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Three-dimensional perturbations in conformal turbulence
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The effects of three-dimensional perturbations in two-dimensional turbulence are investigated through a
conformal field theory approach. We compute scaling exponents for the energy spectra of enstrophy and
energy cascades, in a strong-coupling limit, and compare them with the values found in recent experiments.
The extension of unperturbed conformal turbulence to the present situation is performed by means of a simple
physical picture in which the existence of small-scale random forces is closely related to deviations of the exact
two-dimensional fluid motion.S1063-651X96)09607-9
PACS numbdps): 47.27.Gs, 11.25.Hf

[. INTRODUCTION inertial range exponents will be obtained here in reasonable
agreement with the experimental data.

It has been recognized that turbulence, with its manifold This paper is organized as follows. In the next section we
experimental realizations, is one of the challenging problemsriefly review the most important and practical aspects of
for which very different approaches, ranging from pureconformal turbulence in order to make the paper as self-
mathematics to engineering applications, have been devetontained as possible. In Sec. Ill we discuss some of the
oped in an interesting complementary way. One of the moséxperiments carried out to investigate two-dimensional tur-
important methods to study turbulence is, in fact, the formubulence. This will motivate us to define an effectiand
lation via field theory, based on its relationship with stochasinfinite) set of stochastic partial differential equations that
tic partial differential equationfl,2]. However, such a tech- represents a quasi-two-dimensional fluid under the influence
nique is far from being well established and complete, so thatf three-dimensional perturbations. The conformal approach
new ideas and important improvements are constantly ags then introduced in order to solve the Hopf equations for
pearing on the subject. the turbulence problem. Furthermore, the constant enstrophy

Recenﬂy, P0|yakov Suggested that nonunitary minimaland energy flux conditions are also studied. EXp"Cit solu-
models of conformal field theory could be used to describdions are found and described in Sec. IV and, in Sec. V, the
the physics of two-dimensional turbulenfg]. The advan- problem of boundary effects is discussed. Finally, in Sec. \
tage of this proposal is that one can deal in a controllabldV€ comment on our results and on possible directions for
way with a set of anomalous dimensions and short-distanc/ture investigations.
products. An infinite number of inertial range exponents fol-
lows from this approacti4—6] and one of the still open
problems is how to find “selection rules,” which would de- Il. CONFORMAL TURBULENCE
fine the experimentally relevant minimal models or the con-
nection between them and statistical characterizations of th
random forces acting on the system. These ideas have

The minimal models of conformal field theofyt4] are
enerically defined by a pair of relatively prime numbers

tracted the attent f th q lizati p,g) with p<q. These models contain a subset of
racte € attention of many authors and generafization —1)(q—1)/2 scalar primary operatois, , labeled by
have been investigated, such as, for instance, possible bouny- - . "

: . ) s=m<p and 1sn<(g—1)/2 if p is even or
ary effectd 7], alternative physical pictures for the enstrophy 1

i =m=(p—1)/2 and k=n<q otherwise, having dimensions
and energy casca and magnetohydrodynamic turbu-
lence[9] ay dés, 9 ydrody Amn=[(pn—qm)®—(p—q)®1/4pq. The reason for the

We will consider, in this paper, the problem of conformal _ch0|ce of scalar operators is that we will be dealing with

turbulence including in its formalism the influence of three-'sOtrOpIC correlation functlong in_the turbuler!ce problem.
dimensional effects. Our motivation comes from a number ofThe operator product expans/uQ@P_E) of tW? primary op-
experimental studies, in which approximately two- eratorsyiy  s,)(2) andyr, s, (2), with |z=2'|—0, is writ-
dimensional fluids were observed, together with the unavoidt€n as

able presence of three-dimensional perturbat[dfs-13. It

was verified that a quasi-two-dimensional fluid is perturbed

by small-scale forces originated from the the degrees of free¥(r, s,)(2) ¥, 5,)(Z")

dom related to the direction perpendicular to the plane of

motion. We will take this fact into account, noting that there  _ S (@@ Arss Ay s Ay
are also compressibility effects that cannot be neglected in an (r3.53)
effective two-dimensional theory of the perturbed system. A
generalization of the conformal approach will be devised and (r3.s3)
X(n,zm) C{(nl ..... n;(my, ... m,)}L*”1 L*nk
T 1 ASng=m
*Electronic address: moriconi@if.ufrj.br X L*ml' ) 'L*m|a a ¢(r3,ss)(2)y (2.)
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where |r;—r,|+1<rz< min(r;+r,—1,20—r,;—r,—1),  asthe dominant contribution in this short distance product. It
|s;—Sy| +1<sS3=< min(s;+s,—1,20—s;—s,—1), and we is important to note that in order to g&.5) it was necessary
have introduced, i112.1), the Virasoro generators of confor- to setCy;,5=Cy,.y and Cyy;(113=Cy1,1);1, as it follows
mal transformationd _,, and L_,,. The interest in these from the pseudoscalar nature of tadactor above. We then
models is related not only to their finite number of primary see tha{2.5) vanishes witha|—0 if
operators but also to the fact that their dimensions and the
form of short-distance products are completely known. Ap>2A4, (2.6

