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Entropy of glassy polymer melts: Comparison between Gibbs-DiMarzio theory and simulation
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We calculate the free energy of a model for a polymer melt in a computer simulation of the bond-fluctuation
model and determine the entropy of the melt over a wide range of temperatures, including the region close to
the glass transition. The results are compared with the Gibbs-DiMarzio theory, a theory by Flory for semiflex-
ible polymers, and a modification of their theories due to Milchev. We can describe the data within the
framework of the Flory theory with Milchev's correction and discuss the consequences for the understanding
of the glass transitior{.S1063-651X%96)04407-9

PACS numbds): 61.20.Ja, 64.70.Pf, 61.20.Lc

I. INTRODUCTION investigated, and the theory has also been applied to copoly-
mers and polymer mixtures, whefg depends on the com-

A challenging problem in condensed matter physics is tgposition[28]. In all these cases the experimental data can be
develop a detailed understanding for the structural glass trarlescribed in the framework of the Gibbs-DiMarzio theory
sition[1-3]. The existing theoretical approaches can roughlyrather well.
be divided into two classes: Some theories regard the calo- With the present work we want to present a further test of
rimetric glass transition as a consequence of a dynamithe theory, in which not a derived, but the basic theoretical
anomaly which already occurs in the supercooled state of thgquantity, i.e., the density of states or equivalently the con-
liguid at temperatures above the glass transition temperatufegurational entropy of the melt, is in the center of interest. If
T, (e.g., mode-coupling theorid—6]), while other theories the entropy of a polymer melt is known over the range of
try to relate it to a thermodynamic phase transition, the cleatemperatures from the liquid to the supercooled state, the
signature of which is blurred by the finite experimental ob-approximation of the Gibbs-DiMarzio theory and of other
servation time. Examples for these latter theories are theelated theories can be tested and critically compared. There-
free-volume theory7] for liquids of all kind, including poly- fore we determined the entropy of a glassy polymer melt by
meric systems, and the Gibbs-DiMarzio theory which is esMonte Carlo simulation. Since the method was discussed in
pecially designed for polymer meli8—14. detail in Ref.[29], we focus in this paper on a comparison

If we write the canonical partition function as between theory and simulation.

The paper is organized as follows: In Sec. Il we repeat
some aspects of the model and discuss the necessary input
parameters. Section lll presents several theoretical approxi-
mations for the entropy and compares them with the simula-
the Gibbs-DiMarzio theory is concerned with calculating thetion data. Section IV discusses the results and the conse-
microcanonical partition functiofgpy(E,N,V). In this  quences for the understanding of the glass transition.
calculation it turns out that one findQ@gpm(E,N,V)<1
for certain combinations oN, V, and E. In the thermo-
dynamic limit we can replace Qgpu(E.N,V) by Il. MODEL AND SIMULATION

Qcpm((E/N),(VIN)) and view(E/N) and(V/N) as func- The model of our simulation is the bond-fluctuation
tions of temperature. If now upon cooling one reaches Va'“eﬁmdel(BFM) in three dimension§30,31. This is a lattice

of (E/N) and(V/N) for which Qgpy<1, an entropy catas- model for polymers which mimics the properties of a con-
trophe occurs, which is the theoretical counterpart of the eXguum model, e.g., a widespread distribution of bond angles
perimental “Kauzmann paradoxor{15,16. Itis an appeal- pepween the monomers. Each monomer occupies eight sites
ing feature of this theory that it thus connects the occurencgs 5 simple cubic lattice, forming a cubieee Fig. 1 We

of a glass transition al, with a vanishing entropy of the = chgose a lattice of $osites and puk =180 chains of length

supercooled melt at a finite temperatdre<T,. N=10 on it. The density of occupied lattice sites is
Based on the formula fdR gy, Several predictions for the

glassy behavior of polymeric systems can be derived. Some

of these predictions have been subject to experimental scru- 8KN —

tiny, e.g., T4 as a function of pressufd7] or of molecular p=—3 =05 (1)

weight[9,18—-21 and the discontinuity of specific heatg§

[22,23. In addition to that, the predictions about the influ-

ence of cross-link$24—2¢ and plasticize{27] have been Previous work demonstrated that the system with this
density behaves like a polymer mel81-33. Between
monomers there is excluded volume interaction. Monomers

