times in such
tions. Their presence igevitablein any system probed on ., 4els is typically a nonlinear and nonlodai time and/or

time scales shorter than the structural relaxation time—a des‘pace function of the local environment fluctuations. The
fining feature of glass experiments. What remains to be esentral role played by inhomogeneous kinetics is made ex-
tablished is whether or not these fluctuations play the samgiicit in “two-fluid” models proposed recently[15-17
central role in the relaxation okal materials as they do in  where the cooperative dynamics is characterized by slow and
the simulated models. fast subpopulations of particles. All these theoretical ap-
Our goal in this paper is to present the wide range ofproaches have focused on different explanations of the dis-
physical consequences which flow from a quite general agtribution of relaxation rates. We argue here that the conse-
sumption concerning the existence of kinetic inhomogeneguences of the spatial inhomogeneities themselitbe
ities. While some of these consequences are already wetlibmmon feature of all the models mentiohédve not been
established in the literature in connection with specific mod{ully explored.
els, we shall argue that many of these features are indepen- The idea of heterogeneous kinetics figures prominently in
dent of the details of the models with which they are associthe physical interpretation of a number of important experi-
ated. This work is motivated by a belief that the recognitionments. Johari and Goldstejt8] invoked localized fast do-
of the central role that kinetic inhomogeneities play in manymains in accounting for the relaxation of intermediate fre-
theoretical models of glassy relaxation is both useful andjuency, processes these authors labele@, aistinguishing
little appreciated. By establishing the generic consequencelem from the long time relaxation. Cavaille, Perez, and
arising from the existence of such transient distribution, weJohari[19] have developed a heterogeneous model of the
would also like to identify explicit test§by experiment or rheology of glasses. The fact that slow and fast relaxation are
associated with different particle subpopulations has been
established for some polymer systems by Spiess and co-
:Electronic address: perer@d@chem.usyd.edu.au workers[20] using an elegant four dimension@D) nuclear
Electronic address: peter@chem.usyd.edu.au magnetic resonand®MR) experiment. Cicerone and Ediger
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[21] have also shown, via selective photobleaching of probeingle characteristic temperature f6r) The following fea-
molecules, that there exists a long-lived distribution of mo-tures arise as consequences of this minimal picture.

bilities in supercooled ortho-terphenyl. This kinetic differen- (1) Strong and fragile behaviorThe overall relaxation
tiation of particles, which persisted for times of the order oftime 7 is given by

the structural relaxation, is termed “heterogeneous relax-

ation.” Sillescu et al. [16] have established the surprising (T)=7(TITYF(T/Ty), 1)
result that the translational diffusion constant of molecular . . . :
probes in ortho-terphenyl apparently decreases more slowlyneref(T/Tr) is proportional to the time scale of the envi-
with decreasing temperature, at large supercooling, than do gnm_ent exchange process and is expected to be a decreasing
the rotational diffusion constant. These authors propose thatnction ofC, approaching one from above @sapproaches
the formation of fast localized aggregates that decay on th@ne- Resqlts Qf both the faCII|tat§d klnetlc Ising moﬂ]_a]
time scale of the structural relaxation time may account fo2"d the d|ffusmg}fjefect modg¢12] indicate thatf (T/Ty) is

this observation. A number of alternative explanations offroportional toC~* wherex>1. The relaxation time is gov-
these measurements have been develpsd 7,23 around  €rned by these two temperatures.T{>T), then, over the
the general idea that translational motion averages over &ccessible time scale$(T/T,) remains at its higher tem-
spatially varying environment quite differently from rota- Perature valudi.e., limr_..f=1) and the temperature de-
tional motion. As a final example, it has been recently Sugpendenc.:e is de_termlned by that of t_he relaxation time in thg
gested[23] that kinetic inhomogeneities are responsible forfast regions. Given that this relaxation takes place, by defi-
the deviation of crystallization kinetics at large supercoolingdition, without the need for any extended cooperativity, we
in lithium disilicate from that described by classical nucle-C€a&n assume that; has an Arrhenius temperature depen-
ation theory. The idea is that nucleation is effectively re-dence. Hence a liquid characterized by the above inequality
stricted to the fast regions. In fragile liquids it is the scarcityWould resemble atrong liquid. Conversely, ifT,<Tj, the

of these regions, rather than the probability of crystalline’€laxation time is dominated by the exchange of the slow and
fluctuations, which comes to dominate the rate of crystafaSt environments which, as a result of the complex extended

formation. correlations in such dynamics, is typically non-Arrhenius.

The paper is organized as follows. In the next section wé/Vé shall regard this as feagile liquid.
describe, qualitatively, the consequences arising from gen- This picture of fragility is of immediate relevance to ex-
eral considerations of the inhomogeneous picture. While th@€fiments in restricted geometries and to computer simula-
results of Sec. Il stand on their own, they give little indica- ions of glasses in general. As the temperature drops and the
tion of the magnitude of the effects described. To examingquilibrium density of fast environments decreases, the aver-
this quantitative question, we present an explicit model offg€ distance between these mobile regions eventually be-
glassy relaxation involving the simulation of relaxation me-comes of the order of the system itself. At this point we
diated by diffusing defects whose waiting times obey an al-eXPect to see in fragile liquidebut not in strong liquidsa
gebraic distribution as described by Shlesinger and MontrolfyStem size dependence of the relaxation time—the signature
[10]. Details of the calculations are provided in Sec. IV. In©f the growth of the cooperative length scale. While this
Sec. V we present the results of the simulations in the fornPPservation is commonplace in studies of lattice models of
of relaxation functions and their scaling, the relationship be91ass formerg1,14,24, we are not aware of any reports of
tween fragility and the stretching of the relaxation, the non-Such a size dependence in simulations of models with con-
linear response following temperature jumps, and the spatidinuous degrees of freedom.