Let us look now at the problem of turbulence in two di- = | i o
mensions and show how it may be matcH&d with the which is one of .the constraln_ts that the qhosen minimal
above operator structures. The motion of an incompressiblB0del has to satisfy. An additional constraint comes from
fluid is assumed, even in the turbulent regime, to be dethe condition of a constant enstrophy or energy flux through

scribed by the Navier-Stokes equations for the velocity fieldhe inertial range, meaning thato(x)w(0))~x® or
(0,(X)v,(0))~x°, respectively. In the case of a constant

enstrophy flux, we have
&tv (1/+

d,0
84 —“—/)uﬂaﬂv =f,tvétv,, (2.2 . _
v 7 ((X)w(0))~(aa@) ¢~ 280([(L_,L2,

where f , represents a random force acting at large scales, —L_2L2_1)¢(x)](921/;(0)>. (2.7
determined by a characteristic length and »—0 is the
viscosity, associated with the small scale where dissipatioifhe correlation function on the right-hand side (@7) is
effects come into play, yielding a natural uv cutoff for the now evaluated by means of a purely dimensional argument,
system. In terms of the stream functigh related to the aslL ~2(A¢+44%3) which makes sense if one thinks that there
velocity field byv ,=eg,dg, we may write the following is an effective ir cutoff in the theory at the scales where the
equation for the vorticity fieldo = %y forcing terms act. ImposinR.7) to be independent df, we
get

O+ €450 0% gth= €450,f 5+ VP20 2.3

O Caplath 70U Capdals 23 Adp+Ay+3=0. 2.9
One of the fundamental problems of turbulence theory is t
find solutions of the Hopf equations, for statistical average
over realizations of the velocity field,

n the case of an energy cascade, the argument is the same
and the constraint turns out to he¢p+Ay+2=0. It is
known that there is an infinite number of minimal models
compatible with(2.6) and (2.8) [4]. The general belief, and
still an open problem, is that there may be universality
) L classes, associated with the statistical properties of the forc-
where the time derivative is expressed through the use of Eqng terms, that would single out one or another of the pos-
(2.3). In the inertial range, the standard view of the problemgjp|e solutions.

is that both forcing and viscosity terms may be neglected in - an aiternative analysis of conformal turbulence regards
order to formulate an effective set of Hopf equations. Conyhe existence of boundary effects on the vacuum expecation
sidering, furthermore, the convection term(lh3) as a van-  y5jyes (VEV's) of single operators in nonunitary theories
ishing p0|r’1t-spllt produzct OT fields,  that 'S+ [15]. In this case, one has to consider the OPE between
$12-2|=(a(dZ'/8) €4pd,)(2) °py(2') =0, when |z=2'|  4y) andy(0) in (2.7), picking up the most relevant opera-
—0, we would have, then, an exact solution(®#). A con- tor, let us say y. Now (2.8 is modified to
crete realization of this possibility may be achieved if WeA b+ Ay—Ay+3=0, with an analogous change for the
regard the stream functiof as a primary operator of SOme ,nsiant energy flux condition. Some of these further solu-

conformal minimal model. In this case we may use all the;ons in the enstrophy cascade pictureere obtained in Ref.
available information on operator dimensions and OPE’s t

extract physical results from the analysis of the problem. "the connection of the conformal approach with real ex-
According to this assumption, let be the primary operator periments or numerical simulations is made through the
that has the lowest dimensioh¢ appearing in the OPE  compytation of inertial range exponents, which describe the
¢y, between fields with the same dimensidny. Taking  gecrease of energy in the region of higher Fourier modes. In

d{w(X1,t)o(Xz,t) - o(Xy,1))]1=0, (2.4

a=|alexp(6), we will thus have the situation where VEV's of single operators vanish, the
inertial range exponents are given bA#+1 and, in the

lim 3€ Ee 3.(2) P9 52) opposite case, byMy—2A H+ 1. Goqd_ agreement has been

a0 Jlz—2'|=1a @ apZa B reached between the former possibility, for the the direct

enstrophy cascade case, and numerical simulafi& 7] of
2 5 —(Ap—289) the two-dimensional Navier-Stokes equations.
~ | dO[959.0,— dzdz071(aa)

Ill. THREE-DIMENSIONAL EFFECTS

Lo L adigE=myz 7y
XE C{n:m}L*nl Lnl-m L-ma™a $(2.2) In a series of interesting experiments, Hopfingtral.

