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The effects of three-dimensional perturbations in two-dimensional turbulence are investigated through a
conformal field theory approach. We compute scaling exponents for the energy spectra of enstrophy and
energy cascades, in a strong-coupling limit, and compare them with the values found in recent experiments.
The extension of unperturbed conformal turbulence to the present situation is performed by means of a simple
physical picture in which the existence of small-scale random forces is closely related to deviations of the exact
two-dimensional fluid motion.@S1063-651X~96!09607-9#
PACS number~s!: 47.27.Gs, 11.25.Hf

I. INTRODUCTION

It has been recognized that turbulence, with its manifold
experimental realizations, is one of the challenging problems
for which very different approaches, ranging from pure
mathematics to engineering applications, have been devel-
oped in an interesting complementary way. One of the most
important methods to study turbulence is, in fact, the formu-
lation via field theory, based on its relationship with stochas-
tic partial differential equations@1,2#. However, such a tech-
nique is far from being well established and complete, so that
new ideas and important improvements are constantly ap-
pearing on the subject.

Recently, Polyakov suggested that nonunitary minimal
models of conformal field theory could be used to describe
the physics of two-dimensional turbulence@3#. The advan-
tage of this proposal is that one can deal in a controllable
way with a set of anomalous dimensions and short-distance
products. An infinite number of inertial range exponents fol-
lows from this approach@4–6# and one of the still open
problems is how to find ‘‘selection rules,’’ which would de-
fine the experimentally relevant minimal models or the con-
nection between them and statistical characterizations of the
random forces acting on the system. These ideas have at-
tracted the attention of many authors and generalizations
have been investigated, such as, for instance, possible bound-
ary effects@7#, alternative physical pictures for the enstrophy
and energy cascades@8#, and magnetohydrodynamic turbu-
lence@9#.

We will consider, in this paper, the problem of conformal
turbulence including in its formalism the influence of three-
dimensional effects. Our motivation comes from a number of
experimental studies, in which approximately two-
dimensional fluids were observed, together with the unavoid-
able presence of three-dimensional perturbations@10–13#. It
was verified that a quasi-two-dimensional fluid is perturbed
by small-scale forces originated from the the degrees of free-
dom related to the direction perpendicular to the plane of
motion. We will take this fact into account, noting that there
are also compressibility effects that cannot be neglected in an
effective two-dimensional theory of the perturbed system. A
generalization of the conformal approach will be devised and

inertial range exponents will be obtained here in reasonable
agreement with the experimental data.

This paper is organized as follows. In the next section we
briefly review the most important and practical aspects of
conformal turbulence in order to make the paper as self-
contained as possible. In Sec. III we discuss some of the
experiments carried out to investigate two-dimensional tur-
bulence. This will motivate us to define an effective~and
infinite! set of stochastic partial differential equations that
represents a quasi-two-dimensional fluid under the influence
of three-dimensional perturbations. The conformal approach
is then introduced in order to solve the Hopf equations for
the turbulence problem. Furthermore, the constant enstrophy
and energy flux conditions are also studied. Explicit solu-
tions are found and described in Sec. IV and, in Sec. V, the
problem of boundary effects is discussed. Finally, in Sec. VI
we comment on our results and on possible directions for
future investigations.

II. CONFORMAL TURBULENCE

The minimal models of conformal field theory@14# are
generically defined by a pair of relatively prime numbers
(p,q) with p,q. These models contain a subset of
(p21)(q21)/2 scalar primary operatorsc (m,n) , labeled by
1<m,p and 1<n<(q21)/2 if p is even or
1<m<(p21)/2 and 1<n,q otherwise, having dimensions
D (m,n)5@(pn2qm)22(p2q)2#/4pq. The reason for the
choice of scalar operators is that we will be dealing with
isotropic correlation functions in the turbulence problem.
The operator product expansion~OPE! of two primary op-
eratorsc (r1 ,s1)

(z) andc (r2 ,s2)
(z8), with uz2z8u→0, is writ-

ten as

c~r1 ,s1!~z!c~r2 ,s2!~z8!

5 (
~r3 ,s3!

~aā!~D~r3 ,s3!2D~r1 ,s1!2D~r2 ,s2!!

3 (
~n,m!

C
$~n1 , . . . ,nk!;~m1 , . . . ,ml !%
~r3 ,s3!

L2n1
. . .L2nk

3L̄2m1
. . . L̄2ml

a(nā(mc~r3 ,s3!~z!, ~2.1!*Electronic address: moriconi@if.ufrj.br
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where ur 12r 2u11<r 3< min(r 11r 221,2p2r 12r 221),
us12s2u11<s3< min(s11s221,2q2s12s221), and we
have introduced, in~2.1!, the Virasoro generators of confor-
mal transformationsL2n and L̄2n . The interest in these
models is related not only to their finite number of primary
operators but also to the fact that their dimensions and the
form of short-distance products are completely known.

Let us look now at the problem of turbulence in two di-
mensions and show how it may be matched@3# with the
above operator structures. The motion of an incompressible
fluid is assumed, even in the turbulent regime, to be de-
scribed by the Navier-Stokes equations for the velocity field

] tva1S dag2
]a]g

]2 D vb]bvg5 f a1n]2va , ~2.2!

where f a represents a random force acting at large scales,
determined by a characteristic lengthL, and n→0 is the
viscosity, associated with the small scale where dissipation
effects come into play, yielding a natural uv cutoff for the
system. In terms of the stream functionc, related to the
velocity field by va5eba]bc, we may write the following
equation for the vorticity fieldv5]2c:

] tv1eab]ac]2]bc5eab]a f b1n]2v. ~2.3!