distribution of the kinetic processes in strong and fragile flu- (2) The relaxation function is the sum of the contributions
ids. We conclude with a discussion. from different environmentsCentral to this picture is the

idea that fast and slow dynamics arise from different tran-
sient subpopulations of particles. It follows directly that
Ill. CONSEQUENCES OF KINETIC INHOMOGENEITIES “caging,” defined as the transient localization of individual

hall . . o , particles, is a feature of a subpopulation of the particles only.
We shall consider a bimodal distribution of local environ- The relaxation function has the general form

ments, characterized as “slow” and “fast,” in a dense ma-

terial. Such a picture implieat leasttwo characteristic tem- d(t)=Caos(t/ )+ (1—C) pp(t/7), 2
peratures, one to establish a time scale and another to

determine the distribution of slow and fast environments. Leteflecting the different relaxation processes. Relaxation in
the relaxation time in a fast region be given by the fast region is assumed to be exponentidihough, in
7,=7;(T/T,), whereT is the temperature ant, is the char-  general, this is not necessaryp,(t/7) describes the ex-
acteristic temperature of this fast kinetics. We shall assumehange process throughout the medium and will extend over
that the kinetics of the slow regions is so much slower thara stretched range of time scales. Ehpriori calculation of a

in the fast regions that it does not contribute to relaxationfunction like ¢ (t/7) is an important goal of a glass theory.
Instead, relaxation takes place by the exchange of envirorur aim here is more modest—to identify generic features of
ments between the slow and the fast. This exchange is imhomogeneous relaxation in order to learn more about the
complex process and is the origin of the complex dynamicsnature of the exchange between different local configura-
For simplicity, let C(T/T,) be the volume fraction of fast tions. Such insights would provide us with a deeper physical
regions, a decreasing function ®f with T, the single char- understanding of the origins apy(t/7). The fast fraction
acteristic temperature of this volume fractigfhe following  C establishes the faction of the system relaxed by the short
analysis does not depend crucially on this assumption of ime processes, i.e., tt@mplitudeof the fast relaxation pro-
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cess. In fragile liquidsC also establishes the relaxation time perature jumps of the diffusing defect model, generalized to
for the slow procesgspecific examples of the relationship include defect production and annihilation.
betweenC and 7 are mentioned in poinfl)]. These two The very picture of a long-lived inhomogeneous distribu-
different types of scaling have been explicitly demonstratedion of relaxation times resulting from the equilibrium struc-
for the facilitated kinetic Ising mod¢#] but we are unaware tural fluctuations implies that relaxation involves the cou-
of any other tests of its validity. We shall return to this fea-Pling of modes. Consider the relaxation by diffusion of a
ture in Sec. V. particular Fourier mode of a density fluctuation. Under linear
(3) A positive correlation between stretched relaxationdiffusion, each mode relaxes independently of other density
and fragility. As, in this picture, both stretched relaxation Modes. A spatially dependent diffusion constant, however,

and fragility are characteristic of kinetics dominated by en-COuPIeS the_ _dynamics of mode W.ith different wave Vectors.
'rl'ge possibility that such a coupling could have interesting

vironment exchange processes, the inhomogeneous pictu . i
S - : and observable effects in glasses has been explored in a re-
implies a generally positive correlation between these twoCent study[22]
featur_es._ This correlation is certglnly consistent with the (5) Spatial correlations and characteristic length scales
compilation of data presented by_ Boer et al. [25]. We . of the transient kinetic structurédVe note that, while the
cannotconclude, however, that a linear or, even, monotoniGy,omogeneous picture itself does not specify any particular
relation between any specific measures of stretched relaxs relations between the slow and fast regions, specification
ation and fragility follows as an immediate consequence obf 3 mechanism for exchange between these environments
the inhomogeneous picture. As the fragility increases, sloweyjl| impose certain spatial correlations. If relaxation is re-
components of the environment exchange process begin Wricted to the fast regions then so must this environment
play a significant role in relaxation. The observed width ofexchange. It follows that cooperative relaxation processes
the relaxation process will reflect the subtleties of the parmust proceed by the complex “motion” of fast environ-
ticular sampling of the complex dynamics of the local envi-ments throughout the material. The local relaxation time of a
ronments. In Sec. V, we shall examine the details of thigarticle will then depend on its proximity to a fast region.
correlation between fragility and relaxation in the diffusing The slowest regions, responsible for the long time tail of the
defect model. relaxation process, will tend to be clumped together in those
(4) Nonlinear response and the relaxation of kinetic envi-regions of volume maximally distanced from all fast regions
ronments An important body of data on glassy relaxation is at some initial time. It is interesting that we have arrived at
based on the transient response of various propeftigs, Such a correlation, which resembles that of the cluster mod-
viscosity, heat capacity, thermal expansion coeffigieithe €IS (i.€., localized domains of slow relaxatiorirom a gen-
glass former to temperature jumf26]. A characteristic fea- €ral kinetic argument rather than having to speculate on spe-
ture common to a wide range of fragile glass formers is £ific equilibrium fluctuations. An experiment which could

