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Influence of through-flow on linear pattern formation properties in binary mixture convection
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(Received 16 April 1996

We investigate how a horizontal plane Poiseuille shear flow changes linear convection properties in binary
fluid layers heated from below. The full linear field equations are solved with a shooting method for realistic
top and bottom boundary conditions. Relevant characteristic growth exponents and the spatial structure of their
associated eigenfunctions are evaluated for different perturbations of the conductive state. Through-flow in-
duced changes of the bifurcation threshdlstability boundariesfor different types of convective solutions are
determined in the control parameter space spanned by Rayleigh number, Soret cugsitige as well as
negative, and through-flow Reynolds number. We elucidate the through-flow induced lifting of the Hopf
symmetry degeneracy of left and right traveling waves in mixtures with negative Soret coupling. Finally we
determine with a saddle point analysis of the complex dispersion relation of the field equations over the
complex wave number plane the borders between absolute and convective instabilities for different types of
perturbations in comparison with the appropriate Ginzburg-Landau amplitude equation approximation.
[S1063-651X96)11208-3

PACS numbes): 47.20.Bp, 47.15-x, 47.54:+r, 47.60+i

[. INTRODUCTION at onset. We evaluate relevant characteristic exponents and
An externally imposed flow can influence the spatiotem-the spatial structure of their associgted eig_enfunctions for
. S ot different perturbations of the conductive basic state and de-
poral b(_aha_vlor of dissipative siructures growing In forced ermine the through-flow induced changes of the bifurcation
nonequilibrium  systems. Examples are chemical -angy, oqpo|ds for different types of convective solutions. These
reaction-diffusion systems, biological problems, and thenesholds are defined by vanishing real parts of the charac-
large variety of different hydrodynamic instabilities leading (eristic exponents. They mark stability boundaries of the con-
to pattern formatior{1]. Here we theoretically investigate gyctive state against different convective perturbations in the
with a linear analysis of the relevant field equations the spagontrol parameter space spanned by the Rayleigh number
tiotemporal properties of convection solutions that bifurcatera, the Soret couplings, and the through-flow Reynolds
out of the homogeneous, conductive state in a binary fluithumberRe. We have numerically solved the full linear field
layer heated from below. equations subject to realistic boundary conditions using a
A lot of experimenta[2-10], analytical[11-17, and nu-  shooting method for perturbations with wave vectors parallel
merical[18—21 activities have been devoted recently to in- to the through-flow. The solutions for other wave vectors can
vestigating these primary convection patterns in the absendse obtained from the former by a straightforward symmetry
of through-flow[22]. They revealed a variety of bifurcation transformation. Results were obtained for positive as well as
properties and spatiotemporal behavior that is much richefor negativey. For <0 the most important result is that the
than that of stationary mirror symmetric roll patterns grow-through-flow lifts the Hopf symmetry degeneracy of left and
ing in the supercritical bifurcation of the standard Rayleigh-right traveling waves atRe=0: frequencies, bifurcation
Benard setup with a pure fluid, say water. In binary mixturesthresholds, and structural properties of the two waves are
such as, e.g., ethanol-water there occur stationary square anblanged dramatically. Mixtures with more negatiyere-
roll patterns but also symmetry degenerate left or right travquire a largerRe for the changes to reach a comparable
eling convection waves. The bifurcation of the travelingrelative size. For sufficiently largRe the lowest relevant
wave (TW) solutions and of the stationary roll patterns canbifurcation threshold of binary mixtures with any asymp-
be superecritical, tricritical, or subcritical relative to the criti- totically approaches the critical Rayleigh number
cal heating rate. These different solution properties are corRa;(Re y=0) of a pure fluid with imposed through-flow.
trolled by the combination of thermal forcing — i.e., the Then the externally imposed shear flow eliminates the Soret-
Rayleigh number — and the strength{ 1] of the Soret cou- induced coupling effects between the convective concentra-
pling between temperature and concentration field. It is theion field and the other fields by suppressing vertical convec-
concentration field that causes the rich structure formatiotive transport of Soret driven concentration perturbations.
behavior via its contribution to the buoyancy force field Our paper is organized as follows. In Sec. Il we describe
which drives convection. the system. In Sec. Il we review the linearized equations for
Without lateral through-flow several experimental andperturbations of the conductive state, their boundary condi-
theoretical papers have addressed the linear convection profiens, the eigenvalue problem for the characteristic expo-
erties[25—37. The most comprehensive and most accurateents, relevant symmetry properties, and the behavior for
results were obtained in the more recent numerical worlsmall through-flow rates. Section IV contains our results
[31-37. In this work we determine how a lateral through- concerning bifurcation properties — stability thresholds,
flow changes the structure and dynamics of convection fielderave numbers, frequencies, and eigenfunctions — for nega-
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tive and positive Soret couplings as functions of the Here u=ue+ve,+we, is the velocity field. We reduce
through-flow Reynolds numbeRe. In Sec. V we compare lengths byd, times byd?/ «, the effective pressure by
borderlines between absolute and convective instabilities olx?/d?, temperatures by v/(agd®), and the concentration
tained for different types of perturbations from the field field by «v/(8gd®). Then the two material parameters
equations with results from the Ginzburg-Landau amplitudePrandtl number