* Author to whom correspondence should be addressed. in a chain are connected by bond vectors. These bond vectors

Z=2 Qcpm(E,N,V)e FE,
5
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volume, the temperature dependence f reflects the

P {brye) = 0 change of the monomer mobility with progressive supercool-
. / . ing and is therefore a more important quantity for the present
""" 5 H(bnge) = e model thanp of Eq. (1).

/° / Temperature is introduced into the system via a simple
blocked two-level Hamiltonian. Each bond can have only two values

of energy: 0, if the bond is in sta{&,0,0] and € otherwise,

- ie.,
: 0 if be[3,0,q
\ H=1¢ otherwise. )

jump forbidden

! o
T geometric In the following a bond in the state8,0,0 will be called a

“bond in the ground state,” a bond in another state will be

FIG. 1. A possible configuration of monomers in the melt. Theca!ed “excited.” The degeneracy .Of_the grOL,md state s
blocked sites cannot be occupied by monomers due to the selgo_6 and that of the excited state gg=102. This Hamil-

avoidance of the monomers. The corresponding bond is in théonian has the following consequence: Since a bond of type
ground state. The sketched jump would also violate the conditioh3;0,0] blocks additional lattice sites, the free volume and the

that no site can be occupied by more than one monomer. So it ig10bility of the chains is reduced. The more bonds are in this
impossible for the bond to reach the energetically favorable state state, the smaller the diffusion constant of the melt. This
mechanism is responsible for the glasslike freezing of the
are not arbitrary, but generated from a set of six basic vector@elt for T<0.2 if relaxation is performed with simple “hop-
by permutations and reflections of the coordinates, denoteging dynamics”[34]. For T=0.25 the diffusion coefficient
by [ . The basic vectors are of a chain can be determined reliably and fitted by a Vogel-
Fulcher equation, vyielding a rough estimate of
[2,0,0,[2,1,0,[2,1,1,[2,2,1],[3,0,0/,[3,1,0. (2) Ty=0.17+0.02 for the absolute freezing point of the model
[32-34. In order to judge the significance of this value, it
This special choice ascertains that chains cannot cross eahls to be emphasized that the diffusion coefficient decreases
other during the course of their motion with simple random-only by two orders of magnitude with respect to its high
hopping dynamic$30]. There is an important consequence temperature value in the accessible rafge0.25. Therefore
of this set of vectors. Figure 1 shows a portion of a typicalthe value,T;~0.17, is the result of &igh temperature ex-
configuration of the melt. Let us look only at the two uppertrapolation which is likely to overestimate the absolute
monomers and the bond in between. The bond is in the stafeeezing point of the model considerably. Similar observa-
[3,0,0, creating a layer of empty lattice sites between thetions were also made in a recent experimental sii&8j.
monomers. These lattice sites cannot be occupied by anoth&he valueT,~0.17 should thus not be interpreted as an ac-
monomer, since this requires a set of eight unoccupied sitesurate result for the Vogel-Fulcher temperature, but rather as
forming a cube. Thus they are lost as available volume. Aan estimate for the interesting temperature region, where one
bond in the stat¢3,0,0] blocks four sites of the lattice, a can expect the model to exhibit glassy behavior. Despite
bond in the stat¢3,1,0] blocks two sites. A complete occu- these drawbacks in the precise locationTgfthe structural
pation of the lattice is only possible if bonds of these tworelaxation of the studied polymer melt slows down drasti-
types are avoided. Due to their presence the actually effeally for T<0.25, which makes a proper equilibration of the
tive density of a configuration differs from E@L). Such an  melt on all length scales of a polymer by single-monomer
effective density can be defined in the following way: In thedynamics unfeasible in practice. Therefore we use the
equilibrated melt, consisting df chains of lengthN, addi-  slithering-snake algorithm, which allows us to meastegic
tional monomers are inserted one after the other, until th@roperties down ta'~0.16[36].
lattice is filled. During the insertion the chains are not al- Figure 2 shows the effective density; as a function of
lowed to rearrange. The maximum number(“holes”) of  inverse temperature. The effective densiiy; is always
insertable monomers is determined and used to define darger than the volume fraction of occupied lattice sites