dependence of the relaxation on the sign and magnitude gesolve the spatial correlations of relaxation times would be
the temperature changsT. The relaxation time, in such able to test for such kinetic structure. No such experiment
systems, is itself relaxing in time—a classic example of scurrently exists. This kinetic structure has been observed in

nonlinear effect. As thermal conductivity is one of the few Simulations of the facilitated kinetic Ising model,3], a 3D

transport coefficients which shows no significant slowing'attice model of a simple liquid31], and in molecular dy-
down near the glass transition, the time dependence of estaB@Mic simulations of a 2D liquifi2].

lishing the new temperature throughout the material can be (6) Non-Gaussian behavior of incoherent processes
neglected. As a result we can assume thatquilibrates to ~ While many fundamental problems remain concerning single
the new temperature instantaneously. The volume fraction djrticle dynamics and stress relaxation in the presence of
fast environment€, however, has to relax to the new equi- uctuating inhomogeneities, we can offer a general observa-
librium value over some finite time scale, and this time scald!on concerning the consequences of kinetic structure. Single
will, of course, depend of€ itself. The lag between the particle motion is expected to exhibit a long-lived non-

actual value ofC and the equilibrium value is a measure of Gaussian character. By way of example, consider a simple

the configurational nonequilibrium during the temperature™0d€l in which each particle starts off in an environment

jump transient. The quantit¢ plays a similar conceptual characterized by a particular diffusion constant and, over

role to the fictive temperature which, in work by Moynihan some time period, eyentually samples all possiblt_a environ-
et al. [27] and Hodge[28], has proven an elegant tool in ments. It can be easily shown that the non-Gaussian param-

correlating linear and nonlinear relaxation. As the nonlinea€t€rA(t) defined as
behavior is described here as arising from the role of the

4
inhomogeneities, we expect strong liquids to show less non- _ 3(Ar(H)7) _ 3)
linearity than fragile liquids. Further we expect relaxation at 5<Ar(t)7)2 '

a temperaturelT following a temperatureincreaseto be

slower than relaxation al following a temperaturede- where (Ar(t)%) is the mean squared displacement and
crease This prediction is a reflection of the different densi- (Ar(t)*) the mean quartic displacement, can only approach
ties of fast regions at the respective initial temperatures. Thigero(and hence Gaussian behayifor times exceeding the
asymmetry in relaxation behavior has been observed experiime scale required for individual particles to sample the
mentally [29] and in simulations of the facilitated kinetic complete distribution of kinetic environments. The decay of
Ising model[30]. In Sec. V we calculate the magnitude of A(t) then, provides us with an upper bound on a “mixing
the asymmetric response of the relaxation following tem-time” similar to that discussed in Ref§20] and[21]. De-
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viations from Gaussian behavior have been observed in simple model of the kinetic consequences of the complex
number of simulations of glass forming syste[8,34. An  dynamics associated with environment exchange.

analysis ofA(t) in terms of kinetic inhomogeneities is pre-  In order to simulate dielectric relaxation, we assign each
sented elsewhel&5]. sitei on the lattice with a state; which can take on one of
two valuesa;=0 or o;=1 depending on whether the site is
IV. SIMULATION OF THE DEEECT DIFEUSION MODEL: in a relaxed or unrelaxed state, respectively. Initially all
BACKGROUND AND COMPUTATIONAL DETAILS o;’s are set to 1, i.e., all sites are in an unrelaxed state. We

assume that the instantaneous relaxation of a site occurs with
The consequences of inhomogeneous relaxation describgaobability
above follow directly from the assumption of kinetic inho-
mogeneities. They are, however, qualitative in nature, pro- p(t)=1—exp(—t/tyn), (6)
viding little in the way of quantitative estimates. To go be- o o . ) )
models. In this spirit, we present simulations of dielectric@ defect with waiting time. Note that the choice gf(t) in -
relaxation governed by diffusing defects. A brief backgroundEd- (6) is equivalent to assuming exponential relaxation
to this model and the details of the calculation are presentedithin a fast region. The time scatg,, is equivalent tor;
in this section. from the previous discussion and so we assume that its tem-
A defect diffusion model of dielectric relaxation was first Perature dependence is Arrhenius, i.e.,
introduced by Glarunf9] in 1960. It was proposed that the
reorientation of a dipole occurred as soon as a defect diffused tmin=Lo€XP(T1 /T). @
to the site of the dipole. Glarum showed that in 1D this
model gave a stretched exponential dielectric relaxation
similar to that seen experimentally. Bordewi6], in 1975,
applied a similar model to relaxation in 3D only to find the -B
long time relaxation decayed via a simple exponential pro- CD:CgeXF{W , (8)
cess. With this failure to model glassy relaxation in 3D, the 0

model languished until Shlesinger and Mont{di0] demon- chosen explicitly so that the model will reasonably mimic the

strated that stretched exponential relaxation could be recoy- o
ered in 3D if the defect motion was characterized by ar\]femperature dependence of a range of fragile liquids over a

. o S restricted temperature range. Wle notmean to imply that

algebraic waiting time distributiofas opposed to the expo- . . . .