—no280) —  — [10-12 studied the turbulence phenomenon as it happens in
~(aa) [LoLZ;—L L% ]9, (2.9  a rotating tank, where at its bottom there was an oscillating
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grid responsible for perturbations of the fluid motion. Ac- tion. We believe that the important ingredient, missing in the
cording to the Taylor-Proudman theor¢8—20, a rotating  previous conformal approach, is precisely the existence of
fluid tends to behave as if it were two dimensional and inthree-dimensional perturbations, which must be taken into
fact this was observed in the form of coherent structuresiccount in any realistic model of a quasi-two-dimensional
(vorticeg organized in the direction parallel to the rotation fluid.

axis of the tank. However, “defects” in the vortices were In view of the above considerations, let us write the two-
seen to propagate from the very turbulent region at the botdimensional Navier-Stokes equations as

tom of the tank up to the effectively two-dimensional sys-

tem. The essential picture extracted from these observations I TV I pv = v+ +gf P~ P, (3.D)

is that the fluid should be best described in terms of two- (1) @) o i

dimensional equations containing not only large-scale forcwheref;” and f.” are stirring forces defined at largé )

ing terms but also small-scale random perturbations, origiahd small u<L) scales, respectively. The dimensionless
nated from either vortex breakdown or soliton pulsesconstantg represents, roughly, a coupling with the three-
propagating along vorticity filaments. The experimental datglimensional modes of the fluid. We assume that the dissipa-
suggested then the existence of an inertial range, likely to bon scalea is related, in principle, to the other scales of the
related to a direct enstrophy cascade and well approximate@foblem asa<u<L. This means that even though the per-
by E(k)~k ™25 which represents a less steep energy specturbations act at very small scales, when compared to the
trum than the one obtained by Kraichng2t], E(k)~k ™3, macroscopic size of the system, they are still much larger
or even other proposali22,23, not excluding conformal than the scale where dissipation occurs. _
turbulence[4]. This puzzling result is presently understood AN important point here is that the condition of incom-
to be due on|y to the measurement techniques used in tr@‘eSSIblllty, When formulated n three dlmenSIonS, readS
experiments, based on the analysis of the dispersion of sugav1+d2v2+d3v3=0, suggesting that the “projection” of
pended partic'es in the f|u|ﬂ_2] More recent'y, similar ex- this constraint to the two-dimensional world has to be given
periments were conduced by Narimowtal. [13] and direct  bY 9,0, =0(9), in the framework of Eq(3.1). The velocity
measurements of the turbulent velocity field were recordedield may be described, then, by means of a stream function
The results poingesd out the existence of a possible energy and a velocity potentia$ as

spectraE(k) ~k™ >~ at lower wave numbers, in agreement

wri)th the c(o)njecture of an inverse energy casc[emé,gand a Vo™ €padpht9ad. (3.2

. —-5.5+0.5
range at higher wave numbers, whek)~k - I It is of further interest to study, besides the vorticity the
this region, the spectral slope was seen to depend on thtﬁvergence ofv,,, given by p=gd?¢. An exact, although
controlling external conditions, with results varying from jnfinite  chain of equations may be generated if we expand
E(k)~k™>" up to E(k)~k % It is worth noting that & anq ¢ in powers ofg, substituing them intq3.1) and

-5 . y
spectral lawE(k)~k "> follows from Rhines’s theory of ¢qjiecting the coefficients of the obtained series. Defining, in
B-plane turbulenceg24] and, alternatively, is closely ap- nig way

proximated by some solutions of the constant enstrophy flux

condition in the conformal approach, such as the minimal * *

models(9,71) or (11,87. =2 g™, w= g™,
The variation of exponents obtained in the experiments n=0

may have a theoretical counterpart in the existence of a set of " "

operator anomalous dimensions, making it interesting to ana- _ h .(n _ n+1(n

lyze the problem from the conformal field theory point of ¢_n§=:O 9", p= 2 g™, 33

view. It is clear, however, that the inertial range exponents,

found in Ref.[4], cannot reproduce the experimental situa-we get the set of coupled equations

n n—-1

&tw(n)_" 2 Eaﬁ§a¢(p)&ﬁﬁz¢(n_p)+ 2 [aﬁ¢(9)aﬁ02w(n—p—l)+ a2¢(p)(y2w(n—p—l)]: 19?0+ Eaﬂélaf(ﬁZ)&n,lv
p=0 p=0
(3.49