One of the fundamental problems of turbulence theory is to
find solutions of the Hopf equations, for statistical averages
over realizations of the velocity field,

] t@^v~x1 ,t !v~x2 ,t !•••v~xn ,t !&#50, ~2.4!

where the time derivative is expressed through the use of Eq.
~2.3!. In the inertial range, the standard view of the problem
is that both forcing and viscosity terms may be neglected in
order to formulate an effective set of Hopf equations. Con-
sidering, furthermore, the convection term in~2.3! as a van-
ishing point-split product of fields, that is,
ruz2z8u5uau(dz8/a)eab]ac(z)]2]bc(z8)→0, when uz2z8u
→0, we would have, then, an exact solution of~2.4!. A con-
crete realization of this possibility may be achieved if we
regard the stream functionc as a primary operator of some
conformal minimal model. In this case we may use all the
available information on operator dimensions and OPE’s to
extract physical results from the analysis of the problem.
According to this assumption, letf be the primary operator
that has the lowest dimensionDf appearing in the OPE
cc, between fields with the same dimensionDc. Taking
a[uauexp(iu), we will thus have

lim
uau→0

R
uz2z8u5uau

dz8

a
eab]ac~z!]2]bc~z8!

;E du@] ā
2]a]z2]a

2] ā] z̄#~aā!~Df22Dc!

3( C$n;m%L2n1
•••L2nk

L̄2m1
•••L̄2ml

a(nā(mf~z,z̄!

;~aā!~Df22Dc!@L22L̄21
2 2L̄22L21

2 #f, ~2.5!

as the dominant contribution in this short distance product. It
is important to note that in order to get~2.5! it was necessary
to setC$1;2%5C$2;1% andC$1;(1,1)%5C$(1,1);1% , as it follows
from the pseudoscalar nature of thee factor above. We then
see that~2.5! vanishes withuau→0 if

Df.2Dc, ~2.6!

which is one of the constraints that the chosen minimal
model has to satisfy. An additional constraint comes from
the condition of a constant enstrophy or energy flux through
the inertial range, meaning that̂ v̇(x)v(0)&;x0 or
^v̇a(x)va(0)&;x0, respectively. In the case of a constant
enstrophy flux, we have

^v̇~x!v~0!&;~aā!~Df22Dc!^@~L22L̄21
2

2L̄22L21
2 !f~x!#]2c~0!&. ~2.7!

The correlation function on the right-hand side of~2.7! is
now evaluated by means of a purely dimensional argument,
asL22(Df1Dc13), which makes sense if one thinks that there
is an effective ir cutoff in the theory at the scales where the
forcing terms act. Imposing~2.7! to be independent ofL, we
get

Df1Dc1350. ~2.8!

In the case of an energy cascade, the argument is the same
and the constraint turns out to beDf1Dc1250. It is
known that there is an infinite number of minimal models
compatible with~2.6! and ~2.8! @4#. The general belief, and
still an open problem, is that there may be universality
classes, associated with the statistical properties of the forc-
ing terms, that would single out one or another of the pos-
sible solutions.

An alternative analysis of conformal turbulence regards
the existence of boundary effects on the vacuum expecation
values ~VEV’s! of single operators in nonunitary theories
@15#. In this case, one has to consider the OPE between
f(x) andc(0) in ~2.7!, picking up the most relevant opera-
tor, let us say x. Now ~2.8! is modified to
Df1Dc2Dx1350, with an analogous change for the
constant energy flux condition. Some of these further solu-
tions~in the enstrophy cascade picture! were obtained in Ref.
@7#.

The connection of the conformal approach with real ex-
periments or numerical simulations is made through the
computation of inertial range exponents, which describe the
decrease of energy in the region of higher Fourier modes. In
the situation where VEV’s of single operators vanish, the
inertial range exponents are given by 4Dc11 and, in the
opposite case, by 4Dc22Df11. Good agreement has been
reached between the former possibility, for the the direct
enstrophy cascade case, and numerical simulations@16,17# of
the two-dimensional Navier-Stokes equations.