A . there is necessarily a nonzero temperature at which mobile
nential distributions assumed by Glarum and Borde)wiik f . il ish. Thi ific f f
subsequent papers, Bendler and Schlesifiga2 applied ast environments will vanish. This specific form comes from
this model to the r(,JbIem of glassy kinetics, drawing heavil Bendler and Shiesing¢t.1]. We note that this temperature

the probi glassy kinetics, Ving ydependence of the generalized Vogel-Fulcher form requires

on asymptotic analysis of the relaxation function. To our

. two characteristic temperatures, as opposed to the single
knowledge, however, the model has not been previousl . ) : :
) . . . sed in the preceding section. The temperature independent
studied by numerical simulation.

0 iy H H
The stimulated system consist of a cubic lattice of dimenprefaetorC_D allows us to_ fit t_he defect den_sny m?o the
sions 10 100X 100 lattice spacings. Each defect occupiesrange avall«_ablg fo our simulations. In the simulations the
a finite spherical volume of radius one lattice spadiagd is defect density is bounded from below as we cannot drop to a

free to move off lattice. Initially the defects are randomly density below one defect in the simulation cell. For the sys-

distributed in the simulation box. The defects are allowed totem size used here that density is”f0defects per lattice

) . . L : site.

jump a fixed length in any direction and are permitted to . . .

overlap one anothdi.e., we neglect any defect-defect inter- f ant}enrelaxatlon of the system is monitored through the
action. The defect concentration, unctio

The choice of the temperature dependence of the defect
toncentratiorCp remains. Here we have set

¢(t):No=l(t)/V1 (9)

whereN,_ is the number of sites for whicty;=1 (i.e., the
whereNp, is the number of defects andis the total number  number of unrelaxed siteandV is defined as abovei(t) is
of lattice sites, remains constant during a simulation run. then the fraction of unrelaxed sites at tirheA relaxation
The waiting time distribution of the defects is given by time 7 is defined as the area undg(t).
In summary, a simulation run consists of spherical, non-
P(t)=atd t 17, (5 interacting, “ghostlike” defects of fixed volume undergoing
an off-lattice random walk. All defects are assigned a waiting
wheret,,;, is the short time cutoff of the distribution and the time according to the distributiof’(t) in Eq. (5). Only
exponenta is selected from the range<Ox<1. It follows  when a defect’s waiting time expires, is it allowed to take a
directly from Eg.(5) that the mean waiting time between jump of fixed length in any direction. Hence the defect with
jumps for a given defect is infinite. This lack of a character-the shortest waiting time jumps first. It is then assigned a
istic time scale associated with the hopping process has réew waiting time and the system is advanced in time to the
sulted in its description as “fractal” and leads to stretchednext jump. Each time a defect overlaps a site, it has a prob-
exponential relaxation. We use the distribution in Eg).in  ability p(t) in Eq. (6) of relaxing that site. The diffusive
this paper(without anya priori justification to provide a motion of the defects is activated only abovtg,. For

CD:ND/V, (4)
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FIG. 1. (a) The susceptibility spectrung”(w) as a function of angular frequenay for a system modeled with “glycerol” parameters
(Sec. V A. The temperatures of the curves from left to right are 199, 203, 208, 213, 223, 233, 243, 253, and 258 K, respectively. The
experimental glass transition temperatdig=193 K [37]. Note the distinct low frequencyaf) peak whose position exhibits a striking
temperature dependence. At higher temperatures, a high frequeh@eék appears with a peak position which shows little variation with
temperature due to the constraint of constagt. (b) The susceptibility spectrum for a system modeled as a “strong liquid” with parameters
as in(a) above, except tha&® T;=300 kJ mol ! andt,,, is now temperature dependent. The temperature of the curves from left to right are
1110, 1200, 1350, 1500, 1700, and 1800 K, respectivigly- 1110 K, the temperature at whiet¥ 100s. Only a single8 peak whose width
decreases with increasing temperature is observed.

t<t.,i,, the system is assumed to relax exponentially accord- , 0
ing to Eq.(6), that is the fraction of relaxed sites is given by X'(0)=w o $(t)cog wt)dt, 1D
1-¢(t)=p(t)Cy O=<t=<t., (10

is presented in Fig. (&) for 199 K <T=<258 K. Each curve
is averaged over ten runs. The experimental glass transition
where C, is the fraction of sites covered by the defects attemperaturel for glycerol is 193 K[37].
t=0. We note the two main features of these curves. The first is
the large low frequency peak, corresponding to éheelax-
ation, with a width roughly twice that of an exponential pro-
V. SIMULATION OF THE DEFECT DIFFUSION cess. The position of this peay,, €xhibits a dramatic de-
MODEL: RESULTS crease with decreasing temperature over a narrow
temperature interval of 59 K. Over this same temperature
range the defect density, changes by four orders of mag-
The defect diffusion model, as presented above, has siitude. The second feature is the high frequency peak, aris-
parameters for which values must be chosenT,, ty, B,  ing from the exponential relaxation within the defects, which
To, andC2 . We begin with a set of parameter values whichshows no temperature dependent shift in peak position
has been selected to loosely model the behavior of glycerotesult of neglecting any temperature variationtgf,). This
i.e., a=0.7, T;=0 K, t;=10"" s, B=1.437%10* K*?,  high frequency peak which emerges &~233 K
To=112.7 K, andC%=2.7334>< 10°. By settingT, to zero  (Cp=5.16%) does, however, display a rapid increase in its
we ensure that the relaxation will be governed by the kineticeamplitude with increasing temperature. This is a reflection of
of defect migration. The resulting frequency dependent disthe increasing contribution of the exponential relaxation be-
sipative component of the generalized susceptibjityw), low t,,, to the global relaxation of the system with increas-
which is related to the relaxation functigf(t) by ing defect density. We shall refer to this peak as ghpeak,

