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The radial distribution of the end-to-end displacement of linear stiff chains embedded on a discrete lattice
shows a peculiar character that some peaks appear at different places in a certain limit. This limit imposes both
the stiffness and length of the chain to be infinite while their product, as duely defined, is being constant. We
model the chain as the persistent random w&RW) and obtain the distribution functions by Monte Carlo
simulations on square, cubic, and diamond lattices. Explanations on why the peaks occur at particular places
depending on the type of lattice are given with detailed calculations for the height of peaks in the case of the
square and simple cubic lattices. For the completeness we present the results for two types of the randomly
broken chain model$RBC-I and -l)), i.e., off-lattice versions for the stiff chain, obtained from much more
extensive simulations than those previously repoift8d063-651X96)01408-0

PACS numbds): 05.40:+j, 05.50+q, 64.60.Fr

[. INTRODUCTION radial distribution approaches to & function peaked at
R=N, and the Gaussian regime correspondingNtp> 1

The stiffness of a linear polymer in equilibrium is usually with a Gaussian radial distribution. These behaviors are
determined by the competing effect of the energetics begqualitatively unchanged in three or higher dimensions even
tween isomeric states and the thermal endrhy3]. If an  in the presence of the excluded-volume effigo—11.
isomeric state is such that the chemical bond of an added It has been found that, in the crossover regime where
monomer favors a particular local orientation more than othNp is of the order of unity, the distribution function has
ers, the chain tends to grow “straight[For real polymers peculiar jumps and peakisl2,13,11. We note that such
like polyethylene having a zigzag structure of spinal carborjumps and peaks appear on different places depending on the
atoms or like polyisocyanatd4,5] and DNA’s having the types of lattices on which the model is embedded. Unfortu-
helicity, the straightness should be viewed in a scale largenately, the full knowledge of the cause of such jumps and
than individual monomergThe straight part of the chain is peaks has not been revealed up to date, as far as we know.
termed a segment and the mean length of the segment the In this paper, we present the full explanations of why such
persistence lengttHence the stiffer the chain, the longer its peaks occur at particular places. We present the detailed cal-
persistence length and it becomes rodlike if the degree ofulations for the height of peaks in the case of squage
polymerization is low enough. For theoretical treatment andand simple cubigso lattices and for the exact positions of
computer simulation of stiff linear chains embedded on dissuch peaks for body-centered culfiixc), face-centered cu-
crete lattices, one can adopt the persistent random walkic (fcc), and diamond lattices. We also present the results
(PRW) model [6,7]: the first step starting at the origin is for two types of off-lattice versions of stiff chain, termed the
made to any of the nearest neighbor sites with an equal prolsandomly broken chain mod€RBC-I and Il), obtained from
ability but all the subsequent steps are made either in thextensive Monte Carlo calculations. It should, however, be
same direction as the preceding one with probabilitygdl  noticed that although we limit our work only on the positions
(transsteps or in one of the other directions with probability and the heights of the peaks, a qualitative investigation of the
p divided by the number of such directiofgauchestep3,  widths of such peaks and heights is also a necessary part of
with the backtracking being always precludddhe step the work for the full knowledge of the peaks.
size, i.e., the lattice constant is set to b¢ 1. The probability density distribution of end-to-end dis-

Thus, in the framework of the PRW model, the gaucheplacement of theN-step PRW can be expressed as
probability p is the only parameter that controls the stiffness

represented by, e.g., the persistence Ierigt.thp*l or the N-1 p\!
mean number of segmensp+ 1 in N-step walks. An ana- Wy(r)== >, gN(t,r)(—> (1—p)N- 17, 2
lytic expression of the mean squared end-to-end distance of Zi=0 z-2

the PRW is known, which reduces to
(R?)=2(e”NP+Np—1)/p? in the so-called stiff limif7-9]  where z is the coordination number of the lattice and
on(t,r) is the number oN-step walks witht gauche steps
p—0, N-—o, Np= const. (1) whose end-to-end displacementris We define the radial
distribution or the probability density function as a continu-
Two kinds of limiting behaviors can easily be picked up, thatous histogram of widtAR= N/A, A being an integer, cen-
is, the rodlike regime corresponding tddp<1 where the tered atr=R=nAR (n=0,1,2... A)
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We choosep=0.01 andN=A=500 (AR=1) in the follow- o0z
ing discussions since these parameters well meet both con- 0.009 +

ditions for the crossover regime and the stiff lirfil) on the
computational efficiency.