III. THREE-DIMENSIONAL EFFECTS

In a series of interesting experiments, Hopfingeret al.
@10–12# studied the turbulence phenomenon as it happens in
a rotating tank, where at its bottom there was an oscillating
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grid responsible for perturbations of the fluid motion. Ac-
cording to the Taylor-Proudman theorem@18–20#, a rotating
fluid tends to behave as if it were two dimensional and in
fact this was observed in the form of coherent structures
~vortices! organized in the direction parallel to the rotation
axis of the tank. However, ‘‘defects’’ in the vortices were
seen to propagate from the very turbulent region at the bot-
tom of the tank up to the effectively two-dimensional sys-
tem. The essential picture extracted from these observations
is that the fluid should be best described in terms of two-
dimensional equations containing not only large-scale forc-
ing terms but also small-scale random perturbations, origi-
nated from either vortex breakdown or soliton pulses
propagating along vorticity filaments. The experimental data
suggested then the existence of an inertial range, likely to be
related to a direct enstrophy cascade and well approximated
by E(k);k22.5, which represents a less steep energy spec-
trum than the one obtained by Kraichnan@21#, E(k);k23,
or even other proposals@22,23#, not excluding conformal
turbulence@4#. This puzzling result is presently understood
to be due only to the measurement techniques used in the
experiments, based on the analysis of the dispersion of sus-
pended particles in the fluid@12#. More recently, similar ex-
periments were conduced by Narimousaet al. @13# and direct
measurements of the turbulent velocity field were recorded.
The results pointed out the existence of a possible energy
spectraE(k);k25/3 at lower wave numbers, in agreement
with the conjecture of an inverse energy cascade@21#, and a
range at higher wave numbers, whereE(k);k25.560.5. In
this region, the spectral slope was seen to depend on the
controlling external conditions, with results varying from
E(k);k25.0 up to E(k);k26.0. It is worth noting that a
spectral lawE(k);k25 follows from Rhines’s theory of
b-plane turbulence@24# and, alternatively, is closely ap-
proximated by some solutions of the constant enstrophy flux
condition in the conformal approach, such as the minimal
models~9,71! or ~11,87!.

The variation of exponents obtained in the experiments
may have a theoretical counterpart in the existence of a set of
operator anomalous dimensions, making it interesting to ana-
lyze the problem from the conformal field theory point of
view. It is clear, however, that the inertial range exponents,
found in Ref.@4#, cannot reproduce the experimental situa-

tion. We believe that the important ingredient, missing in the
previous conformal approach, is precisely the existence of
three-dimensional perturbations, which must be taken into
account in any realistic model of a quasi-two-dimensional
fluid.

In view of the above considerations, let us write the two-
dimensional Navier-Stokes equations as

] tva1vb]bva5n]2va1 f a
~1!1g fa

~2!2]aP, ~3.1!

where f a
(1) and f a

(2) are stirring forces defined at large (L)
and small (m!L) scales, respectively. The dimensionless
constantg represents, roughly, a coupling with the three-
dimensional modes of the fluid. We assume that the dissipa-
tion scalea is related, in principle, to the other scales of the
problem asa!m!L. This means that even though the per-
turbations act at very small scales, when compared to the
macroscopic size of the system, they are still much larger
than the scale where dissipation occurs.

An important point here is that the condition of incom-
pressibility, when formulated in three dimensions, reads
]1v11]2v21]3v350, suggesting that the ‘‘projection’’ of
this constraint to the two-dimensional world has to be given
by ]ava5O(g), in the framework of Eq.~3.1!. The velocity
field may be described, then, by means of a stream function
c and a velocity potentialf as

va5eba]bc1g]af. ~3.2!

It is of further interest to study, besides the vorticityv, the
divergence ofva , given by r5g]2f. An exact, although
infinite, chain of equations may be generated if we expand
c and f in powers ofg, substituing them into~3.1! and
collecting the coefficients of the obtained series. Defining, in
this way,

c5 (
n50

`

gnc~n!, v5 (
n50

`

gnv~n!,

f5 (
n50

`

gnf~n!, r5 (
n50

`

gn11r~n!, ~3.3!

we get the set of coupled equations

] tv
~n!1 (

p50

n

eab]ac~p!]b]2c~n2p!1 (
p50

n21

@]bf~p!]b]2c~n2p21!1]2f~p!]2c~n2p21!#5n]2v~n!1eab]a f b
~2!dn,1 ,

~3.4a!

] tv
~0!1eab]ac~0!]b]2c~0!5n]2v~0!1eab]a f b

~1! , ~3.4b!

] tr
~n!1 (

p50

n21

@]a]bf~p!]a]bf~n2p21!1]af~p!]a]2f~n2p21!#1 (
p50

n

@2eab]b]sf~p!]a]sc~n2p!1eab]ac~n2p!]b]2f~p!#

1 (
p50

n11

@]a]bc~p!]a]bc~n2p11!2]2c~p!]2c~n2p11!#5n]2r~n!, ~3.4c!

] tr
~0!12]a]bc~0!]a]bc~1!12eab]b]sf~0!]a]sc~0!1eab]ac~0!]b]2f~0!22]2c~0!]2c~1!5n]2r~0!1]a f a

~2! , ~3.4d!
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and, finally, the constraint of incompressibility for the
g-independent part of the velocity field, which defines the
pressure term,

~]a]bc~0!!~]a]bc~0!!2]2c~0!]2c~0!5]a f a
~1!2]2P. ~3.5!

In the above expressions,n>1. We have obtained, therefore,
a set of stochastic partial differential equations. In a statisti-
cal description, reflecting a stable asymptotic limit for the
correlation functions ofv and r, Hopf equations may be
straightforwardly written as

] tK )
i51

N

v~ni !~xi ,t ! )
j5N11

M

r~nj !~xj ,t !L 50. ~3.6!