A. Relaxation and scaling in strong and fragile liquids
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FIG. 2. (a) The positionw s Of the « peak in Fig. 1a) for the  saturation of the system by fast environments. This dual scal-
glycerol system as a function of inverse temperature in an Arrhening role played byC (or Cp), in establishing both the time
ius plot. The experimental results from Davidson and Co8&, scale of the slowest relaxatijsee Eq(12)] and the ampli-
and McDuffie and Litovitz[39] have been converted to angular tude of the fastest relaxatidisee Fig. 4, presents some in-
frequencies. Notice the non-Arrhenius temperature dependence tdéresting possibilities. It is possible that a scaling relationship
wma for glycerol. (b) The positionw ., of the 8 peak in Fig. 1b)  exists betweenv ., and the 8 peak height. We have not
for the strong liquid as a function of inverse temperature. The pealpeen able to test this prediction in our simulations, however,
?‘;Sitior;_d”(l)_w V_ariesl_ with an A”he”iuhs teﬁper:a“ge dep_e”degzeas there is only a limited range of temperatures over which

e solid line Is a linear regression throu the data points. i
slope of this line yields an geffective activgtion energy F:)f 300 kJ%mE§Z$p}2:BOF ?ﬁg Qﬁ]%r;;t(;%nrggga?g;n ﬁf:]scl:ir;gt') for
mol %, consistent with our choice df;. glycerol at four different temperatures are shown in Fig. 5. A
Kohlrausch-Williams-Watt$KWW) [40] stretched exponen-

in keeping with the original definition of a similar feature by tial function of the form

Johari[18]. Above T=253 K (Cp~50%), it becomes the
dominant peak.

In Fig. 2(a) we present the temperature dependence of the 1. —— ey ;
a peak positionw 5, in an Arrhenius plot. Also included are
the dielectric relaxation times from Davidson and C(38]
and McDuffe and Litovit4d 39] which have been converted to 08 [ ]
angular frequencies. The agreement between the experimen-
tal results and the model is a direct consequence of our
choice for the temperature dependence of the defect density o6 L ]
in Eg. (8). ’

09 f 3

07 .

. . Cc : ]

The connection between,,,,, and C is demonstrated ex- 05 ¢ ]
plicitly in Fig. 3 where we find the power law relation 04 [ ]
wmaxxcl'sg- (12 0.3 _ ]

0.2 : ]

Both the facilitated kinetic Ising modéll] and the defect
diffusing model of Bendler and Shlesinggt2] exhibit a 01| &
power law relation as well, but with different exponents. Fol-

0.0 L ) 1 1 L n X 1 L A n L 1
0.3 0.4 0.5

lowing on from the discussion in poi2) of Sec. Ill, we can 0.0 0.1 0.2

test whether the amplitude of th@ peak is proportional to B peak height

the volume fraction of fast environments. Due to the overlap

of defects, this volume fractio@ is a nonlinear function of FIG. 4. The relationship between th@ peak height and the
the defect densitfCp . In Fig. 4 we plotC (calculated di-  “fast’ volume fraction C of the glycerol system. Note the approxi-

rectly from the simulated systemagainst theB peak height mate linearity for all but the highest temperatur€s—1) where
and find a reasonably linear relationship until we approachhe system approaches saturation by the mobile regions.
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06 i FIG. 5. The relaxation function
o(t) ) ¢(t) (solid line) for the glycerol
I ) system at four different tempera-
04 B tures. The “kinks” appearing in
; the high temperatur€23 and 233
0.2 L K) curves at=t,,, are due to the
abrupt change in the relaxation
! mechanism at,,;,. Below t,,
0.0 R S, ' relaxation occurs exponentially
N 233K within the defects but aboviy,,
08 L relaxation is governed solely by
defect diffusion. The KWW
(dashed lingand VS(dotted ling
06 B fits to ¢(t) are compiled in Table
¢(t) r I. The KWW function provides a
0.4 - \ good fit to the relaxation curves
; abovet i,, whereas the VS law is
0.2 L a reasonable fit only for the initial
’ part of thea relaxation.
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10° 10" 10 10" 10 10" 10 10" 10" 10 10" 10" 10 10 10 10° 10
t/1 t/t
d(t)=A exd — (t/eaw)¥]  0<y=1, (13)  at which 7=100 s, a characteristic relaxation temperature

which is often quoted in the literatuf@5]. This corresponds
provides a good fit tap(t) for times greater thaty,,. The t0T;=1110 K and is comparable to the glass transition tem-
initial region of thea part of the relaxation can also be fitted peratures of network glasses such as SiGeO,, and

reasonably well by a von SchweidlevS) law [41] NaAISiOg [42]. The resulting susceptibility curves are plot-
ted in Fig. Xb) for 1110 K<T=<1800 K. Now we find only
B(t)=f—h(t/7ys)® 0<b<1, (14 ap peak whose width decreases with increasing temperature.