effective densitypgs via even atT=c~. This is caused by the equilibrium population
of bonds in the statd$,0,0] and[3,1,0], which prevents the
_ KN monomers from packing as closely as possible, and the
Peft=" N ©) amorphous structure of the melt. When the melt is cooled

down, the Hamiltonian favors the clalsg0,0] and the effec-
whereM=KN+H denotes the total number of monomerstive density has to increase further. To illustrate this point
and holes in the system. This quantity is averaged over se¥rom another perspective Fig. 3 shows the rdtiof excited
eral independent configurations at each temperature. In thizonds as a function of inverse temperature. In the athermal
way we model the solvent molecules as particles of the samease f(T=%)=0.964, which is very close to
exclusion volume as the monomers of our chains. The effeck=9./(gy+d.) =102/108<0.944, the estimate of an iso-
tive density does not depend only on the number of chaindated two-level system. Evidently, 8=« the influence of
but also throughd sensitively on temperature, as we will see the density onf is rather small. This influence becomes
later. SinceH is directly connected to the accessible freelarger with cooling. In the limitT—0 no bond should be



54 1537
0.90 — T T T 12,5 — T T T
o®
o* °
() ®
0.85 k 12.0 } J
o
Pet o V4
0.80 | . 115 | ‘.. -
® ]
® X
075 1 1 1 Il 11'0 N 1 Il 1
0.0 2.0 4.0 6.0 0.0 2.0 4.0 6.0
1/T 1/T

FIG. 2. The effective density. vs inverse temperatug=1/T.

FIG. 4. The coordination numbervs the inverse temperature

In this and all further figure§ is already a reduced temperature g=1/T.

measured in units dfg/e [see Eq(4)]. The effective densitye is

dimensionless due to the definition in the text. . . . . . .
correlation function. This function was investigated Tor

. . : . and p=0.42 in Ref.[30], and for the present thermal model
excited and should vanish. We see that there is a saturatlor% Ref. [33]. Both studies found two distinct minima at dis-

effect at very low temperatures.always has a value slightly - - . : ;
larger than 0. The reasons for this are packing constraints dgncesr—\/g andrf m (measured in units of the lattice
constant These minima allow the definition aof for the

the melt. Not all bonds can reach the ground state simulta: . -
neously. A typical example for such a configuration can beBFM_as the number of nearest _nelghbors_thﬁdé or
seen in Fig. 1. The bond at the bottom cannot enter the stafe= V10. We prefer the latter choice, since it warrants that
[3,0,0] without violation of the excluded volume interaction. Predecessor and successor of a monomer in the same chain
This frustrationis responsible for the glass transition in this @ré always counted as nearest neighbors. In view of a later
system[33]. As in the original model of Gibbs and Di- Comparison with the Gibbs-DiMarzio theory a nearest neigh-
Marzio, we deal here with a lattice model, where a temperaPor is taken to be either a monomer or a hole on the lattice.
ture decrease leads to an increaséeffective) density and a  This definition yields a value larger than that resulting from
local stiffening of the chains. But unlike the original model, @n integration over the first peak of the pair-correlation func-
a strong tendency to liquid crystalline short range order idion and also larger than that used by IMu et al. in their
avoided. Such short range order was found in other Montstudies of binary polymer mixture$38,39, where an
Carlo (MC) studies|37] and is an undesirable side issue. interaction range of\6 was used and only monomers
Another important input parameter for the subsequenPelonging to different chains were considered, as is appro-
analysis is the coordination number i.e., the number of Ppriate in this different context. The coordination numbers
nearest neighbors of a monomer, which is related to the pai@ function of inverse temperature can be seen in Fig. 4. For
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very low temperatureg is only slightly larger than 11. For
high temperatures adopts a value of about 12. Such a value
is typical of a dense packing of hard spheres and reflects the
fact that our model mimics the properties of polymers in
continuous space rather closely. With decreasing temperature
the coordination number decreases only by about 1, although
the population of the ground state increases strongly. This
shows that the stretching of the bond vectors perturbs the
average distribution of monomers and holes around a mono-
mer only slightly.