We observe now that Eq.~3.4b! is identical to the one that
corresponds to an unperturbed (g50) two-dimensional fluid.
This means that the fieldc (0) will be related to an enstrophy
or energy cascade, even in the presence of three-dimensional
effects. This field plays the role of an external random vari-
able in the other equations, since its dynamics is independent
of the other componentsc (n) or to the fieldf ~in general, the
subset $c (0),c (1), . . . ,c (n),f (0),f (1), . . . ,f (n21)% contains
fields that act like external random perturbations in the equa-
tions for c (p) andf (p21), with p>n11). Considering that
~3.4! gives relatively complex equations, the analysis of the
problem might seem hopeless, perhaps being addressed only
to a numerical treatment. However, we can extend the con-
formal approach, applied previously to the unperturbed case,
to find here solutions of the Hopf equations. Our basic as-
sumption is that not onlyc (0) but also the other components
in the power expansions ofc andf are primary operators
that belong to some minimal model in a conformal field
theory. It is necessary, then, to define a scalel , possibly
associated with intermittency effects, which allows us to
write the dimensionally correct expansion

c5 (
n50

`

f nl
2~Dc~n!2Dc~0!!gnc~n!,

f5 (
n50

`

f n8l
2~Df~n!2Dc~0!!gnf~n!, ~3.7!

wherec (n) andf (n) have dimensionsDc (n) andDf (n), re-
spectively.

The introduction of a scalel in ~3.7! means that the per-
turbed system exhibits a breaking of scale invariance in the
inertial range. We will see later that this phenomenon is sig-
naled by the existence of constant enstrophy or energy fluxes
that depend on the small scales of three-dimensional pertur-
bations. It is conceptually important to understand the physi-
cal origin of l . A clue for this comes from the structure of
couplings betweenc (0) and the other fields, as expressed in
Eq. ~3.4!. As we have already observed,c (0) is effectively an
external field in the equations forc (n) ~with n>1) and
f (n) ~for anyn). In this way, it is plausible to have a relation
betweenl and the scales involved in the dynamics ofc (0).
Now, if we consider the turbulent limit of the equations for
c (0), corresponding ton→0 ~or, alternatively,a→0), we
are left essentially with the correlation lengthL of large scale
random forces. A simple choice thus is to considerl5L. In
this respect, one may observe that the small scalem could
also be used in the definition ofl . We have, however, physi-
cal reasons to believe that this does not happen:m is related
to the forcing terms in the equations forc (1) andf (1), which
we expect to be irrelevant when compared to the nonlinear
convection terms in the range of wave numbers given by
ukW u!1/m.

It is interesting to note that there is an analogy between
our problem and the statistical mechanics of second-order
phase transitions for a system close to its critical point. In
this case, one can study deviations of the critical temperature
Tc by means of an expansion in (T2Tc) and through the use
of the operator structure of the critical theory@25#. Here, in
the turbulence context, the ‘‘critical theory’’ is just what we
get wheng→0.

In order to simplify the notation we will keep using~3.3!,
with the above observations in mind. We are interested to
obtain possible combinations of primary operators, in Eq.
~3.7!, that would not affect, in the limitm→0, the constant
enstrophy or energy fluxes, obtained from the dynamics of
the field c (0). Within this point of view, it is important,
therefore, to consider short-distance products of a certain
number operators, as it follows from~3.4!. Taking two ge-

neric primary operatorsO1
(p) andO2

(p8) ~for example,f (p)

and c (p8)), with dimensionsDO1
(p) and DO2

(p8) , respec-
tively, we may write

O1
~p!~z,z̄!O2

~p8!~z8,z̄8!5~aā!~DAO1 ,O2

~p,p8!
2DO1

~p!
2DO2

~p8!
!

3( C
$~n1 , . . . ,nk!;~m1 , . . . ,ml !%

O1
~p! ,O2

~p8!

L2n1
•••L2nk

L̄2m1
•••L̄2ml

a(nā(mAO1 ,O2

~p,p8! ~z,z̄!, ~3.8!

whereAO1 ,O2

(p,p8) is the primary operator with the lowest dimension in the above OPE. The short-distance products appearing in

~3.4! are listed below together with the conformal field theory representation, obtained after straightforward computations:
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eab]ac~p!]b]2c~p8!;~aā!~DAcc
~p,p8!

2Dc~p!2Dc~p8!!@L22L̄21
2 2L̄22L21

2 #Acc
~p,p8!,

]bf~p!]b]2c~p8!;]2f~p!]2c~p8!;~aā!~DAfc
~p,p8!

2Df~p!2Dc~p8!21!L21L̄21Afc
~p,p8!,

]a]bf~p!]a]bf~p8!;]af~p!]a]2f~p8!;~aā!~DAff
~p,p8!

2Df~p!2Df~p8!21!L21L̄21Aff
~p,p8!,

eab]b]sf~p!]a]sc~p8!;eab]ac~p8!]b]2f~p!;~aā!~DAfc
~p,p8!

2Df~p!2Dc~p8!!@L22L̄21
2 2L̄22L21

2 #Afc
~p,p8!,

]a]bc~p!]a]bc~p8!;]2c~p!]2c~p8!;~aā!~DAcc
~p,p8!

2Dc~p!2Dc~p8!21!Acc
~p,p8! , ~3.9!

with p,p8>0, except in the last relation, for the product of
the typecc, wherep1p8>1. From~3.9! we see clearly that
Hopf equations are satisfied if

DAcc
~0,0!22Dc~0!.0, ~3.10a!

DAcc
~p,p8!2Dc~p!2Dc~p8!21.0, ~3.10b!

DAcf
~p,p8!2Dc~p!2Df~p8!21.0, ~3.10c!