The B peak position varies with an Arrhenius temperature
where f is the Debye-Waller or nonergodicity factor and dependence as illustrated in Figb® with an effective acti-
h~1 is a temperature dependent material constant. We sghtion energy of 300 kJ mol* which coincides with our
f=1 and tabulate in Table | the KWW and VS fits to the choice of T;. This implies that a majority of sites in the
relaxation functions in Fig. 5. system are relaxed exponentially within the defects below

The analysis of Sec. Ill suggests that we can generate g,. Over this temperature range of 690 K the defect density
strong liquid simply by increasing;, the characteristic tem- varies by only 28% in contrast to the four orders of magni-
perature of the “fast” relaxation time. To demonstrate tude variation seen in the fragile liquid over a 59 K interval.
this feature of the inhomogeneous picture we have sefhe relaxation curves are nearly exponential and the time-
RT;=300 kJ mol"* (R is the gas constanwhile leaving all  temperature superposition is obeyed over the whole time
the other parameters at their “glycerol” values, except thatrange above,y,.
to=3.7154<10 ¥ s andC3=1. The glass transition tem-
perature for the strong liquid is chosen to be the temperature

B. On the relation between fragility and stretched relaxation

TABLE I. KWW: ¢yww(t) =A exd —(t/7xww)”] and von Sch-
weidler (VS): ¢ys(t)=1—(t/7ys)P fits to the relaxation function
¢(t) for the “glycerol” system at four temperatures as shown i

A general correlation has long been noted between the
magnitude of the deviation of the relaxation time away from
"an Arrhenius temperature dependerittee so-called fragil-

Flg. 5. ity) and the degree of “stretching” of the relaxation process
KWW VS away from a single exponential forf25,28. Here we ex-
TIK A ; ; b amine this correlation in the context of the diffusing defect
Kww Y vs model. To avoid the vagrancies of nonlinear curve fitting, we
199 1.00 0.496 0.69 0.665 0.65 measure the degree of “stretching” of the relaxation by the
213 0.99 2.04510°% 067 3.59%10° 0.56 interval W in logqo(t/s) betweend¢(t;)=0.01 and¢(t,)
223 097 1.02%10% 063 2.03X10% 050 =0.99 at the temperature at whieh=100 s, i.e.,W=Ilog

233 0.97 813%10°% 058 1.87k10° 0.44 1o(t1/t5). This width W, ,=2.661 for an exponential func-
tion and is broader in the case of stretched exponential re-




54 CONSEQUENCES OF KINETIC INHOMOGENEITIESN. . . 1659

500 ——— ‘ : e broader overall susceptibility curve. This feature is still un-
a) der study.
400 + 4
'Tg 300 8 C. Transient relaxation following temperature jumps
2 o0l | Inherently a nonequilibrium and nonlinear phenomenon,
e the transient relaxation of glass formers following a tempera-
rs

ture jump has not received the same theoretical attention as
has the temperature dependence of the relaxation time and
the shape of the relaxation function. Narayanaswd4#As]

has proposed a useful theory, reviewed and analyzed recently
20 S —— : : by Moynihanet al.[27], in which the nonlinear relaxation is
described as linear relaxation occurring at a fictive tempera-
. ture which, itself, is relaxing in time. The fictive temperature,
which is used in this approach as an economical parametri-
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g1er . zation of nonequilibrium configurations, is assumed to relax
E via the same linear relaxation function. The resulting self-
z M consistent equations reproduce the nonlinear relaxation func-
. ] tion quite well.

In order to model transient relaxation using the diffusing
‘ ‘ defect model we must extend it to include dynamic mecha-
214 6 8 20 2 24 26 28 nisms for defect creation and annihilation. Our model is
based on the idea that defect creation or annihilation, like
any other relaxation process, can only take place in the pres-
FIG. 6. (a) The variation ofT; (the characteristic temperature of ence of a defect. From this it follows that defect creation can
the fast Arrhenius procepwith the fragility parametem as defined only take place at a site already covered by a defect. The
in Eq. (19). (b) The widthW (defined in the tejtof the relaxation  jncrease in defect numbers following a temperature increase
function ¢(t) as a function of the fragility _parametm. The width is assumed to be accomplished within the tmﬁ by addlng
W has been scaled by the exponential wity,=2.661. Note the o\ defects onto randomly selected existing defects until the
nonmonotonic refationship. new equilibrium defect number is reached. Microscopic re-
) versibility requires that a defect can only be destroyed when
laxation. With regards to fragility, we shall follow Boner 3 second defect is present. Following a temperature drop,

et al.[25] and define a fragility parameten such that every such binary encounter is assumed to result in the dis-
appearance of one of the defects involved in the encounter