In Sec. I, the structures d?y(R) for sc and sq lattices 0.003 +
are analyzed, focusing on the positions of the peaks and
jumps, and a detailed calculation is performed for the height
of the peaks. In Sec. lll, we present the results for the bcc,
fcc, and diamond lattices in a similar vein. Section IV con-
tains the results for two off-lattice versions of stiff chains
obtained from much more extensive simulations than those
previously reported. Section V is devoted to the summary
and concluding remarks.

0.006 +

0.000

II. RESULTS FOR SIMPLE CUBIC
AND SQUARE LATTICES

In Fig. 1(a), we present the radial distributions of the
PRW's on sc(solid line) and sq latticegdotted ling ob-
tained from 1< 10° walks generated for each lattice by
Monte Carlo simulations. The ordinafeis scaled byN, i.e.,
by the fully stretched length, to indicate that the shape of the (b) (c)
curve is identical for the samip in the stiff limit (1). We
note that there are two peaks Rt=N and N/+2 for both
lattices and a jump @& =N/+/3 for the sc lattice only. This FIG. 1. (a) Radial distributions of thé-step persistent random
feature remains unchanged if the valueNy varies within ~ walks (PRW’s) on squargdotted ling and simple cubi¢solid line)
the same order of magnitude, i.e., in the crossover regime.lattices. 10<10° samples were generated by Monte Carlo simula-

The peak atR=N can easily be understodd2,13,1] tion for each lattice and the histograms of interdedR=1 were

considering that the probability for the walks of all trans obtained with statistical fluctuations less than or comparable to the
steps is finite by Eq.(2) in limit (1), which is local jagged structure of each curve. The crosy (indicates the
e NP~0.0067 f0rp=0.01'andN=500. ' boundary edge contribution and the circl@) the boundary plane

The peak aR=Ry= N/\/E, on the other hand, turns out cor_ltrlbutlon.(b) The boundary square on a square Iattl_ce beyond
~ ... which anN-step walk cannot reachR, is the (shortest distance
to be due to a group of walks whose steps are made in eith

. . . ?lrom the origin to a side(c) The octahedron on a simple cubic
of two mutually perpendicular directiorjg.g., +x and +y lattice beyond which alN-step walk cannot reacliR; (not shown

directions in Fig. 1b)]. Theseplanar. walks end up at a is the distance from the origin to a face. Note tRgt= N/\/f and
boundary edge of the set of lattice points that\astep PRW Ry =N/13.

can reach with a nonzero probability aRg is the shortest

distance from the origin to the edd@see Fig. 1b)]. Figure  jis distance increases, which must cooperate for the sharp-
2(a) shows the edge and some walks whose steps are maggss of the peak.

either in+x or +y direction. As the radius increases passing  QOne can estimate the height of the peak assuming that it is
Ry, these walks start to contribute to the distribution func-getermined by the contribution of edge points in “shell 1.”
tion: the first contribution comes from the walks that end atthe height of the peakip can be formally written as

the points in “shell 1,” second from those in “shell 2,” and

so on. Although the number of points to be reached with a 2(z—2) N-1
nonzero probability in “shell 1" is smaller than those in Hp= E 2 Pi(r), (4)
“shell 0" (the inner shell of shell)] the new contribution of 2 1y 1

these edge points is large enough to result in a sudden in-
crease in the distribution function thereat because the edgehereP,(r) is the probability for arN-step PRW to reach
points are reached with smaller number of turns, hence, with by makingt turns (gauche stepsand the first summation
higher probabilities. is over all edge points in “shell 1.” The factar(z—2)/2
The main reason why the peak is so sharp is that theomes from that there are that number of equivalent bound-
length of the edge that subsequent shells contain rapidly dexy edges(“equivalent” in the sense of symmetyylf we
creases as their radius increases. For example, one can chegkroximateP,(r) by P;(Pg) substitutingr with a represen-
that the portion of the edge in “shell 2"R;P,) is only tative pointP, then the first summation in E¢4) reduces
about 40% of that in “shell 1" PoP,) for large A. More-  to mnW,, wherem=(22/A)¥*N is the number of points
over the number of ways to reach an edge point decreases isthe edgeP,P;, n, the number of ways to reach the point
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FIG. 2. (a) A diagram for explaining the boundary edge contri-
bution. The probability for ailN-step PRW to reach lattice points on

P,P; falling in “shell 1" is responsible for the peakX) in Fig.