DAff
~p,p8!2Df~p!2Df~p8!21.0, ~3.10d!

with p1p8>1 in ~3.10b! and p,p8>0 in ~3.10c! and
~3.10d!. These equations are the first step in the generaliza-
tion of unperturbed conformal turbulence, in order to deal
with a larger set of primary operators. We will find more
inequalities, restricting, then, up to some extent the number
of different operators allowed in the theory. Let us now write
the conditions for constant enstrophy or energy fluxes
through the inertial range. Here we will assume that vacuum
expectation values of primary operators are zero. The alter-
native possibility is discussed in Sec. V. The case of a con-
stant enstrophy flux requires, as commented before, that we
compute^v̇(x)v(0)&. From relations~3.4! we get

^v̇~x!v~0!&5(
n,m

`

(
p50

n

gn1m^$eab]ac~p!]b]2c~n2p!

1g@]bf~p!]b]2c~n2p!

1]2f~p!]2c~n2p!#%ux]2c~m!~0!&. ~3.11!

In the above expression we may define a ‘‘large-scale’’ part
as the one that depends solely on the fieldc (0) and a ‘‘small-

scale’’ part as involving the fieldsf (p) and the other com-
ponents ofc. Regarding the large-scale part, we already
know from the study of the unperturbed case that the con-
stant enstrophy flux condition is

DAcc
~0,0!1Dc~0!1350. ~3.12!

It is natural to assume, like in the case of unperturbed con-
formal turbulence, that the correlation functions in the small-
scale part may also be evaluated by means of a dimensional
argument, where, instead of using the typical large scale pa-
rameterL, the correct choice turns out to be the small length
scalem. Assuming, furthermore, thatm→0 leads to a well
defined limit, we just require the powers ofm in the most
relevant terms belonging to the small scale part of~3.11!
~contributions that have the lowest power ofaā) to be non-
negative numbers. This discussion may be restated by saying
that we will need to select one or both of the conditions

DAfc
~p,p8!1Dc~p9!12<0,

DAcc
~p,p8!1Dc~p9!13<0, ~3.13!

according to the analysis of the dominant terms in the small
scale part of^v̇(x)v(0)&. In the derivation of~3.13! we
have used the OPE’s computed from the Hopf equations,
given by ~3.9!. Additional care must be taken if it happens

that Acc
(p,p8)5c (p9) or Afc

(p,p8)5c (p9) for some values of
p,p8, and p9. In this circumstance it is necessary to have
Dc (p9)523/2 or Dc (p9)521, respectively, to ensure spa-
tially independent correlation functions and hence a constant
enstrophy flux.

Let us turn now to the case of a constant energy flux. We
have

^v̇a~x!va~0!&52(
n,m

`

(
p50

n

gn1m^$g2]bf~p!]b]af~n2p!1g@ega]bf~p!]b]gc~n2p!1esb]sc~p!]b]af~n2p!#

1]a]22@]2c~0!]2c~0!2]s]bc~0!]s]bc~0!#dn,01esbega]sc~p!]b]gc~n2p!%ux@eha]hc~m!~0!

1g]af~m!~0!#&. ~3.14!

Here we cannot refer immediately to the Hopf equations and formulate a set of conditions, as we did in the constant enstrophy
flux case. There are, in~3.14!, OPE’s that do not appear in~3.4!, viz.,
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esbegz]sc~p!]b]gc~p8!;~aā!~DAcc
~p,p8!

2Dc~p!2Dc~p8!21!L21Acc
~p,p8!,

esbegz]sc~0!]b]gc~0!1]z]
22@]2c~0!]2c~0!2]s]bc~0!]s]bc~0!#;~aā!~DAcc

~0,0!
22Dc~0!!@ L̄21L2224]22L21

3 L̄22#Acc
~0,0!,

egz]bf~p!]b]gc~p8!;esb]sc~p8!]b]zf
~p!;~aā!~DAfc

~p,p8!
2Df~p!2Dc~p8!21!L21Afc

~p,p8!,

]bf~p!]b]zf
~p8!;~aā!~DAff

~p,p8!
2Df~p!2Df~p8!21!L21Aff

~p,p8! . ~3.15!

In ~3.15! we have egz[(eg12 i eg2)/2. Using the above
point-split products, we can get the constant energy flux con-
ditions. First, the equation following from the large-scale
part of ^v̇(x)v(0)&,

DAcc
~0,0!1Dc~0!1250, ~3.16!

and then the inequalities that come from the small-scale
terms,

DAcc
~p,p8!1Dc~p9!111dp1p8,0<0,

DAcc
~p,p8!1Df~p9!111dp1p8,0<0,

DAff
~p,p8!1Dc~p9!11<0,

DAff
~p,p8!1Df~p9!11<0,

DAfc
~p,p8!1Df~p9!11<0,

DAfc
~p,p8!1Dc~p9!11<0, ~3.17!

where, analogously to the enstrophy cascade case, only a
subset of~3.17! has to be considered. Supplementary rela-
tions, like the ones obtained after Eq.~3.13!, are in order to
avoid possiblex-dependent correlation functions. We are led,
here, to

Dc~p!521 if Acc
~0,0!5c~p!,

Df~p!521 if Acc
~0,0!5f~p!,

Dc~p9!521/2 if Acc
~p,p8!5c~p9! for p1p8.0,

or Afc
~p,p8!5c~p9! or Aff

~p,p8!5c~p9!,

Df~p9!521/2 if Acc
~p,p8!5f~p9! for p1p8.0,

or Afc
~p,p8!5f~p9! or Aff

~p,p8!5f~p9!. ~3.18!