_ d 10g30( 7) (15) until the new equilibrium number is reached. A more consis-

ATylT) T:Tg’ tent picture of relaxation would incorporate the continuous

fluctuation of defect numbers. We have as yet carried out

only preliminary calculations for this more general model.
also evaluated at the temperature at whieh100 s. Follow- There is a clear kinetic asymmetry of the processes by
ing the discussion in Sec. Ill, we shall adjust the fragility of which defect numbers change in this model. Note that while
the model by varyingT,, the characteristic temperature of defect numberscan increase rapidly to a new equilibrium
the fast Arrhenius process, while leaving the parametergalue, their initialspatial distribution is that of the existing
which determine the temperature dependence of the defedefects and so there will be some delay until the full influ-
density unchanged at the values given above. The effect ance of this increase is felt by the system. A decrease in
increasingT; is to increase the simulatél, and hence re- defect numbers, however, is a slower process and becomes

ducem. increasingly so as the temperatuend, hence, defect den-
The relationship betweeh, and the fragilitym is shown  sity) is decreased.
in Fig. 6(@ and the variation of the widtkV with the fragil- In Fig. 7 we present the relaxation functions obtained im-

ity m is plotted in Fig. 6b). As expectedW is a generally mediately following temperature jumps of 5 ®oth up and
increasing function ofn, but this dependence is not mono- down) to T=253 K, 233 K, and 203 K for a fragile system
tonic. The origin of this behavior appears to lie in the detailsmodeled with the “glycerol” parameters. The solid lines are
of the defect dynamics applied here. As the defect density ithe constant temperatuiie, relaxation curves, whereas the
decreased, increasingly slower aspéltsger waiting times  dashed lines are due to the temperature jump experiments.
of the defect dynamics begin to play a significant role in theThere are a number of interesting features in this figure. For
relaxation which result in an increase iW. Below the lowest temperaturé,,;=203 K, we see a distinct asym-
Cp~0.5%, however, there is an effective narrowing of themetry between the relaxation functions following positive
relaxation time distribution associated with some intermedi-and negative temperature changes. Relaxation from the
ate time scale feature of the defect motions. This increase ihigher initial temperature (208203 K) is faster than from

W with increasingCp at low defect densities is not well the lower temperature (198203 K), a consequence of the
understood but could be connected to the initial appearandgigher initial defect density in the former case. This density
of the B8 peak in the susceptibility spectrum which leads to adifference and its relatively slow relaxation via pairwise an-



1660 DONNA N. PERERA AND PETER HARROWELL 54

1.0 ey T
FIG. 7. The relaxation func-
0 i tions ¢(t) for the glycerol system
0.8 l at three temperaturesT = 253,
233, and 203 K. For each tempera-
] ture, three relaxation functions are
06 - 4 presented with different thermal
1 histories:(a) follows a temperature
¢(t) J jump AT=+5 K to the final
T, =253K Teq» (b) follows a jumpAT=-5
04 1= | 15) 958 > 253K 7 K to the final Teq, and the third
1b) 248 — 253K 1 corresponds to the system equili-
2)T,=233K brated at the temperatufie,. The
o2 | | BBEIHK ] relaxation curves following tem-
3)T, =203K perature jumps are given by the
3a) 208 — 203K dashed lines, while the relaxation
3b) 198 — 203K 8 functions of the equilibrated sys-
L tems are shown by the solid lines.
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nihilation is clearly seen in Fig. 8. We also note that the On decreasing the fragilit{e.g., increasind,), we find
system initially at 198 K exhibits a relaxation almost identi- relaxation taking place at higher defect densities which is
cal to that of the equilibrated system at 203 K. This can bdess sensitive to temperature variation. As a result we ob-
rationalized as a result of the rapittreasein defect density serve a decrease both in the asymmetry of the transient effect
permitted by this model. At low defect densities, the mainand in the magnitude of the transient variation from the equi-
relaxation mechanism is defect migration. Only a very smallibrium relaxation. In this model, defect density provides the
fraction of the system is relaxed within the defects belowonly system memory of thermal history.
tmin- Consequently, as the initially overlapping defects in the
198203 K system start to disperse, they quickly encounter D. Spatial correlations in relaxation kinetics
sites not already relaxed by other defects and the system
rapidly equilibrates tal ¢

An inversion of this effect is seen as the temperatur
T ¢qis increased. At the highest temperatligg=253 K, we
now find that the liquid initially at the lower temperature

As indicated in Sec. lll, the assumption that relaxation is
erestricted to the fast environments implies that relaxation

(248—253 K) relaxes significantly slower than the equili- 20 ' ' '

brated liquid, in spite of the fact that the two liquids have 25 f —— 208 5 203K 4
equal defect densities. This is because at high defect densi- — 198-5203K
ties, a major portion of the system is relaxed exponentially g" 20 ]
by the defects in their initial positions before defect diffusion ST ]
takes place. Addition of new defects to the positions of pre- 7

existing ones in the system initially at 248 K results ina  * '0f 1
Igsser fraction of Fhe system being relaxed,at. Due to'the < ost ATL = 5K 1
high defect density, relaxation of the whole system is com- &

pleted before all the added defects are able to contribute to 1 00

the relaxation process. Equilibration of the system cannot be & ATT = 5K
accomplished before the entire system is relaxed. Hence the S sy

slower relaxation of the initially colder liquid. For the -1.0 : YT >
258—253 K temperature jump, annihilation of defect pairs 0000~ 0.005 0. t'(s)‘r’ 020 0.025  0.080
occurs extremely fast, due to the high degree of defect over-

lap. As a retSl.Jl.t of the rap|_d qujllllbratlon., the rela'lxatlon FIG. 8. The change in defect densiyC, for the glycerol sys-
curve of the Ianlglly warmer liquid is essentially identical to tem following a 5 Ktemperature jump from the initial temperature
that of the equilibrated system_._ . To (198 and 208 Kto the final temperatur@., (203 K). ACp, is