0O+ €,50, 0005 Y 0= 120 O+ €,50,15 (3.4b

n—-1 n

(gtp(”)_{_ pZO [aaaﬁd)(m(gaaﬁ(ﬁ(n—p—l)_F aa(b(p)(;a(;Z(ﬁ(n—p—l)] + pZO [Zeaﬁ{;ﬁagd)(p)(ga(ggw(n—m_‘_ €aﬁ(9a¢(n_p)aﬁaz¢(p)]

n+1
i pgo [0t P 000 g "~ P TV = 3PP o2y " P T V= pp™, (3.40

3P V420,40 5023 ,9 gV + 2€ 450 95 00 303, O + €459, Y V0 7?0 — 2020 P YV = v52p O+ 9,12, (3.40
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and, finally, the constraint of incompressibility for the wherey" and ¢ have dimensiond 4™ andA ¢, re-
g-independent part of the velocity field, which defines thespectively.
pressure term, The introduction of a scalkin (3.7) means that the per-
turbed system exhibits a breaking of scale invariance in the
inertial range. We will see later that this phenomenon is sig-
naled by the existence of constant enstrophy or energy fluxes
that depend on the small scales of three-dimensional pertur-
bations. It is conceptually important to understand the physi-
cal origin ofl. A clue for this comes from the structure of
couplings between/(?) and the other fields, as expressed in
Eq.(3.4). As we have already observe(?) is effectively an
external field in the equations fop{™ (with n=1) and
¢ (for anyn). In this way, it is plausible to have a relation
betweenl and the scales involved in the dynamicsydf’.
Now, if we consider the turbulent limit of the equations for
4O, corresponding tav—0 (or, alternatively,a—0), we
We observe now that Eq3.4D is identical to the one that are left essentially with the correlation lendtof large scale
corresponds to an unperturbeg 0) two-dimensional fluid.  random forces. A simple choice thus is to consittel. In
This means that the fielg{® will be related to an enstrophy this respect, one may observe that the small spateould
or energy cascade, even in the presence of three-dimensiorgiko be used in the definition 6f We have, however, physi-
effects. This field plays the role of an external random vari-cal reasons to believe that this does not happeis related
able in the other equations, since its dynamics is independefs the forcing terms in the equations f¢f") and ¢(*), which
of the other componenig™ or to the fieldg (in general, the  we expect to be irrelevant when compared to the nonlinear
subset{(@, gD, . M $O sM) . $(""1L contains  convection terms in the range of wave numbers given by
fields that act like external random perturbations in the equaty|<1/y.
tions for 4P and ¢(°~Y), with p=n+1). Considering that 't is interesting to note that there is an analogy between
(3.4 gives relatively complex equations, the analysis of thegyr problem and the statistical mechanics of second-order
problem might seem hopeless, perhaps being addressed ofMase transitions for a system close to its critical point. In
to a numerical treatment. However, we can extend the conhijs case, one can study deviations of the critical temperature
formal approach, applied previously to the unperturbed case; . by means of an expansion iff ¢ T) and through the use
to find here solutions of the Hopf equations. Our basic asof the operator structure of the critical theds]. Here, in
sumption is that not only/(®) but also the other components the turbulence context, the “critical theory” is just what we
in the power expansions af and ¢ are primary operators get wheng— 0.
that belong to some minimal model in a conformal field  |n order to simplify the notation we will keep usirg.3),
theory. It is necessary, then, to define a sdalgossibly  with the above observations in mind. We are interested to
associated with intermittency effects, which allows us toobtain possib|e combinations of primary operators, in Eq.
write the dimensionally correct expansion (3.7, that would not affect, in the limiz— 0, the constant
enstrophy or energy fluxes, obtained from the dynamics of
” o the field 4(©). Within this point of view, it is important,
w=2 fol 280780 gnym) therefore, to consider short-distance products of a certain
n=0 number operators, as it follows fro(3.4). Taking two ge-

B neric primary operator©{® and 0" (for example,$™
b= f112887 =20 gn () 37 and ), with QimensionsAO(lp) and AOY"), respec-
=0 tively, we may write

(0205009, °) = P 09?0 = 9,1 M- 5?P. (3.5

In the above expressions=1. We have obtained, therefore,
a set of stochastic partial differential equations. In a statisti
cal description, reflecting a stable asymptotic limit for the
correlation functions ofw and p, Hopf equations may be
straightforwardly written as

N M
ol IT o™(x,t) TI p™(x,0))=0. (3.6
i=1 j=N+1

022108 (2, 7) = (a@) *48 o, 204"~ 30F")

O(lp)!o(zpl) T T aEngE=ma(ep’) (5 5y
XD Comy 2 nnm, . by Lonbom Lom@™ @ AG ) (2,2), (3.9

whereAE§’l*”’('3)2 is the primary operator with the lowest dimension in the above OPE. The short-distance products appearing in
(3.4) are listed below together with the conformal field theory representation, obtained after straightforward computations:
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, —— AAPP) A (P AP 12 ] 2 P’
€apdath P dgd? PP )~ (@) Mhui TAVE AL 12 L L2 AP,

&Bd,(p)aﬁ(yzw(pwwa2¢<p>02¢<p’>~(a§<AAg’f LA¢<PLA¢<P’>71>|_71|__71A%p’>,
’ ’ — (p,p") _ (p)— (p')— T !
3aaﬂ¢<p>aa&ﬁ¢(p )No')aqg(p)(;aoﬁ(ﬁ(p )N(aa)(AAM, ApV—Ag 1)|_71|_71A(¢p$p ),
' ' ——AAPP) A () A P T2 7 2 n'
€apdpdod P 0ad gt P~ €40 o) P07 p P~ (a@) Moit TAPTIAVEIIL 12— 1 L2 JARP,