1(a). PathOBCDP, is an example of a three-turn PRW to reach

the representative poinP,. (b) A diagram for explaining the
boundary plane contribution. The probability for Ahstep PRW
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Having higher order terms, one may find thé is written
as a power series ok=Np/(z—2) and x>1 from our
choice of Np=5 which makes the power series appear ill
defined. However, we believe that the series does converge
due to the numerical factor in the denominator in each term.
Estimated from Eq(6) are 0.55< 102 for the sc lattice and
1.37X10 2 for the sq lattice and we see that these values
agree reasonably well with the Monte Carlo data in Figy.1
We note another interesting feature of the radial distribu-
tion, a jump occurring aR;=N/+/3 for the sc lattice which
is absent for the sq lattice. We identifyy as the distance
from the origin to the octahedral planes forming the bound-
ary beyond which theéN-step PRW cannot readisee Fig.
1(c)]. If a walk consists of steps made in either of the three
mutually perpendicular directions, it will end up at a point on
a boundary octahedral plane. Figuréh)2shows the plane
cutting through+x, +y, and+z axes each atl, two con-

ending on each lattice point inside the “shell 1" is responsible for Secutive shells of thicknesAR, and the intersections be-

the jump ©) in Fig. 1(a). The representative poi is the contact

tween the plane and shells, i.e., the contact pQirfdietween

point between the inner surface of shell 1 and the octahedral facdhe plane and the inner surface of shell 1, and the intersection

Py, andW,=z [ p/(z—2)]'(1—p)N "1 the weighting for

circlesC; and C, between the plane and the outer surfaces
of shells 1 and 2, respectively. Thus, as the end-to-end dis-

any path toP, with t gauche steps. Moreover because of thefance increases passifig=R;, walks terminating at the

symmetryn, can be written as 2 , n{ being such that the
first step is predetermined along, e.¢x direction as in Fig.
2(a). Thus Eq.(4) can be recast as

2\/5 N-1

1/2 p
HPN(T) Nptzzl Ny

t—1
ﬁ) (1-p)Ntt (5

Here n; is equal to the number of ways to choose 1
turning points, e.g., the poin® and C in Fig. 2(a) for the
path OBCDP, for t=3 (note that the last poinD is
uniquely determined by the preceding two pojn¥/e obtain
up tot=5

n;=1,

boundary planes start to contribute to the distribution func-
tion, producing a sudden jump thereat.

For the same reason as discussed for the pe&<R,),
the height of the jump can be considered coming dominantly
from the probability of the walk to reach the points inside the
circle C,. We note that the peak introduced by this jump is
not so sharp as the oneRt=R,,. This is because the number
of points of boundary plane contained in the subsequent
shells varies little(in fact, it increases very slowlyas the
radius of the shell increases and distant points are only en-
tropically less favorable. In a manner similar to E4), we
write the height of the jump; as

_z(z— 2)(z—4)

J— 31 Pt(r)a

rinCy t=1

)
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where the factor before the summations is the number of C D
equivalent polyhedral planes for general hypercubic lattices Y J
and the first sum runs over all end points inside the circle
C,. We approximate this equation by replacindpy a rep- K y
resentative poin@Q, reducing the first summation ton,W, b3\ b“//A
as for the peak aR,, where in this casen=27N?/3A. Tl -7 2/
Again by symmetryn, can be written as , n/ being the T\
number of ways to reach the poi@t by makingt turns with ,z;f’o‘\ by~
directions of the first step and first turn predetermined along —» B
+x and +vy, respectively. Thus Eq7) can be recast as
74\ 20 N—1 {2 \ 2/3
T e e S [ IR / ‘
®) 213
. - (a)
We obtain, up ta=5,
n,=1, P(R)
0.007 T
,_< 1 ><2~2N 0.006 bee ox
Il '
0.005 -
, (N2 4N?
n4—<§—1 ><4~T, 0.004 -
0.003 -
N3 MEPUN N 13N3
né=5(§—1 +3 le (5_1_)()(5_1)%?' 0.002 -
0.001 -
which, when substituted in E@8), give in the stiff limit (1)
0.000

z-4\2m 0 3 & E 1
Hy= ﬁ)s—AWp) e R/N
2Np  4(Np)?  13(Np)® (b)
x|t 3(2—2)+9(z—2)2+54(z—2)3}' ©

FIG. 3. (a) A unit cube of the bcc lattice centered at the origin
We found that the estimate for the sc lattice xU® 3  with coordination vector$, . The end points oN-step PRW's on
amounts to about 70% of the Monte Carlo result in Fig) 1 the bcc lattice constitutes a cube of side (2) N. (b) As Fig. 1(@)
but approaches more than 90% for the four-dimensional hyfor the PRW on the bcc lattice.
percubic lattice(not shown.

jumps and find distances from the origin to the correspond-
Ill. RESULTS FOR BCC, FCC, AND DIAMOND LATTICES ing edges and planes.