Finally, the free energy and from that the canonical en-
tropy has to be determined for the model under consider-
ation. The first step towards the free energy is the measure-
ment of the excess-chemical potential. This is done by a
modification of Widom'’s particle insertion methgd0—42
and its extension to thermal systerh®9]. The excess-
chemical potential in combination with the partition function
of a single chain leads to the free energy of the system
[29,41). The partition function of the single chain is mea-

FIG. 3. The ratiof of bonds in an excited state vs the inverse sured in a MC-simulation by an algorithm proposed by Ku-

temperature3=1/T.

mar, Szleifer, and Panagiotopoul@k3], which can easily be
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applied to the BFM29]. With the help of the free energy the
additional measurement of the internal energy finally yields
the temperature and density dependence of the entropy.
Since the method and the raw data have already been pre- 0.20
sented in Ref[29], we restrict ourselves in the following to
the physical interpretation of the results and focus on the
comparison with various theoretical predictions for the en-

tropy.

0.25

015

entropy

010 ' — Trimer

A Simulation

Ill. APPROXIMATIONS FOR THE ENTROPY

The theoretical approximations we want to discuss differ
in the choice of the thermodynamic ensemble they are done 0.05 r ]
in. The first one, the pressure-trimer approximation, is done
in the canonical ensemble, same as the simulation.

The various more elaborate theoretical approaches by 0.00 ~* 0 2.0 6.0
Flory, Milchev, and Gibbs-DiMarzio are calculations in the 1T
microcanonical ensemble. The entropy density as calculated
in this ensemble can differ from the simulation value by an  FIG. 5. Comparison of the temperature dependence of entropy
amount of the orde®(R™?) if there areR degrees of free- per lattice sites with the PT-approximatiofisolid line; see Eq(6)].
dom in the system. SincR~2x10> we can expect devia- s is measured in units dfg .
tions of 2. ..3% which is much less than any effect that we
will discuss.

zpﬂﬂ,p>=; exp{— 7 (p)v(i,j)— BLH(by) +H(b)]1},

A. Pressure-trimer approximation (5)

The equilibrium properties of the studied polymer model
result from the competition between the intrachain energywhere the sum runs over all bond pairs compatible with the
and the density of the melt. Approximately, the effects of theexcluded volume constraints. With the help of Ef) the
density can be taken into account by balancing the volum@T-approximation for the entropy can be written down im-
requirements of subunits, consisting of three successivmediately as
monomers along the chain, with the pressure that is exerted

by the melt at the given densifg#4]. Since such a “pressure- SoB) = BlEp(B) —Fpr(B)]
trimer approximation”(PT-approximationyields rather ac-
curate estimates for the chain length and temperature depen- = B(H(b) +H(b))+In Zpr(B). (6)