’ ’ — (P.p") _ A (P _ Ay _ !
8a0ﬁ'/’(p)aa0[¥'//(p )Nﬁzw(P)(;Zl/,(P )~ (aa) Ay AV CAY l)AEppl/';p ) 3.9

with p,p’=0, except in the last relation, for the product of scale” part as involving the field$(® and the other com-

the typeyy, wherep+p’=1. From(3.9) we see clearly that ponents ofy. Regarding the large-scale part, we already

Hopf equations are satisfied if know from the study of the unperturbed case that the con-
stant enstrophy flux condition is

AALY 27 y0>0, (3.103
w2 AALY + A gO +3=0. (3.12
AAGP) = Ay = AyfP) =10, (3100 1t is natural to assume, like in the case of unperturbed con-
(0.0") - (") formal turbulence, that the correlation functions in the sm_all-
AAy —AYP—AGP =120, (3.100 scale part may also be evaluated by means of a dimensional
. , argument, where, instead of using the typical large scale pa-
AARP)— AP~ AP —1>0, (3.100  rameterl, the correct choice turns out to be the small length

] , ) . ) scaleu. Assuming, furthermore, that—0 leads to a well
with p+p’=1 in (3.100 and p,p’=0 in (3.100 and  gefined limit, we just require the powers pf in the most
(3.10d. These equations are the first step in the generalizay|eyant terms belonging to the small scale part(@fL1)
tion of unperturbed conformal turbulence, in order to dea'(contributions that have the lowest powerad) to be non-
with a larger set of primary operators. We will find more eqative numbers. This discussion may be restated by saying

inequalities, restricting, then, up to some extent the numbef,a¢ e will need to select one or both of the conditions
of different operators allowed in the theory. Let us now write

the conditions for constant enstrophy or energy fluxes AAEﬁp¢p’>+A¢(p”>+2$0'
through the inertial range. Here we will assume that vacuum
expectation values of primary operators are zero. The alter- AAEle¢p,)+Al//.(p',)+3$0 (3.13

native possibility is discussed in Sec. V. The case of a con-

stant enstrophy flux requires, as commented before, that weccording to the analysis of the dominant terms in the small

compute({w(x) w(0)). From relationg3.4) we get scale part of(w(x)w(0)). In the derivation of(3.13 we

have used the OPE’s computed from the Hopf equations,

given by (3.9). Additional care must be taken if it happens

that Afﬁpl/;p')=¢(p") or A%p/)=w(p") for some values of

+g[agpPagaPyn P Z, p(p,”)a_ni p”. In thIS(p(HZ)Irfu_mStance it _|s necessary to have

Yp\P/=—-3/2 or Ay'P'=—1, respectively, to ensure spa-
+ 2P @2y P F2 ™ (0)). (3.11)  tially independent correlation functions and hence a constant
enstrophy flux.
In the above expression we may define a “large-scale” part Let us turn now to the case of a constant energy flux. We
as the one that depends solely on the fig{¥ and a “small-  have

(w(X)w(O)>= E 20 gr‘H—m<{€aﬂ(9a¢(P)aBaZ¢(n—p)
nm p=

0 n
(0o(X)04(0))=— Em ;O 9" ™({9205 P 353, p " P+ Gl €05 P 350 NP + €50, P 3 53 "]
+ 3,0 L PP 0P PO = 9,0 591° 9,0 g V18 0+ €5 p€ 4o WP g0, WP €0, ™ (0)

+93d,¢™(0)]). (3.19

Here we cannot refer immediately to the Hopf equations and formulate a set of conditions, as we did in the constant enstrophy
flux case. There are, i(8.14), OPE's that do not appear 8.4), viz.,



54 THREE-DIMENSIONAL PERTURBATIONSN.. .. 1555

! —(AAPP) A (P A (P ,
€0p€20g PP 350 P~ (@a@) At AV AVEIEDL  ARPD),

B ——(AA0O o7 (0 T -2y3 7 0,0
€05€200 00050 WO+ 3,07 PP 0P PO — 3,050 0,0 g O]~ (a@) APui 2RV 4L, — 40723 L _,]ARY,

’ ' — (p,p") _ (p) _ (p")_ 4
€120p8P g0 P~ €550, 30, P ~ (@) MAoiT TAPT AN AR,

/ ——AAPP ) AP A p(P) !
05 P 050, P~ (a@) SRS -AeP-adPI o AR (3.19

In (3.15 we have e, =(e,1—i€,p)/2. Using the above V. ANALYSIS OF THE CONSTANT FLUX CONDITIONS
point-split products, we can get the constant energy flux con-
ditions. First, the equation following from the large-scale
part of (v (x)v (0)),