Once we have some solution at hand, derived from the
conditions obtained here, we may associate inertial range
exponents to each one of the fieldsc (p) andf (p), expressed
by 4Dc (p)11 and 4Df (p)11, respectively. From these val-
ues we have to select the one that will appear effectively in
experimental situations. This problem is investigated in the
following section.

IV. ANALYSIS OF THE CONSTANT FLUX CONDITIONS

We have obtained so far all the conditions necessary to
find minimal models related to an enstrophy or energy cas-
cade in a quasi-two-dimensional fluid. In order to explore
them, the first observation we can make is that these models
must belong to the infinite set of solutions found in the
former study of unperturbed conformal turbulence. This fol-
lows directly from the conditions that depend only onc (0).
A strategy of computation could thus be just a numerical
analysis of all possible combinations of fields for these pre-
viously known minimal models. As straightforward as it may
sound, this approach is hardly useful when the number of
primary operators becomes large, a fact that happens already
for the first few minimal models.

A more interesting computational scheme is provided if
we look for solutions of the form

c5c01 f a~g!c1 ,

f5 f b~g!f0 , ~4.1!

wheref a(0)5 f b(0)50, that is, we are considering solutions
with c (p)5c1 for p>1 andf (p)5f0 for any p. This ap-
proach is valuable since a little reflection shows that if it is
impossible to satisfy the constant flux conditions through any
pair of fieldsc1 andf0 , then there are no further solutions
for the model under consideration. Our task, therefore, is to
consider the set of minimal models representing conformal
turbulence without perturbations, from which the fieldsc0
may be immediately obtained, and add, according to the new
constraints associated with three-dimensional effects, the
fieldsc1 andf0 .

In the study of the inertial range exponents, we may think
of at least three limits forf a,b(g): ~a! g→0, that is,
f a,b(g)→0; ~b! f a,b(g).1; and~c! g@1, which may be de-
fined as a ‘‘strong-coupling’’ regime. In the first case, the
perturbations play a negligible role and everything is de-
scribed by unperturbed conformal turbulence. A competition
between exponents shows up in the second case, where the
less steep spectral slope will be the most relevant in the limit
of higher wave numbers. We see, in this way, that cases~a!
and ~b! cannot give any of the steeper spectral slopes ob-
served in real experiments. The third case is, in fact, where
we have some hope to find a relation with experimental re-
sults. It would be unphysical to havef a,b(g)→0, for large
values ofg, since in this limit we would recover the unper-
turbed system. Also, it is unlikely to havef a,b(g)→ const:
taking, for instance, Gaussian random forcesf a

(1) and f a
(2) ,
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with ^ f a
(1)(xW ,t) f b

(2)(xW8,t8)&50 and ^ f a
(2)(xW ,t) f b

(2)(xW8,t8)&
5Dab(uxW2xW8u)d(t2t8), it may be proved, from the
retarded nature of the diffusion propagator, that

^ f a
(2)(xW ,t)vb(xW8,t)&5gDab(uxW2xW8u), yielding

]

]g F ^ f a
~2!~xW ,t !vb~xW8,t !&

Dab~ uxW2xW8u!
G51. ~4.2!

Let us thus assume thatf a,b(g) diverges asg→`. This
means that the inertial range exponent derived fromc0 may
be discarded and we have to analyze only the competition
between the exponents obtained fromc1 andf0 .

We performed an investigation of the first six minimal
models for both the enstrophy and energy cascade cases. In
the enstrophy case we found solutions for all the models
studied. They are represented in Table I and in Fig. 1. In
Table I, we show the fieldsc1 andf0 for the minimal mod-

els ~2,21!, ~3,25!, and ~3,26!, together with their associated
inertial range exponents. As the number of solutions became
larger, we had to represent the other three models,~6,55!,
~7,62!, and ~8,67! in Fig. 1, where we plotted the most rel-
evant exponents, found from the competition betweenc1

andf0 , in the strong-coupling regime. We observe, from the
results, that there is good agreement with experimental veri-
fications, with the only considerable deviation occurring for
the very small set of two solutions for the model~2,21!. The
solutions, excluding the model~2,21!, were organized in
Table II, where values of mean exponents and standard de-
viations are described. It is clearly seen that the perturbed
exponents are in general less than the exponents of the un-
perturbed fluid.