In summary, for positive temperature  jUMPS gcyieq by the final defect densiBp(Te,). Notice the slow decay of
(Tiow—Teg), equilibration becomes slower &Beq is in- ¢ o Cp(Teg for the system initially at the higher temperature 208
creased. The reverse is true for the negative temperatuie ror the initially colder liquid, although there is an instantaneous
jumps (Thigh— T eg). This is due to the increase in defect increase inCp to Cp(T,y), the added defects occupy the same
density and degree of overlap between defects with increagositions as existing defects, and so the full influence of this in-
ing T ¢q- These trends have opposite effects on the relaxatiodrease inCy, is not felt until all the extra defects have migrated

of the system depending on the sign of the perturbation. away from their initial positions.
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00N VI. DISCUSSION
0C,=0.125%
ootz | Flezl Central to the usefulness of kinetic inhomogeneities as an
) approach to understanding glassy dynamics is the question of
] length scales. The general picture analyzed in Sec. Il allows
for a range of length scales. The defect model introdtwes
length scales: one small, i.e., the radius of the defect, and one
which varies with temperature, i.e., the average separation
between defects. While unable to produce an absolute esti-
mate of the density of defects, the model does indicate the
variation of this characteristic length scale with temperature.
In the case of the model of glycerol we find that the defect
1 density changes by four orders of magnitude over the tem-
perature range of 59 K, corresponding to a change in the
0002 00 01 02 03 04 05 06 07 08 08 10 1.1 average distance between defects by a factor-@D. The
fraction of relaxed sites strong liquid would, in this picture, not be expected to de-
velop a cooperative length scale much longer than that of the
FIG. 9. Scattering from relaxed regions in the glycerol system astatic structural correlations over a practical temperature
a function of a fraction of relaxed sites i_n the system for range.
Cp=0.125%, 1%, and 10%. Note the large increase of small —\yo paye set out to accomplish two things in this paper.
scatt_enng Wlth a drop |_rti:D, indicating an increase in spatlalncor- The first is to demonstrate that a wide range of glassy phe-
relations with decreasin@€p. For a specificCy, the scattering oL
intensity decreases with an increasegin nomena can be quglltatlvely accounted fqr as general conse-
guences of the existence of transient kinetic inhomogene-
ities. These features include the relationship between strong

must “propagate” out from the initial sites of relaxation. ; . o . .
Such a process is the basis of the diffusing defect modeﬁ_md fragile behavior, the typical “two-step” relaxation func-

This requirement means that spatial correlations between difion. the general correlation between fragility and the width
ferent environments must become stronger as the defect deff the relaxation function and the asymmetry of relaxation
sity decreases. We are unaware of any previous discussion tllowing temperature jumps. The physical picture of an in-
this point. In order to quantify this correlation we have moni- homogeneous distribution of relaxation rates, however, leads
tored the spatial distribution of the relaxation as it proceed$0 predictions which go well beyond simply reproducing the
in time. We imagine that, as each site relaxes, its scatteringanonical glassy phenomenology. These features described
cross section changes so that we can “observe” the followin Sec. Il include the dependence of relaxation rates on sys-
ing scattering functiors(q,), defined as tem size, the connection between the time scale ofdhe
1 process and the amplitude of tiieprocess via the volume
_ _ fraction of “fast” regions and the different cooperative
S VTJVdrljvdrzcos{qnhl e, (19 length scales in strong and fragile liquids. It is hoped that
these ideas might lead to direct tests of the basic role of

whereq,=2=n/L with n a positive integerl. is the length  inhomogeneities. Some of these experimental strategies are
of the simulation box, ang(r)=1—o(r) is the “scattering discussed in Ref¢22] and[35].
strength.” There is, to our knowledge, no such physical sys- The second aspect of this study is the presentation of a
tem for whichrelaxationis visible to a scattering process. simple model representation of structural relaxation via ki-
S(gp) is used here to simply characterize the various comnetic inhomogeneities to serve as a tool to explore these
plex 3D distributions of relaxed regions as a function ofstrategies. We have chosen a generalized version of the dif-
time. fusing defect model. The model was used to calculate the
In Fig. 9 we have plotte®(q,) for n=1 and 2 calculated susceptibility spectra for fragile and strong liquids, the rela-
for systems with defect densities Gf; =0.125%, 1%, and tionship between fragility and width of the relaxation pro-
10%. In order to allow comparison between systems withcess, the transient behavior of the relaxation function follow-
different defect densities$(q,) is determined at specific ing temperature jumps, and the spatial distribution associated
fractions of relaxation during the simulation runs. We note,yith the relaxation kinetics. We have demonstrated that the
first, that the scattering intensities are bound to go to zero ghodel presents a simple but quite reasonable representation

0% and 100% relaxation, Slmply due to the lack of Scattering)f a considerable range of g|assy phenomen0|ogy and pro-
contrast. Focusing on the 50% relaxation, we report the strikyides a useful testbed for experimental concepts.

ing observation of the substantial increase in the scattering as

the defect density is decreased. This scattering intensity de-

creases as the wave vector increases. The rela>_<at|on process ACKNOWLEDGMENTS
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