We have obtained so far all the conditions necessary to
find minimal models related to an enstrophy or energy cas-
cade in a quasi-two-dimensional fluid. In order to explore
them, the first observation we can make is that these models
must belong to the infinite set of solutions found in the
former study of unperturbed conformal turbulence. This fol-
and then the inequalities that come from the small-scalggs directly from the conditions that depend only ¢ff).
terms, A strategy of computation could thus be just a numerical
) analysis of all possible combinations of fields for these pre-

AAPP)+ AY P+ 148, 50 4<0, viously known minimal models. As straightforward as it may
sound, this approach is hardly useful when the number of
primary operators becomes large, a fact that happens already
for the first few minimal models.
, A more interesting computational scheme is provided if
AALP)+ AP +1<0, we look for solutions of the form

AAPP)+AGP )+ 1+ 8, 0 (=<0,

AAPPY+Ap P +1<0,
ob TAS Y=o+ Ta(Q) U1,

AAE{)%D')_,.A¢(P")+1$O,
¢="1p(9) ¢o, (4.
AAPPY+AyPI+1<0, (3.17

where, analogously to the enstrophy cascade case Onlyvvaherefa(0)=fb(0)=0, that is, we are considering solutions
’ ’ (P) = > (P) = i -
subset 0f(3.17) has to be considered. Supplementary rela-Wlth v Yy for p=1 and ¢ o for any p. This ap

tions, like the ones obtained after B.13, are in order to proach is valuable since a little reflection shows that if it is

avoid possible-dependent correlation functions. We are led impossiple to satisfy the constant flux conditions throug.h any
here. to ’ "pair of fieldsy; and ¢, then there are no further solutions

for the model under consideration. Our task, therefore, is to
consider the set of minimal models representing conformal
turbulence without perturbations, from which the fields
may be immediately obtained, and add, according to the new
ApPl=—1 if AP=gP, constraints associated with three-dimensional effects, the
fields ¢, and ¢ .
"o . o) , In the study of the inertial range exponents, we may think
AyPI=—-1/2 if Agbpwp '=y?) forp+p’>0, of at least three limits forf,,(g): (8 g—O0, that is,
or APP =y or APP= "), fa6(9)—0; (b) fo5(9)=1; and(c) g>1, which may be de-
44 ¢¢ fined as a “strong-coupling” regime. In the first case, the
perturbations play a negligible role and everything is de-
AgPI=—1/2 it APP=¢P"  for p+p'>0, scribed by unperturbed conformal turbulence. A competition
, , ) , between exponents shows up in the second case, where the
or APP)=g®") or APPI=¢P") (318 less steep spectral slope will be the most relevant in the limit
of higher wave numbers. We see, in this way, that céges
Once we have some solution at hand, derived from thend (b) cannot give any of the steeper spectral slopes ob-
conditions obtained here, we may associate inertial rangeerved in real experiments. The third case is, in fact, where
exponents to each one of the field¥) and ¢(P), expressed Wwe have some hope to find a relation with experimental re-
by 4A P+ 1 and 4 ¢+ 1, respectively. From these val- sults. It would be unphysical to havig ,(g)—0, for large
ues we have to select the one that will appear effectively irvalues ofg, since in this limit we would recover the unper-
experimental situations. This problem is investigated in thdurbed system. Also, it is unlikely to havig ,(g)— const:
following section. taking, for instance, Gaussian random for¢&8 and f(?,

Az,b(p)= —1 if AE/?;/’;O): l/,(p),
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TABLE I. Solutions for the constant enstrophy flux condition. The first six models of unperturbed
conformal turbulence were analyzed, all of them yielding possible definitions ahd ¢,. Here we show
the results for the minimal mode(&,21), (3,25, and(3,26.