In thi . determi v th ¢ i ; In Fig. 3(@), a unit cube of the bcc lattice is shown with
n this section we determine only the exact positions Ol .+ rdination vectors, out of a total of eight, indicated by
peaks and jumps appearing on the bcc, fcc, and dlamonﬁ?

. . : . . Since the lattice constant is chosen to be unity the length
lattices, employing essentially the same arguments as givell' - ch edae is 2/3. Each boundargdgeis determined b
in the preceding section. We can, in principle, perform simi- 9 : ¥ag y

lar calculations to estimate the heights of those features i pair of coordmgte axes |n.d|rect|ons of any two non-
necessary colinear coordination vectors, i.e., there af@—2)/2=24

Figures 3, 4, and 5 show the Monte Carlo data of thesuch pairs. If we take this cube for geometry of the scaled

radial distributions for the bcc, fcc, and diamond Iattices,(N'Step PRW by the stretched length, these edges can be

respectively, obtained from 2010° PRW’s for each case. 'd?”tg";d as domfaun t:}oundgnesf of walks _and c],:ar;] be gb'
The peak aR=N is again due to the finite probability for tained by connecting the palrs 0 vgrtex points 0,t e. cube.
the walks of no gauche step, regardless of the lattice type. Bgor example, the edgAB is determined by axes in direc-
now, we know that the peaks and jumps at different position$ions ofb; andb, andBD by b, andb,, and so on. These
are due to contributions of the boundary edge and plane ofdges are classified as the two distinct ones, each having 11
which N-step walks end and that those edges and planes cfitore equivalents, the distances of which are/3l/and

at distanceN through a set of “coordinate axes,” chosen in V2/3, respectively. Thus these contributions of two types of
directions of corresponding coordination vectors. We willboundary edges give rise to the peaksRat N/+3 and
identify such a set of “coordinate axes” fall peaks and /2/3N in the original scale, as shown in Fig(t3.
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FIG. 4. (a) A pair of unit cubes of the fcc lattice centered at the 0.002

origin with coordination vectors; . The 14-faced polyhedron indi-

cated by thick lines connecting the twelve sites nearest to the origin ~ 0.000

L 28
forms the domain oN-step PRW scaled bM. (b) As Fig. 1(a) for 0 2 Jg‘g 1
the PRW on the fcc lattice. R/N
Similarly, the rescaled boundaplanescan be obtained (b)

by connecting triplets of vertices of the cube, e§ABC

determined by axes in directions &f, b,, and b; and

AABD by b,, b,, andb,. There are two distinct planes out FIG. 5. (a) A pair of unit cubes of diamond lattice. The tWfzc)

of z(z—2)(z—4)/6=32, 8 of which are equivalent to sublattice nature is indicated lay (filled circle) and 8 (open circle
AABC and 24 toAABD whose distances are, respectively, siteg. Atrans step is defi_ned as such thgt it forms a plane with its
L and 14/3. Thus these two kinds of boundary plane contri- W0 immediately preceding step) As Fig. 1@ for the PRW on
butions produce jumps @&=N/3 andN//3, as shown in the diamond latice.

Fig. 3(b).

We note that theérue boundary for theN-step PRW on  of the lattice point on that plane is small and, in addition, the
the bcc lattice is the surface of a cube of sida/_@n\l inthe  distance of the plane is too short to yield a large “circle
sense that the walk cannot reach beyond the boundary. B@;"” [as in Fig. 2b)], let alone a larger.
we still called the internal plané\ABC “boundary” not Figure 4a) shows a pair of unit cubes of the fcc lattice,
just for convenience but iis for a set of walks grown in with the coordination vectors indicated bys. The length of
particularly chosen directions. The features for the bcc latticéhe edge of the cube ig2 and the 12 nearest-neighbor sites
are less prominent compared to those of the sq and sc labf site O are labeled by letters “A” through “K” which
tices. This is mainly because the coordination number of theonstitute the 14-faced polyhedron indicated by thick lines.
bcc lattice is largefsee Eqs(5) and(8)]. We also note that The sides and faces of this polyhedron, when blown up by a
the two kinds of contributions appear coincidentally atfactor of N for N-step PRW, form the true boundaries con-
R=N/./3 and that the jump a@®=N/3 is so small as to be taining some “internal” ones as in the case of the bcc lattice.
barely noticeable. The reason for the latter is that the density Even though there are 60 pairs of coordinate axes gener-
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ating a boundary edge, only three are distinct: when rescalegtalk can reach in the next two consecutive steps without
to the unit cube with the origin positioned &, axesOG  Violating the requirements stated above, i.e., sheB,F,

andOA form an edgeGA, axesOG andOB an edgeGB,  and G, reaching edgeQT, QR, QU, and QV, respec-
and axe<0G and OH an edgeG_H the distance of which tively. Corresponding coordinate axes can be readily identi-

are, respectivelyy/3/2, 1/2, and /2. Twenty-four out of fied. The distances between the origin and these edge sites
sixty boundary edges are equivalent to each of the first twé'® all equal toy12, and hence, foN-step walks, when
edges and the rest to the third one. The peaks due to the§aHltiplied by a factor ofN/4, it becomes (/5_/2)’\_" which is
contributions are shown in Fig.(d) at R=N/2, N/\2, responsible for the peak at that distance in Figp) 5