dence of various quantities that probe different length scales
of the polymer(bond length, radius of gyration, elcit  Since a chain witfN—1) bonds yield{N—1)/2 trimers, the
seems worthwhile to apply this simple approach also to deentropy per lattice site is given bS’PT:K(N—l)SPT/st-
termine the entropy. The result of this calculation is compared with the simulation
The starting point of the PT-approximation is the calcula-data in Fig. 5. One can see that the PT-approximation de-
tion of the exclusion volume(i,j) for all trimers (,j)  scribes the temperature dependence of the entropy almost
which can be constructed from the set of allowed bond vecperfectly fromT=%« down to T~0.18 (8~5.5). This shows
tors [see Eq.(2)]. The exclusion volume is defined as the that the impact of the complicated many-body effects which
volume which is blocked for other monomers by the ex-determine the configurational statistics of the melt are
cluded volume interactiofi.e., four sites for a bond in the grasped, to a good approximation, by the influence of the
ground state; see Fig).lIf a trimer changes its configura- pressure on the bonds in the whole temperature range except
tion, the exclusion volume will fluctuate. Such a fluctuationfor very low temperatureé.e., for T<0.18. Since the tem-
can only occur if the arrangement of the adjacent monomergeratures belowl =0.18 belong to the region close to the
provides the required space. Hence the local monomer degass transition of the studied mod&4], the deviation be-
sity limits the number of available configurations andtween the PT-approximation and the simulation data sug-
thereby thedensity of stateof a trimer in the canonical gests to test whether the Gibbs-DiMarzio theory or related
ensemble. The simplest way of representing the effect of théheories can provide a better description. These different ap-
surrounding monomers is to regard the changes in the excligroximations for the entropy are exposed and compared with
sion volume as if they werenacroscopic volume fluctua- the simulated entropy in the subsequent sections.
tions The probability of a macroscopic fluctuation of size
AV in a system at pressur@ is proportional to
exp[— BpAV]. Accordingly, we choose the density of trimer
states as expf 7*v(i,j)], where 7™ is the (osmotiQ pres- Our exposition of the following three theoretical approxi-
sure of theathermal BFM, whose chain length and density mations for the partition function of a dense polymer melt
dependence is known analyticalf¢5]. Therefore the(ca-  will follow closely a discussion by Wittmanp6], who ana-
nonica) partition function of a trimer in this approximation lyzed in detail these theoretical approaches and their interre-
reads[44] lation.

B. Flory’s approach
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The purpose of Flory's original workd7—49 is the de- nonreversal random waltNRRW) always one of théz—1)
scription of semiflexible lattice polymers in solution. In this bonds has energy 0 instead &fit is

model every monomer occupies one lattice site. Flory fo-

cused on the temperature driven transition from flexible to 1 Mm! z\X(z—1\KN=2
collinear chains. A collinear bond angle is said to have enfF(f.K,N.M,2)= KI2ZK(M=KN)! (M | ™M

ergy 0, a flexed one energy The behavior of the melt is

characterized by a single temperature dependent parameter, K(N—-1) 1| (TN

the flexibility f -, which is defined as the probability that two fK(N—=1)/\z—1

successive bonds in a chain are not collinear
27— 2\ fk(N=-1)
z— 1)

(z—2)e Pe X 9

Tz P "

Hence the microcanonical entropy is given by

By construction this parameter describes the transition 1

from flexible chains at high temperature _
. . se(f,K,N,M,z)= = S(f,K,N,M,z

[fe~(z—2)/(z—1)] to collinear chains fof—0 (fr—0). a )=y S )
This definition separates the possible types of trimers into 1
two' classes and introduces_a two-level system: trimers with =2 In Qp(f,K,N,M,2), (10)
collinear(ground statgand with flexed bondé&excited statp \

A chain with N monomers hagN—1) bonds andN—2) ] o
bond angles which can have an energy. This definition iwhereV is the volume of the system, which is given by
only reasonable on the simple cubic lattice. On the generalY =8(KN+H) (there areKN monomers andi holes, each
ized tetrahedral lattice all trimers are equivalent and thus on@ccupying eight sites of the latticeSinceH depends on
arbitrarily chosen trimer has to be distinguished. But atémperatureV has to be calculated for each temperature
simple symmetry operation turns this trimer into another separately to ensure that the theory describes a melt at the
which should have the same energy. So no energy can R&me temperature and effective density as the simulation.
associated with the first bond angle in this case and only
(N—3) bond angles can contribute to the energy. That leads C. Milchev’s criticism
to different factors in the two formulations of the theory, but Flory's result was criticized by Guijrati and Goldstein

otherwise does not affect the results. Since we work on #51,52 and Milchev[53]. Here we follow Wittmann’s expo-

simple cubic lattice, we use Flory's result witN—2) bond  gjion of Milchev's approacti46]. The criticism is that the
angles for thémicrocanonicalpartition function of a system number of free lattice sites accessible to a chain isvhdiut