equation. The last section gives a brief summary of our

work. Appendix A contains details of our shooting method. o= v 2.5
There we also describe our procedure to find saddle points of K '

the dispersion relation of the field equations in the complex

wave number plane. Appendix B presents results obtainednd Lewis number

from a variational calculus.

D
L=— (2.6
Il. SYSTEM K

We consider a horizontal layer of heigtitof a binary ~ appear withD being the concentration diffusion constant.
flud mixture in the homogeneous gravitational field Furthermore, there enters the separation ratio
g= —ge, that is directed downwards. A positive temperature Bk
differenceAT is imposed between the lower and upper con- == _T, (2.7
fining boundaries, e.g., via highly conducting plates in ex- a To

periments. The associated Rayleigh number is which measures the strength of the linear Soret coupling be-

agd tween concentration and temperature field via the thermodif-

Ra= ” AT, (2.1)  fusivity kr.

where « is the thermal diffusivity and’ the kinematic vis- B. Conductive state

cosity. The thermal expansion coefficiemtand the solutal For small Ra,Re a laterally homogeneous solution of
expansion coefficieng follow from a linear isobaric equa- (2.4) is stable that describes a conductive state without ver-
tion of state for the total mass density tical convective flow. It is a combination of plane horizontal
Poiseuille flow
p=pol 1= a(T=To) = B(C—Cy)] 2.2
Ucon= U (2)&,= 0 Re Rz)e,, (2.89

for small deviations of the temperatufefrom its meanT,

and small deviations of the solute’s mass concentra@on

from its meanCo. . . . and a diffusive temperature field
An externally applied lateral pressure gradient drives a

through-flow in thex direction. The resulting mean lateral

flow velocity U determines the through-flow Reynolds num-

ber which enforces via the Soret effect a diffusive vertical con-

centration stratification

P(z)=62(1-2) (2.8b

Tcond:T0+Ra(% -2), (2.9

Re=U —. 2.3
y @3 Ceone=Co+Ra yi(2 —2), (2.10

We investigate here the parameter regimeRe<1. With
d~0.5cm, v~0.01 cnf/s (H,O) the maximal averaged
through-flow velocity is thetd~0.02 cm/s, i.e., 1.2 cm per ~ Here we briefly review the linearized equations for per-
minute. turbations of the conductive state, their boundary conditions,
the eigenvalue problem for the characteristic exponents, rel-
evant symmetry properties, and the behavior for small

through-flow rates.
To describe this system we use the balance equations for

mass, momentum, heat, and concentration in the Oberbeck-
Boussinesq approximatidr23,39