: To identify boundary planes, we consider walks of
(V3/2)N. The reason why the height of the peak at '~ " . :
R=(\3/2)N is greatest is that, in addition to a relatively N=6 with only two gauche steps which take three different

large number of equivalent edges, the density of points o oordination directions defined by a sublattice, sagjtes in

. g ig. 5(@). There are only two nonequivalent paths meeting
rep(’a(::geFliZ lazzg)?sitsellzgg(tar;eazgr;::straergeedrge in “shell4s this condition. Given that the first two steps are made from
1 1 . .

R to C, these two kinds of paths may be represented by

The boundary planes for the fcc lattice are generated b - p andRCPF in directions of triplets of sublattice co-
160 triplets of noncolinear coordination vectors, 16 out of A S AT A T A T

which are coplanar, e.g..c{,c;,C5) or (C;,C4,C5), Whose ordinate axes{RO,RQ,RT} and {RO,RQ.RW, respec-

contributions to producing jumps in the distribution function tively. [PointW, not shown, is the mirror image of poidt
are negligible(with the weight proportional t@). As far as the planeAREQ ] In the first kind of path, gauche steps

) L occur only atg sites, whereas in the second, they occur at
the distance of the boundary planes from the origin is CoNy “th andg sites. Thus, the corresponding boundary planes
cerned, we find that there are only five distinct planes. These ‘ ' P 9 yp

can be identified in Fig. @) as follows: AGHC at a dis- dre parallel toAOQT and AOQE, whose distances from

tance 1{2. AGHA at 1/2, AGHD at 1410, AGCA at R &€ V2/3 and 212, respectively. For thél-step walks,
L ... these distances become, when multiplied by a factor of
V213, andAGBD at 2/11. These contributions are indi- . g
i X N/4, \2/3N, andN//2 , where sudden jumps indicated by a
cated in Fig. 4b) but they are again so small as to be barelyCirCIe (O) occur in the distribution in Fig. )
noticeable, as for the bcc lattice for similar reasons. 9. ).

For the diamond lattice, where the angle between adjacen It is interesting that the boundary edges and planes for the
bonds is cos¥(—1)~109° ' the definitions of the trans and iamond lattice are the surface of the 14-faced polyhedron as
3) ]

gauche steps should be slightly modified. A step is calle hown in Fig. :_Qa), namely, one type of equivalent edges and
e L ; ; wo types of triangular and square faces. Moreover the small
trans if it is coplanar with its two adjacent preceding steps

and gauche otherwise. Because of the twice) sublattice z value makes the boundary contributions in the diamond

nature of the diamond lattice, all the odd-numbered stepIattlce more pronounced than in other types of lattices.

occupy a site of one sublattice and all the even—numbere%Chm"’ Walker, and Thorpgl 3] noticed the position of the

steps a site of another sublattice. We call these two sublattic‘?ee"’lk due to the boundary edge contribution by two_dlffere_nt
. ) . approaches and, as results, they found that the distribution
sitesa and B, denoted by filled and open circles, respec-

. . function of one-gauche chains is nonzero only for
tively. For the sake of convenience we tdkdo be even and . ) .
the lattice constant to bg3/2, so that the “sublattice con- R=(\3/2)N (with typograpmcal errors therein correcled

" ) ' . ; and decreases monotonically. Their Monte Carlo result of a
stant” corresponding to two steps is 2, the side of the cube

- . . ?reely rotating chainwith an angle of 120° between two
shown in Fig. %) is 2‘/5’_ and the end-to-end distance of the adjacent straight segments yielded a single peak there. These
walks of all trans steps is ju.

. . ! results may be readily understood through the geometrical
It is somewhat tricky to find the relevant boundary edges y y 9 g

and planes for thé-step walks on a diamond lattice. Since considerations taken up above.