P b0 AA Yy +1 4A po+1 U b0 4Ny +1 AA pp+1
minimal model:(2,21) minimal model:(3,26
1,9 1,9 -7.38 -7.38 (1,6 (1,6 -4.96 -4.96
1,9 (1,10 -7.38 -7.57 (1,6 1,7 -4.96 -5.46
minimal model:(3,25 (1,6 1,8 -4.96 -5.73
(1,6) (1,6) -4.8 -4.8 (1,6) 1,9 -4.96 -5.77
(1,6 @, -4.8 -5.24 (1,9 (1,10 -4.96 -5.58
(1,6 1,8 -4.8 -5.44 (1,9 (1,11 -4.96 -5.15
(1,6 1,9 -4.8 -5.4 @, (1,6 -5.46 -4.96
(1,6 (1,10 -4.8 -5.12 @, ,7 -5.46 -5.46
(1,6 (1,11 -4.8 -4.6 @, 1,9 -5.46 -5.73
1,7 1,6 -5.24 -4.8 7 1,9 -5.46 -5.77
1,7 1,7 -5.24 -5.24 @, (1,120 -5.46 -5.58
7 1,9 -5.24 -5.44 @7 (1,1 -5.46 -5.15
1,7 1,9 -5.24 -5.4 1,8 1,7 -5.73 -5.46
a,7 (1,10 -5.24 -5.12 1,8 1,9 -5.73 -5.77
,7 (1,11 -5.24 -4.6 1,8 (1,11 -5.73 -5.15
1,9 ,7 -5.44 -5.24 1,9 (1,9 -5.77 -4.96
(1,9 (1,9 -5.44 -5.4 1,9 (1,9 -5.77 -5.73
(1,9 (1,11 -5.44 4.6 (1,9 (1,10 -5.77 -5.58
(1,9 (1,6 -5.4 -4.8 (1,10 (1,6 -5.58 -4.96
1,9 1,9 5.4 -5.44 (1,10 @7 -5.58 -5.46
1,9 (1,20 -5.4 -5.12 (1,10 1,8 -5.58 -5.73
(1,20 (1,9 -5.12 -4.8 (1,10 1,9 -5.58 -5.77
(1,20 1,7 -5.12 -5.24 (1,10 (1,10 -5.58 -5.58
(1,20 (1,9 -5.12 -5.44 (1,10 (1,11 -5.58 -5.15
(1,20 (1,9 -5.12 -54 (1,11 (1,6 -5.15 -4.96
1,10 (1,10 -5.12 -5.12 (1,11 a7 -5.15 -5.46
(1,10 (1,1 5.12 -4.6 (1,1 1,9 -5.15 -5.73
(1,11 1,6 -4.6 -4.8 (1,11 1,9 -5.15 -5.77
1,11 @, -4.6 -5.24 (1,11 (1,10 -5.15 -5.58
(1,11 1,8 -4.6 -5.44 (1,11 (1,11 -5.15 -5.15
(1,11 1,9 -4.6 -5.4
(1,11 (1,10 -4.6 -5.12
(1,11 (1,11 -4.6 -4.6

with <f(al)()z,t)f(ﬁ2)(;/,t/)>:0 and <f&2)()-(),t)f532)()2’,t’)> els (2,22, (3,29, and(3,26), together with their associated
VIRV, oo inertial range exponents. As the number of solutions became
—Dap(x=x"ot=t), it may be proved, from the larger Weghad tF()) represent the other three modél&5
retarded nature of the diffusion propagator, that'ar9er: ) rep '
(f(z)(i ) ()Z’ t))=gD (|>Z—>Z’|) yielding (7,62, and(8,67) in Fig. 1, where we plotted the most rel-

a WHELT B ' evant exponents, found from the competition betwegn
and ¢, in the strong-coupling regime. We observe, from the
-1 4.2) results, that there is good agreement with experimental veri-

' fications, with the only considerable deviation occurring for
the very small set of two solutions for the mod2|21). The

Let us thus assume thdt, ,(g) diverges asg—c. This solutions, excluding the moddR,21), were organized in
means that the inertial range exponent derived figmay Table Il, where values of mean exponents and standard de-
be discarded and we have to analyze only the Competitioﬁiations are described. It is clearly seen that the perturbed
between the exponents obtained frgmand ¢, . exponents are in general less than the exponents of the un-
We performed an investigation of the first six minimal perturbed fluid.

models for both the enstrophy and energy cascade cases. InIn the energy case, an interesting fact happened: most of
the enstrophy case we found solutions for all the modelshe models studied did not yield any solution for the fields
studied. They are represented in Table | and in Fig. 1. Iny; and¢y. Only the model(10,59, represented in Table I,
Table I, we show the fieldg, and ¢, for the minimal mod- gave solutions, all of them with inertial range exponents

J
ag

(FP(x,t)v 5(x" 1))
D .s(|x—x'])
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TABLE II. Statistical data related to the solutions found for the
constant enstrophy flux condition, in the strong-coupling regime,
where a comparison is made with the unperturbed values of the

(p.p") P _ AAPPIP Lo
AAS) +Ay AA(WW +2=0,

inertial range exponents. AA%’3 J+ AyP) — AAEW) ,/),p +3=0. (5.2
Minimal Exponent Mean exponent Standard A similar analysis for the case of an energy cascade yields,
model (g=0) (g#0) deviation for the large- and small-scale parts(8f14), respectively,
B . (0,0 (0)_ A A(0,00 | »_
(3,29 4.6 4.90 0.28 AA+AY AA )y T2=0 (5.3
(3,26 -4.23 -5.25 0.27
(6,55 -3.73 -5.89 0.21 and
(7,62 -4.03 -5.46 0.28 | op")
(p,p’ ") _ p.p")p” _
(8,67 -4.51 -4.90 0.34 AAPP )+ AYP) = AADD P+ 1+ 65,5 0=0,