IIl. CONVECTIVE PERTURBATIONS

A. Equations

A. Linearization around the conductive state

1. Equations

V-u=0, (249 The basis for our linear analysis of convective perturba-

tions of the conductive state described in Sec. Il B are the

(d+u-V)u=0V2u=Vp+o(T-To+C—Co)e,, linearized field equations

(2.4b

(9,— V) V2W+ (UVZ2—92U)d,w= o(32+32)(0+c),
(4,+Uu-V)T=V2T, (2.49 ' 2o 3

(6i+u-V)C=LV3(C—yT). (2.40 (6,—V2+Ud,)0=Raw, (3.1b
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(—LV2+Ug,)c=y¢ Raw—LyV20 (3.10 s=Res+i Ims=y—iw (3.9
for the deviations and complexz-dependent amplitude functions= (W,b,b.
Inserting the ansat@.7) into the field equation§3.1) yields
0=T—=Teones €=C—Ceong (32 the 3x3 linear eigenvalue problem
from the conductive stat€.9),(2.10. Herew is the vertical (L+sM)D(2)=0 (3.99

velocity field that vanishes in the conductive state. To derive
(3.13 we have applied twice the curl operator to E2.4D  for the eigenvalues and eigenvectord with
using(2.43. Note that the Poiseuille flow profild(z) of the
conductive state enters into Eq8.1) making them nonau- L=L09+iok,ReL®, (3.9b
tonomous.
—0(92—k?»? o(1+ ¢k ak?
2. NSI boundary conditions

£0= -Ra IR— g2 0
We consider the horizontal boundaries to be perfectly heat 2_ 2 K2 2
conducting and rigid with no slip and vanishing vertical con- 0 Yo=Kk L(k"=dz)
centration transport. These, so called, Ni&i-slip, imperme- (3.90
able conditions impose Into
0=w=9w=49,{=0 at z=0,1. (3.3 P(ﬁf—kz)—agP 0 0
Here we have introduced the combined field L= 0 P O (3.90
0 0o P
{=c—yo. (3.9

) _ _ . enters the vertical profileP(z) (2.8b of the Poiseuille
Since the concentration current at the no-slip boundaries 'Fhrough—flow and its second derivative. Finally

purely diffusive the conditio®,{=0 ensures impermeability

of the horizontal boundaries. Laterally we assume the system 075— k2 0 0
to be unbounded.
M= 0 1 0f. (3.99
3. FS boundary conditions 0 0 1

As an illustrative special case let us consider for the mo-

R a0
ment free slip(FS) horizontal boundaries with a shear-free In the absence of through flox_ﬁ‘/_ reduces t. )
— Due to the boundary conditions the eigenvalue spectrum

plug flow profile,Ugg(z)=U. In this idealized situation the g giscrete. We are interested in the three characteristic ex-
effect of through-flow in Eqs(3.1) can be transformed away ponentss;(j=1,2,3) whose growth rates; are closest to

by a Galilei transformation to a system that comoves with . :
. L zero and whose eigenfunctiods(z) have no nodes other
the vertically constant plug flow velocity = o Re. Thus,

. ! . than at the horizontal boundaries-0,1.
the stability properties of the FS conductive state are not

changed by the horizontal plug flow. The stationary and os-
cillatory marginal stability curves of the mixture remain the
same, only the characteristic exponents acquire an additional The solution of(3.9), i.e., eigenvalus and eigenfunction
imaginary part of sizek,U. This holds for FS horizontal & depend on the material parametersand L, the control
boundaries irrespective of whether they are permeable or inparametersy, Ra, Re and on the lateral wave vectér

C. Symmetries

permeable to the concentration field Note first of all that the dynamics of perturbations with wave
vectors perpendicular to the through-flow are not changed by
B. Eigenvalue problem the latter, since for them the contribution frof") vanishes
whenk,=0.