N is taken even, the end points must be in the same sublattice

as the starting point,_ forming_ the same solid figure as in the IV. OFF-LATTICE MODELS

case of the fcc lattice in Fig.(d4). However, not all the

boundary edges and planes thereof give rise to peaks or We have discussed so far the chains embedded on discrete
jumps on the distribution function because, to do that, sucliattices. In this section, we deal with two off-lattice models
“edges” must be able to be reached by walks of only oneof stiff linear chains, termed type | and type Il of tihen-
gauche step and such “planes” by walks of only two gauchedomly broken chaifRBC-I and RBC-I). RBC-I was origi-
steps. We find that the edges satisfying this condition are theally suggested by Molina and de la TofrE] as a semi-
sides of the polyhedron in Fig.(@, all of which are equi- flexible macromolecular model: Fig. 6 shows a configuration
distant from the origin. As for the directions of individual of an RBC-I consisting of a few step vectofl;}, whose
steps, reaching those boundary edges requires two thingdirections are either the same as their preceding step vector
first, all steps on one sublattice must be trans and second, tidth probability 1—p or, otherwise, completely randomly
directions of steps on another sublattice must be either afiistributed over the whole solid anglgp can still be con-

two predetermined ones with at least one gauche step. Figustdered as the gauche probabilltdn the other hand, for the
5(a) illustrates some walks dfl=4 with one gauche step to RBC-II, the polar angle, denoted l#y in Fig. 6, is fixed and
identify the boundary edges and their distances. @ngites  thus the dihedral angle; alone is random. One may view
are labeled, and thg site between two adjacent sites is  the type | and Il of RBC models as the “stiff” versions of
unique and is not labeled. Given that the first two steps aréreely jointed chainsand freely rotating chaing 2], respec-
made fromO to P, there are only four possible sites that atively.
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P(R)
0.009 T

0.008 + RBC-I
0.007 + —— 3D
0.006 |
0.005 +
0.004 |

0.003

0.002
FIG. 6. A schematic configuration of the randomly broken chain
(RBC) consisting of a few step vectofd;}. The polar angle of
ith stepg, is defined as the angle betwebn ; andb;, while the 0.000
dihedral anglep; is usually defined as the angle of rotation from a
plane formed by two preceding straight segments. Trans and gauche
steps defined for this case are discussed in the text.

0.001

Figure da) shows the radial distributions of the end-to- y
end distance of the RBC-I in two and three dimensions for
p=0.01 and\N=500. The frequency histograms are obtained —]
from 10X 10° chains with an interval oAR=1. No peak or I
jump appears except fdR=N. This strongly supports that -
the local minima that Fig. 2 of Refl12] suggests are spuri- -
ous except for the one near=L (in our notation,R=N).
However, still the most important feature appears near F
R=N, as can be seen in Fig(dj. We note that the prob-
ability nearR=N is fairly large compared to the lattice re-
sults and even larger than the expected value
e NP=0.0067. The latter, as it turns out, is because of the ol &
contributions of the last intervdN— AR/2,N), upper bound
being excluded, to the histogram. Figuré)7 where a few
chains of a single break with their first step fixed +x
directionOAH, OBG, etc., are shown together with the cir-
cular loci of their end points, explains qualitatively why this
contribution is large. The probability for any point on the
same circle is the same in the figure. We can see that the loci
are relatively concentrated near the “surface” of the walk

domain and this might have caused the excess values on the S
peak atR=N. FIG. 7. (8 Monte Carlo data of the radial distribution of

For a more quantitative analysis of this feature, one ma);\l-step RBC-I1 in two(dotted ling and thregsolid line) dimensions,

write the probability for the outermost shell, apart from the °Pt@ined using the parametés p, andAR the same as for Fig.
5 function[I)ike robgbilit e~ NP 2tR=N. as P 1(a). A special feature is that the probability neR=N is fairly
P y ' large as indicated byPg;. (b) A schematic diagram for a few

N—1 single-break RBC-I's with the first stefp, fixed in +x direction,
OAH, 0BG, etc., and the loci of their evenly distributed end points.

ProiiN—AL<R<N)= Zl Ps(AL), (10 Each circle(or sphere in three dimensi@n)l;as the same ngght
p(1-p)""2
where Pg{(AL) is the probability that an end point of an
RBC-I with t breaks lies in the outermost shell of thicknesswhich enables us to obtain expressions Ra;(AL) in two
AL, [N—AL,N). We then approximate the right-hand side and three dimensions
of the above equation to a single terffy; (t=1), which
should be reasonably good fat. <N in the limit (1). Figure

8 illustrates a chain of a single break at the end of itthe N-1
bond, whose end point hits the inner boundary of the outer-  Pg= >, —p(1—p)N~2
most shell in which any chain of a single break with a polar =17
angle less tham; falls. To the first order imL, pe_Nprl
~ —1| 1 _ —9.
- iZlcos 1 i(N—i)AL} d=2;
cosﬂizl—i(N_i)AL, (11 (12)



FIG. 8. An illustration of an RBC-I with a single break at
R=i and polar angl®, . End points of any chain with a polar angle
less thang; falls in the outermost shell of thicknead_ (indicated
by a thick arg.