of K flexible polymers with “energy”f. [48], i.e., M—(j—1)M/K, if there are already(j—1) chains on the
K lattice, since each chain consumes an average voMithe
3 _ M! z According to Milchev and Wittmann the first factor in Eq.
QF(fF,K,N,M,Z)— K A e
KI2® (M—KN)! | M (9) has to be modified
y z—1>K(N_2) ( K(N—2) ) z z K z "
M fEK(N=2) M [1-(—-1)/KIM K—-(j—1) M’ (12)
1\ z-1 z—1 K z-1
><(z—l) - = . (12
M [1-(j-1)/KIM K—-(j—1) M
27— 2\ fEK(N=-2)
- - and thus
X z—1> 8
. . . . . . z K 7—1 K(N—-2) K K N—-1
In this equation the first factor is a mean-field approxima- IREYE — H K—(j—1)
tion for K SAW-polymers (self-avoiding walk-polymens =1 J
each consisting oN monomers, on a lattice witM sites 2\ K[ 71\ KN=2)
[46,47,5Q. The second factor is a binomial distribution, x| — _) (13
yielding the probability thaf -K(N—2) bond angles out of a M M
total of K(N—2) are flexed. - K K(N-2)
fe has been defined as the probability of a flexed bond, _ (K% z\hz—1
modeling the transition to the nematic phase. Our model K M M '
shows no nematic transition, but there is a parallel to the (14

original work of Flory: Both models contain a two-level _ o - - _
Hamiltonian. Since in our model the energy is rather con- With these substitutions a modified partition function re-
nected with the bonds than with the bond ang(8k; 2) has  sults, which differs from Eq(9) only by a constant prefactor
to be replaced by¥N—1) in Eqg. (8). We also change the KK N-1

notation fromfg to f to emphasize that in our workis no _ (_)

measure of the flexibility any longer. Assuming that for a Qu(f.KNM,2) K! Qe(1.KN,M,2). (15
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For large numbers lik& Stirling’s formula can be applied,
ie.,

K\ N—1
In(m) =(N-1)K, (16
yielding for the entropy
1
sM(f,K,N,M,z)z\—/InQM(f,K,N,M,z)
K(N—-1)
=se(f,K,N,M,2) + ——=. (17

\Y

The entropies,, andsg differ only by a positive additive
constant and se,,>sg . The discussion of Ref46] demon-
strated that in the limit of the totally occupied lattidé,~o
and T—0 sy, vanishes so thadz<0. This negative entropy
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FIG. 6. The entropy per lattice sigevs the inverse temperature

was interpreted as evidence for a thermodynamic phase traff=L/T. The results of the simulation are compared with the original

sition which occurs at a nonzero temperatlrg where

formulas(see text for details s is measured in units &g .

sg=0. On the other hand, in Milchev's treatment such a

transition is clearly absent.

D. Gibbs-DiMarzio theory of a compressible polymer melt

E. Results

In this section the results of the simulation are compared
with the formulas by FloryEq. (9)], Milchev [Eg. (15)], and
Gibbs-DiMarzio[Eq. (18)]. For this comparison two strate-

The Gibbs-DiMarzio theory describes a compressiblegies are followed: On the one hand, all input parameters, i.e.,
polymer melf8—11]. With the help of Stirling's formulathe ;¢ andH, are taken from the simulation, and on the other

corresponding partition function may be written[d4$)]
Qepm(f,K,N,H,2)=[(KN+H)z/2]KN-D

[(KN+H)z/2]!
“[(KNTH)Z/2]!