In the energy case, an interesting fact happened: most of
the models studied did not yield any solution for the fields
c1 andf0 . Only the model~10,59!, represented in Table III,
gave solutions, all of them with inertial range exponents

TABLE I. Solutions for the constant enstrophy flux condition. The first six models of unperturbed
conformal turbulence were analyzed, all of them yielding possible definitions ofc1 andf0 . Here we show
the results for the minimal models~2,21!, ~3,25!, and~3,26!.

c1 f0 4Dc111 4Df011 c1 f0 4Dc111 4Df011

minimal model:~2,21! minimal model:~3,26!
~1,9! ~1,9! -7.38 -7.38 ~1,6! ~1,6! -4.96 -4.96
~1,9! ~1,10! -7.38 -7.57 ~1,6! ~1,7! -4.96 -5.46

minimal model:~3,25! ~1,6! ~1,8! -4.96 -5.73
~1,6! ~1,6! -4.8 -4.8 ~1,6! ~1,9! -4.96 -5.77
~1,6! ~1,7! -4.8 -5.24 ~1,6! ~1,10! -4.96 -5.58
~1,6! ~1,8! -4.8 -5.44 ~1,6! ~1,11! -4.96 -5.15
~1,6! ~1,9! -4.8 -5.4 ~1,7! ~1,6! -5.46 -4.96
~1,6! ~1,10! -4.8 -5.12 ~1,7! ~1,7! -5.46 -5.46
~1,6! ~1,11! -4.8 -4.6 ~1,7! ~1,8! -5.46 -5.73
~1,7! ~1,6! -5.24 -4.8 ~1,7! ~1,9! -5.46 -5.77
~1,7! ~1,7! -5.24 -5.24 ~1,7! ~1,10! -5.46 -5.58
~1,7! ~1,8! -5.24 -5.44 ~1,7! ~1,11! -5.46 -5.15
~1,7! ~1,9! -5.24 -5.4 ~1,8! ~1,7! -5.73 -5.46
~1,7! ~1,10! -5.24 -5.12 ~1,8! ~1,9! -5.73 -5.77
~1,7! ~1,11! -5.24 -4.6 ~1,8! ~1,11! -5.73 -5.15
~1,8! ~1,7! -5.44 -5.24 ~1,9! ~1,6! -5.77 -4.96
~1,8! ~1,9! -5.44 -5.4 ~1,9! ~1,8! -5.77 -5.73
~1,8! ~1,11! -5.44 -4.6 ~1,9! ~1,10! -5.77 -5.58
~1,9! ~1,6! -5.4 -4.8 ~1,10! ~1,6! -5.58 -4.96
~1,9! ~1,8! -5.4 -5.44 ~1,10! ~1,7! -5.58 -5.46
~1,9! ~1,10! -5.4 -5.12 ~1,10! ~1,8! -5.58 -5.73
~1,10! ~1,6! -5.12 -4.8 ~1,10! ~1,9! -5.58 -5.77
~1,10! ~1,7! -5.12 -5.24 ~1,10! ~1,10! -5.58 -5.58
~1,10! ~1,8! -5.12 -5.44 ~1,10! ~1,11! -5.58 -5.15
~1,10! ~1,9! -5.12 -5.4 ~1,11! ~1,6! -5.15 -4.96
~1,10! ~1,10! -5.12 -5.12 ~1,11! ~1,7! -5.15 -5.46
~1,10! ~1,11! -5.12 -4.6 ~1,11! ~1,8! -5.15 -5.73
~1,11! ~1,6! -4.6 -4.8 ~1,11! ~1,9! -5.15 -5.77
~1,11! ~1,7! -4.6 -5.24 ~1,11! ~1,10! -5.15 -5.58
~1,11! ~1,8! -4.6 -5.44 ~1,11! ~1,11! -5.15 -5.15
~1,11! ~1,9! -4.6 -5.4
~1,11! ~1,10! -4.6 -5.12
~1,11! ~1,11! -4.6 -4.6
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close to23.0, which do not support the conjecture of a
Kolmogorov exponent25/3 for the range of lower wave
numbers. However, more theoretical and experimental work
is necessary in order to arrive at a conclusive answer on this
point.

V. BOUNDARY PERTURBATIONS

It is worth understanding what happens when boundary
effects are supposed to have some influence on the problem
of conformal turbulence. Below, we obtain the set of condi-

FIG. 1. Graphic representation of the inertial range exponents in the enstrophy cascade case.~a!, ~b!, and~c! refer to the minimal models
~6,55!, ~7,62!, and~8,67!, respectively. The horizontal axis, labeled by~m,n!, represents the most relevant field betweenc1 andf0 , in the
strong-coupling regime. The ordering of fields is the same as in the tables.
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tions needed to account for it, leaving a numerical analysis
for future investigations.

The basic modification here is that we have to study fur-
ther OPE’s in the conditions of constant enstrophy or energy
fluxes, found in Sec. III, since now VEV’s of single opera-
tors do not necessarily vanish. In this way, let us define the

primary operatorA(O1O2)O3

(p,p8)p9 as the one with the lowest di-

mension appearing in the OPE (O1
(p)O2

(p8))O3
(p9) , where the

product ofO1
(p) andO2

(p) was computed first. The conditions
we are looking for must be obtained from the analysis of the
x dependence of the dominant terms in~3.11! and~3.14!. In
the situation of a constant enstrophy flux, the large-scale part
of ~3.11! gives

DAcc
~0,0!1Dc~0!2DA~cc!c

~0,0!0 1350, ~5.1!

which is nothing other than the condition established in Sec.
II, in a diferent notation. On the other hand, the small-scale
part of ~3.11! gives one or both of the conditions

DAfc
~p,p8!1Dc~p9!2DA~fc!c

~p,p8!p91250,

DAcc
~p,p8!1Dc~p9!2DA~cc!c

~p,p8!p91350. ~5.2!