N—1
Pg= 21

1—cog,

— —p(1- p)N"2~pe NP(INN)AL, d=3.

13

It should be noted that the right-hand side of Edl) may be
less than—1 for somei’s if AL is of an order of unity or
larger, in which case c@sshould be taken as 1 for those
i's and Eqgs.(12) and (13) should be changed accordingly.
We found that the values obtained from E¢52) and (13)
are, respectively, 1.4410°% and 2.2%10 * for
AL=AR/2=0.5 [i.e., for the interval N—AR/2,N)] and
that they agree with the excess values of our simulation r
sults (at R=N) over the contributions of fully stretched
chains, up to 90% fod=2 and 99% ford= 3. [Note that
simulation results are 1.6410 2 and 2.3 10" * for d=2
andd= 3, respectivelyl. We performed similar comparisons
for inner shells near the “surface” using Eq4.2) and (13)
and estimated Prob(— 1.5AR<R<N-0.5AR)
=Pg(1.5AR) — Pg;(0.5AR)~1.08<10"3 for d=2 and

4.54x 10 * for d=3, which are about 75% and 95% of the
corresponding simulation values. Therefore it seems to u

that Eq.(12) is a good approximation of Eq10) only for
AL <1, while Eq.(13) is good forAL up to an order of
unity.

We finally turn to the type Il of the RBC. We note that if
the gauche probabilityp=1, the RBC-Il becomes a tradi-
tional freely rotating chainfor which the second and fourth
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1

(SW= N+1)2 (15)

> ((R—R)?,
o<i<j=<N

li =il

<bi'bj>=k§=:0

whereR,=0. Since we have for the RBC-Il with polar angle
=il

"

=[1-p(1—cos)] 1,

)(cosﬁ)kpk(l—p)“""

(16)
following the well-known expressiori2] can be used to get

1+a 2a(1—aM)

2\ _
<RN>_1—(1’N (1_a)2 ’ (17)
oo N(N+2)(1+a) Na
(Sv= 6(N+1)(1—a) (N+1)(1—a)?
2Na? 2a3(1—aN)
T INTDA1—a?  (N*DZA—a® 19

with a=1-—p(1—cog)). One can easily verify that
a=cosd (or p=1) for freely rotating chainsand a=1—p

for RBC-I and PRW on any symmetric lattices.

To investigate the radial distribution of the end-to-end

displacement of the RBC-II, we generatedXID chains

for each of §=60° and 90°, withN=500 andp=0.01 for
both cases. The frequency histograms are plotted in Fig. 9.
The arrows denoted are the root-mean-square of the end-to-
end distance calculated from E¢L7), and we found that
they agree well with our simulation results over three or
more significant digits. We also found that a peak other than
the one atR=N appears aRy=Ncos(@2), unique for a
given polar angled, at which chains with a single break just
€tart to contribute to the distribution function. To elucidate
this feature, we examine the geometry of single-break RBC-
II's of length N shown in Fig. 10 in a similar way in some
respects to Fig. (@). Given the first step fixed along x
direction, the end points of chains lying in the first quadrant
of the xy plane fall on the line QN [e.g.,, O1Q,
O(N/2) Py, OiP] but by the freely rotating nature of the
chain they are in fact evenly distributed over separate circles
on the cone as shown in the figure. A straightforward way of
3stimating the height of the peak is to count the number of
these circles contained in the “shell” of thickneAR posi-
tioned atRy=0P,, each contributing by the same weight.
This number, saym, is clearly the same as that of the end
points on the line?,P; in Fig. 10, for which we have, up to
first order in AR, m=+2Ncos@?2)AR/sin(6#/2). Conse-

moments of the end-to-end distance are known in closeduently, with the single break probability(1—p)"~2 and

forms[2,14,19. It can be shown that both the mean squar

end-to-end distanc€R?) and the mean square radius of gy-
ration (S%) of RBC-Il have essentially the same forms as

those of freely rotating chains and RBC-I. Since
RNEEiN:lbi , b; being theith step vector, one can write

(RY) ;1 1,21 (bi-bj) (14

eAR=N/A, the heightH in limit (1) can be expressed as

) 1/2

which yields an agreement with the simulation data just as
well as Eq.(5) does with the simulation data for the sc lat-
tice. To make more legitimate comparison of the estimation
of Eqg. (19) with a frequency histogram result, one should
take into account the difference in positions of “shells” for