X Qe(f,K,N,M,2), (18)

where the number of holdd (and thus the volum&l =KN
+H) is treated as a variable parameter, almis the number

of nearest neighbors of a rodlike polymer. The paramiter
is defined vig46]

Re2?li(no2) 222 19
“2 INm2 (9

hand, one of them, i.ez, is used as a free fit parameter.
Figure 6 depicts the results for the case, where all param-
eter were determined in the simulatigine., no parameter
adjustment was done.Flory’'s and Gibbs-DiMarzio's for-
mulas exhibit a quite similar behavior. Both curves show that
the entropy strictly decreases when the system is cooled
down and becomes zero far~0.18 (Flory) and T~0.17
(Gibbs-DiMarzig. These temperatures coincide within the
error bars with the above mentioned estimate for the Vogel-
Fulcher-temperatur@&, of the system. Unfortunately it can-
not be decided if the entropy continues to fall for lower tem-
peratures or adopts a constant value. It should be remarked
that nearly the same results are obtaindd i not measured
for each temperature, but always set to its athermal value.
The effect of a variation oH on the entropy is therefore
rather weak for the present model. However, this may be
different in other systems. Therefore we w$e H(T) in the

Thus the entropy differs from the one calculated by Floryfollowing discussion to use a consistent interpretation of the
only by an additional term, giving an offset. However, in this theoretical parameters.

case the offset depends on temperature.
Wittmann has showri46] that the entropy of Gibbs-
DiMarzio is given by

KN+ H
KN+ H

KN+ H
KN+ H

SGDM

KN+H KN+H

Swu z

+§ In

. (20

SinceN<N, In[(KN+ H)/(KN+H)] becomes negative and
we find Sgpy<Sy . In the same limit, wher&,, vanishes,

If the predictions of these theories are compared with the
results of the simulation, some deviations are obvious. The
entropy is underestimated by the theories. For high tempera-
tures this is only a simple factor of about 1.3, but in the
temperature range of the glass transition the qualitative be-
havior changes. The entropy from the simulation is still dis-
tinctly nonzero and decreases only by a factor of 3 when the
melt is cooled fromT = to T,. Thus there is no evidence
for a vanishing entropy.

Milchev's formula provides a somewhat better description

Sepm Would thus become negative. The temperature wheref the simulation data. The theory predicts a strictly positive
Sgpom becomes zero is then identified with the temperature oentropy over the whole range of temperatures. As the simu-
the underlying thermodynamic glass transition, arguing thatation data Milchev’s entropy decreases by a factor of 3 with
Sepwm Stays 0 is the glassy phase. temperature, but a quantitative agreement cannot be ob-
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FIG. 8. The diffusion constand vs the inverse temperature
B=1/T. The filled circles are a direct measureméfrom [34]),
“ O is the Adam-Gibbs relation withA=0.0581, and 1" with
A=0.143(see text for details D is measured in units ch? per
Monte Carlo step whera is the lattice constant.

FIG. 7. Milchev's entropy per lattice sitgy,, vs the inverse
temperaturgB=1/T for different coordination numbeswhich are
treated as free parametessis measured in units dfg .

tained. Equation(17) overestimates the entropy by about

10. .. 20%. The largest discrepancies occur at intermedia}tﬁ%is a fit parameter. The theoretical predictions are compared
temperatures. However, one has to take into account that t P ' P P

theory treats the many-body interactions of a dense melt ino\%th the above mentioned results for the diffusion coefficient

rather approximate fashion so that a perfect quantitative co- 4|1ia8?esgoggjmbea?e(§etrr?;|ngi?e\élta ES;;J?;HT];%%%VM
incidence of simulation data and theoretical prediction g P

should not be expected. A deviation of 10-20 % is thereforetlt]eorenc"’II predictions with two different values .

e hough the shape of the theoretical and the measured curve
a rather satisfying result, is similar, the quantitative agreement is rather poor. We have
Based on this result one could try to improve the quanti-chosen t\'NO tq ical values fgok Theorv and sinrw)ulafion al-
tative agreement between Milchev’s theory and the simula- yP ' y

tion data by treating the coordination number as a free, te Wways agree at one temperature, while the theory overtates
perature inﬁependgnt parameter, whereasdH are takén Mor lower and underrates it for higher temperatures. To obtain
from the simulation. Figure 7 shows for a few reasonabl coincidence between the Adam-Gibbs relation and the simu-

choices for the coordination number that there is no value o it/li%n ?ﬁ;auat Z'PZJﬁlrgpﬁ_rOat:éﬁ?e’C:i;g g:rﬁst;tolgv.\?e?)rsttm-
z which describes the data over the whole temperature rangg. g pp i -
In the low temperature region the curves for allvalues peraturesA has to be set to 0.143, giving the lower curve.