(p,p") ") _ A AlPRP” —

. . . . . AASP)+AGPI—AAGD T +1+ 8515 0=0,
tions needed to account for it, leaving a numerical analysis
for future investigations. _ AA%p’qAlp(p”)_AAggyg)’&p”Jr 1=0,

The basic modification here is that we have to study fur-
ther OPE’s in the conditions of constant enstrophy or energy
fluxes, found in Sec. lll, since now VEV’s of single opera-
tors do not necessarily vanish. In this way, let us define the

. ! . . (p,p") (") _ (p.p")p" —
primary operatorA{R)N; as the one with the lowest di- ARG HAGTI—AAGyy +1=0,

(p.p") ") _AAMPPIP L g =
AAGy '+Ad AAgg s T1=0,

mension appearing in the OPB{P'OP))OP" | where the
product ofO{? andO? was computed first. The conditions

we are looking for must be obtained from the analysis of therne computation of inertial range exponents is also modified.
x dependence of the dominant terms(#11) and(3.14. In e now have to consider all possible combinations such as
the situation of a constant enstrophy flux, the large-scale pazi(p)l!j(pr) and ¢ ¢®) in the evaluation of the velocity-
of (3.1 gives velocity correlation function. The observed inertial range ex-
ponent must be obtained from AZ/P)+2A yP)
AADO+ Ay O—AAG9 +3=0, (5.0 —2AAPPY+1 or 24P+ 24 ¢(P) - 2AAPP )+ 1.

SARP S U - AAREY 110, (64

S . . . . VI. CONCLUSION
which is nothing other than the condition established in Sec.

Il, in a diferent notation. On the other hand, the small-scale The problem of two-dimensional turbulence was investi-
part of (3.11) gives one or both of the conditions gated, taking into account the presence of three-dimensional
perturbations. They were introduced in an effective way, rep-
TABLE IIl. Solutions for the constant energy flux condition. fesented by random forcing terms that act at small scales in
The analysis of the first six models of unperturbed conformal turthe two-dimensional Navier-Stokes equations, as suggested
bulence showed that most of them were “blocked” by the presencd®y experimental observations. A coupling cons@ntelated
of perturbations. The only solution obtained corresponds to thdo the strength of these additional forces, allowed us to write

model (10,59. a power expansion for the velocity field, containing also a
compressible part. An infinite set of equations was found by
Minimal model: (10,59 just collecting terms with the same powersgf The com-
A o 4A Y +1 4A o+ 1 ponentsyP and ¢(P), appearing in the power expansion of
the velocity field, were assumed to be primary operators of
(1.8 (1.6 -3.07 -3.07 some conformal minimal model. We obtained, then, from
(1,6 (2,12 -3.07 -3.06 point-split products of operators, a group of conditions in
1.9 (3,18 -3.07 -3.05 order to have a solution of the Hopf equations and to repro-
1.6 (4,24 -3.07 -3.04 duce the situation of a constant enstrophy or energy flux
(212 (1,6 -3.06 -3.07 through the inertial range. In the constant flux conditions,
(2,12 (2,12 -3.06 -3.06 large- and small-scale terms were defined and evaluated by
(212 (3,18 -3.06 -3.05 means of an extension of the dimensional argument em-
(2,12 (4,24 -3.06 -3.04 ployed formerly in the study of analogous correlation func-
(3,18 (1,9 -3.05 -3.07 tions. An analysis of the first six minimal models of unper-
(3,18 (2,12 -3.05 -3.06 turbed conformal turbulence was performed, showing that
(3,18 (3,18 -3.05 -3.05 the picture of a constant enstrophy cascade is in good agree-
(4,29 (1,9 -3.04 -3.04 ment with experimental data, yielding inertial range expo-
(4,24 (2,12 -3.04 -3.06 nents, for the strong coupling regings> 1, very close to the
(4,24 (4,24 -3.04 -3.04 ones observed in the laboratory. Regarding the energy cas-

cade case, we noticed that most of the minimal models con-
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sidered in our study were unable to give solutions for theations may be investigated not only by varyiggas we did
perturbed system. Only one solution was obtained, with inin Sec. IV, but also througlp— 0, when the effects of small-
ertial range exponents arourd3.0. It would be interesting scale three-dimensional perturbations on the constant enstro-
to investigate further minimal models for the energy case, irphy or energy fluxes become negligible. Finally, it is impor-
order to see if a closer connection with the results indicateggnt to stress that a standard direct numerical simulation of
in experiments could be reached. Egs. (3.4) and (3.5, up to some leveh in their hierarchy,
From Tables | and Ill, and Fig. 1, we see clearly that therayould be an interesting way to study the above questions and

are many solutions, differing by just one of the fiellg or  the physical assumptions addressed in the present work.
¢, that give exactly the same inertial range exponents in the

strong-coupling regime. It is tempting, then, to conjecture

that one could find “plateaus” for the spectral slopes, while ACKNOWLEDGMENTS
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