Npe NP
sin(6/2)

2cog6/2)
A

Hp (19
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P(R) An alternative way to derive E19) is to use an expres-
0.010 T pre g sion P4 (R) presented in Ref.13] for the probability density
function of the single-break RBC-Il, where our RBC-II is
0.008 + — §=90

"""" 9=6°: referred to as théreely rotating chainand ourf denoted by
! 180°-6¢'. From chain OiP in Fig. 10, we have

R2=(N—i)?+i2+2i(N—i)cos® and, from P;(R)dR
0.006 T =di/N and takingi as a continuous variable, we get
0.004 1 P.(R)
0.002 ! ! if R=Ry=Ncog6/2)
.002 1 _ : , if R=Ry=Nco
! =14 Nsin(6/2) \1—(Ry/R)?
----------- ¥ : : .
0.000 0 otherwise.
1 43 )
0 = —23- 1
R/N This P1(R) is in fact the conditional probability for the

S single-breakchain and one needs to multiply the weight for
FIG. 9. The radial distributions oN-step RBC-II for polar  that condition, i.e.p(1—p)N~2 to get the right contribution
anglesf=60° (dotted ling and #=90° (solid line). The parameters g the total distributionrP(R). Then the height of the peak

N, p, andAR are the same as for Fig(a. The arrows indicate the Hp due toP; can be estimated by an integration
(R?) obtained in a closed forrfEq. (17)] for each givens.

Ro+AR
Hp:p<1—p>N*2fR PRAR (2D

the two cases: Eq19) is for Rg<R<Ry+ AR, whereas the 0

histogram interval in question is takep(n—3)AR,(n _ _ .
+1)AR] containingR= R, for some integen. For example, ~Which reduces to Eq19) in the first order ofAR=N/A.

for 6=60°, Ry=(\/3/2)N~433.01 and the corresponding
histogram interval is [432.5,433.5), so we take V. SUMMARY AND CONCLUDING REMARKS

AR=433.5-433.01=0.49 for Eq.(19) and, after consider-  \yg have shown that the peaks and jumps appearing in the
ing this, we found that the results agree within an error ofyjstribution functions of the end-to-end distance of stiff
only a few percent. chains are due to the contributions from the boundaries be-

yond which the walk of a fixed number of steps cannot

reach. This walk domain forms a polyhedron determined by
) the type of lattice in which the chain is embedded. We found
A o/ AR, shell 1 out all the exact posi;ions of the peqks and jl_Jmps_ for various

1 ! types of lattices, which can essentially be identified as the

distances from the center of the polyhedron to the boundary
o edges and planes. The boundary edge contribution produces
a sharp peak whereas the boundary plane yields a sudden
jump. In particular, for the sq and the sc lattices, we obtained
approximate analytic expressions for the heights of peaks
N and jumps as a function of the average number of gauche
b stepsNp in the “stiff” limit (1) and found that the results
agree reasonably well with our Monte Carlo data.

We have also presented detailed structure of the distribu-
tion functions by Monte Carlo simulations for two off-lattice
models of stiff chains, i.e., two types of the randomly broken
chain (RBC-I and RBC-I), which can be viewed as the
“stiff” versions of the randomly jointed chains and freely
rotating chains, respectively. The distribution of the end-to-
end distance of the RBC-I does not have any peak except at
R=N, but the probability thereabout is considerably higher,
the limiting value of which is calculated for both two and
three dimensions. On the other hand, the distribution for the
RBC-1l shows a peak at a point other thRs N, which can
be exactly located depending on the polar angle chosen.

FIG. 10. A schematic diagram for three single-break RBC-II's  We believe that our results should be directly applicable
with a polar angled and the first stefp, fixed in +x direction, to the distribution of the mean end-to-end distances of
01Q, O(N/2) Py, and OiP, and corresponding circular loci of ‘“real” linear polymer chains in the stiff limit. Unfortunately
their end points on the boundary cone. A shell of thicknass  up to date, however, we have not been able to find any ex-
located at the shortest distanRg=OP, contains so many circles perimental work in the literature which deals with a similar
intersecting lineP,P; as to be responsible for the peak in Fig. 9. feature, except some measurements of average sizes of very
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stiff polymers[5], having direct relevance to these featuresrole, may find an application, a further elaboration of which

of the stiff chains discussed in this paper. is deferred to a future study.
Besides in the experimental aspect, our results can also be
considered as details of random walks with certain preferred ACKNOWLEDGMENTS
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