A similar analysis for the case of an energy cascade yields,
for the large- and small-scale parts of~3.14!, respectively,

DAcc
~0,0!1Dc~0!2DA~cc!c

~0,0!0 1250 ~5.3!

and

DAcc
~p,p8!1Dc~p9!2DA~cc!c

~p,p8!p9111dp1p8,050,

DAcc
~p,p8!1Df~p9!2DA~cc!f

~p,p8!p9111dp1p8,050,

DAff
~p,p8!1Dc~p9!2DA~ff!c

~p,p8!p91150,

DAff
~p,p8!1Df~p9!2DA~ff!f

~p,p8!p91150,

DAfc
~p,p8!1Df~p9!2DA~fc!f

~p,p8!p91150,

DAfc
~p,p8!1Dc~p9!2DA~fc!c

~p,p8!p91150. ~5.4!

The computation of inertial range exponents is also modified.
We now have to consider all possible combinations such as
c (p)c (p8) and f (p)f (p8) in the evaluation of the velocity-
velocity correlation function. The observed inertial range ex-
ponent must be obtained from 2Dc (p)12Dc (p8)

22DAcc
(p,p8)11 or 2Df (p)12Df (p8)22DAff

(p,p8)11.

VI. CONCLUSION

The problem of two-dimensional turbulence was investi-
gated, taking into account the presence of three-dimensional
perturbations. They were introduced in an effective way, rep-
resented by random forcing terms that act at small scales in
the two-dimensional Navier-Stokes equations, as suggested
by experimental observations. A coupling constantg, related
to the strength of these additional forces, allowed us to write
a power expansion for the velocity field, containing also a
compressible part. An infinite set of equations was found by
just collecting terms with the same powers ofg. The com-
ponentsc (p) andf (p), appearing in the power expansion of
the velocity field, were assumed to be primary operators of
some conformal minimal model. We obtained, then, from
point-split products of operators, a group of conditions in
order to have a solution of the Hopf equations and to repro-
duce the situation of a constant enstrophy or energy flux
through the inertial range. In the constant flux conditions,
large- and small-scale terms were defined and evaluated by
means of an extension of the dimensional argument em-
ployed formerly in the study of analogous correlation func-
tions. An analysis of the first six minimal models of unper-
turbed conformal turbulence was performed, showing that
the picture of a constant enstrophy cascade is in good agree-
ment with experimental data, yielding inertial range expo-
nents, for the strong coupling regime,g@1, very close to the
ones observed in the laboratory. Regarding the energy cas-
cade case, we noticed that most of the minimal models con-

TABLE II. Statistical data related to the solutions found for the
constant enstrophy flux condition, in the strong-coupling regime,
where a comparison is made with the unperturbed values of the
inertial range exponents.

Minimal
model

Exponent
~g50!

Mean exponent
(gÞ0)

Standard
deviation

~3,25! -4.6 -4.90 0.28
~3,26! -4.23 -5.25 0.27
~6,55! -3.73 -5.89 0.21
~7,62! -4.03 -5.46 0.28
~8,67! -4.51 -4.90 0.34

TABLE III. Solutions for the constant energy flux condition.
The analysis of the first six models of unperturbed conformal tur-
bulence showed that most of them were ‘‘blocked’’ by the presence
of perturbations. The only solution obtained corresponds to the
model ~10,59!.

Minimal model: ~10,59!
c1 f0 4Dc111 4Df011

~1,6! ~1,6! -3.07 -3.07
~1,6! ~2,12! -3.07 -3.06
~1,6! ~3,18! -3.07 -3.05
~1,6! ~4,24! -3.07 -3.04
~2,12! ~1,6! -3.06 -3.07
~2,12! ~2,12! -3.06 -3.06
~2,12! ~3,18! -3.06 -3.05
~2,12! ~4,24! -3.06 -3.04
~3,18! ~1,6! -3.05 -3.07
~3,18! ~2,12! -3.05 -3.06
~3,18! ~3,18! -3.05 -3.05
~4,24! ~1,6! -3.04 -3.04
~4,24! ~2,12! -3.04 -3.06
~4,24! ~4,24! -3.04 -3.04
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sidered in our study were unable to give solutions for the
perturbed system. Only one solution was obtained, with in-
ertial range exponents around23.0. It would be interesting
to investigate further minimal models for the energy case, in
order to see if a closer connection with the results indicated
in experiments could be reached.

From Tables I and III, and Fig. 1, we see clearly that there
are many solutions, differing by just one of the fieldsc1 or
f0 , that give exactly the same inertial range exponents in the
strong-coupling regime. It is tempting, then, to conjecture
that one could find ‘‘plateaus’’ for the spectral slopes, while
varying some set of external parameters. This question is
contained, of course, in the deeper problem of how to match
large-scale properties of the fluid with the minimal models
describing the inertial range.

A point that deserves attention is the crossover between
unperturbed conformal turbulence and the results obtained in
the strong-coupling regime. A bridge between these two situ-

ations may be investigated not only by varyingg, as we did
in Sec. IV, but also throughm→0, when the effects of small-
scale three-dimensional perturbations on the constant enstro-
phy or energy fluxes become negligible. Finally, it is impor-
tant to stress that a standard direct numerical simulation of
Eqs. ~3.4! and ~3.5!, up to some leveln in their hierarchy,
would be an interesting way to study the above questions and
the physical assumptions addressed in the present work.
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