S . ) hese two curves define the range, in whickan be varied.
coincide and always overestimate the simulated entropy. It is not possible to choose a \?alue Afthat predicts the
the temperature increases, the curves start to splay out, re-., .
maining either entirely above the simulation data, coinciding|8_|IfoSIon constant correctly over a whole temperature range.

with them at high temperatures, or crossing them at intermeﬁgp’ve\slﬁ]rééhgﬁéfjta(;gtgﬁIA?\i‘ggi&bsgrnetg%'rstﬁgIBe/r?trri“m'i'n
diate temperatures, depending on the choice. dfherefore Y, y P Py

Eq. (17) with a constantz value worsens the qualitative tk;g;sgp;igltqur@ g‘tig\ﬁ!;\ghgrzntc?svgggsv'vc;nv\fgﬁg'gfnége'
agreement between theory and simulation and is thus not gy-€., — P

competitive alternative to the description with temperature 4. (21) to hold.

dependent coordination number.
IV. DISCUSSION

F. Adam-Gibbs relation We have measured the entropy of the polymer melt in a
In the Adam-Gibbs theory the entropy determines the dif-computer simulation. Since we have used a fast “slithering-
fusion constant of the melt by the relati¢8,54] snake” algorithm[36], we are sure that the data do not con-

tain nonequilibrium effects. This set of data allows a test of

B theoretical predictions for the entropy even in the tempera-
D(M)= D(oc)ex;{ TS @D ure range close to the glass transition. The strictly positive
entropy over the whole range of temperatures is a first indi-
D (=) is easily obtained frong, (defined as the mean-square Cation that the theories of Flory and Gibbs-DiMarzio cannot

displacement of the center of mass of the chairia predict the entropy accurately. The usual interpretation, that
the experimentally observed glass transition signifies the

g vanishing of the configurational entropy at a finite tempera-
D(%)= lim 23 5% 1074, (22)  ture in the hypothetical limit of quasistatic cooling, is there-
6t fore questionable.
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Nevertheless there are important insights in the transitiomnergy parameters is the same in all three theories leading to
to the glassy phase. We can conclude that the entropy ihie same shape of the predicted curves as a function of tem-
described over the whole range of temperatures ffleme to  perature. Since the shape of the entropy vs temperature curve
T, by oneformula. This even holds for the temperature rangeis correctly reproduced, predictions for experimental quanti-
where the theory predicts a phase transition and demandgs like the specific heat will still be in good agreement with
that the entropy is set to 0 instead of the value predicted byhe experimental findings. Thus the theories are useful to
the formula. In contrast to that the entropy is alwaysctly  analyze experiments but the intimate connection of the ex-

positive even below the temperature where the glass transperimental glass transition &, and a thermodynamic phase
tion occurs. The entropy catastrophe predicted by Flory fokrgnsition at B<T,<T, is not stringent.

the limit of the low temperature and a fully occupied lattice
is removed by Milchev’'s extension. It is interesting to note
that the entropy catastrophe, produced by the formulas of
Flory and Gibbs-DiMarzio, occurs at a temperature that co-
incides with the Vogel-Fulcher temperature of our system We would like to thank H. P. Wittmann and M. Mer for
within the estimated errors. helpful discussions. We are very grateful to thecHstleis-

The basic difference of the calculations of Flory, Gibbs-tungsrechenzentrufHLRZ) at Jiich and to the Regionales
DiMarzio, and Milchev lies in the approximation of the Hochschulrechenzentrum KaiserslautéRHRK) for a gen-
translational part of the partition function. This leads to theerous grant of computer time on the CRAY-YMP. This work
underestimation of the entropy already in the high temperawas supported by the Deutsche Forschungsgemeinschaft
ture limit. The intramolecular part with its dependence of the(SFB 263.
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