The general solution of the perturbation equati¢8d)
can be written as a superposition of plane-wave perturbations 1. Squire transformation

with lateral wave vector ) ]
Sincek andRe enter into(3.9) only ask?® andk,Re the

k=k.e+kye . (3.5  dependence of the functioris=s,® on k, andRe is
The plane-wave solution ansatz for the fields f=f(k? kRe). (3.10
d=(w,0,0) (3.9 Using this behavior the Squire transformati@®]
reads f(k2+K2 kRe)=f(k2 kRe), (3.113
D(r,t)=D(z)e! T Hyyest (3.7) 5 ok
kZ=kZ+K2, Rez.kTXRe (3.11H

with a complex characteristic exponent X
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relates the function§ for a wave vector with arbitrary com- , — .= —w, with ®*=d, — which describes the

ponentsk, ,k, to the functions that have been determined forgrovvth and/or decay of symmetry degenerate left and right
wave vectork =k, in the through-flow direction and Rey- traveling waves. This symmetry is broken by the through-
nolds numbersRe. Therefore, we shall consider in the re- flow. If for Re=0 all three eigenvalues and eigenfunctions
mainder of this work onlyk,=0 perturbations with wave are real then they fulfill for finitR e relations such a3.19.
vectors k=k,g, that are parallel or antiparallel to the  Since(3.15 and(3.16 relate the solutions for negative
through-flow. ForRe=0 the Squire relationg3.11) reflect k., or Re to those with positivek, or Re it suffices to in-
the horizontal rotational symmetry of the system in the abvestigate the three eigenvalugsand elgenfunct|on§> for
sence of through-flow. positivek,, or Re only.

2. Reverting the through-flow direction D. Expansion for small Reynolds numbers

Upon reverting the flow direction, i.e., under the operation
Re— —Rethe sets;,®;} of eigenvalues and eigenfunctions
transforms into each other since the balance equati®ds
are invariant under the parity operatian ) — — (x,u) with
u being the velocity field in the direction. The transforma-

Itis instructive to see how thRe=0 solutions{s;,®;} of
the eigenvalue problertB.9) evolve upon switching on the
through-flow. The qualitative behavior can be studésth-
lytically for small Re via an expansion in the parameter

tion behavior of(s; ,<i>j} follows explicitly from the fact that n=0cq,=ogk,Re (3.17

the linear operatof entering the eigenvalue equati¢®.9

transforms as which appears explicitly in the linear operat6r(3.9b
L(-a)=L*(A), d=kRe (3.12 L=LO+inc™. (3.183

underRe— —Re with the asterisk denoting complex conju- So we expand

gation. Here we do not display the other arguments tffiat © W 5

remain unchanged. We u$8.12 in the complex conjugate sj=s; + 78,7+ 0(7), (3.18h
of Eq. (3.9

[£(—ay) +S* (g M]DF (q,)=0. (3.13

Thus, ifsj(qy) with <i>j(qx) are solutions 0f3.9) so are

D=0+ 7Y+ O( ). (3.180
Inserting(3.18 into (3.93 yields in ordern the equation
B (LY +sHM) DO = —(LO+sO MDY, (3.19
S.(q0=5*(— ith  ®;(q,)=D*(—qy).
S(A)=s](~q) Wi (@) =7 (— a0 (3.14 which is solvable under the condition

Now, the nondegeneracy of the eigenvalue problem implieé‘i)EO)W(iUl)JrS,(l)/\/l)(i)}o)>

that the two set§s; ,db} and{s; ,fl)} are the same. We find L Otk i (D) 4 (1) x L (O)
that one eigenvalue, sz;\ytS does not change 5;=s; and = | dz(®7)* (I LY+ 57 M)P; T =0. (3.20
0
q93—<b3 — so that according t63.14), )
Here ®{®" is the solution of the adjoint equation
73(_qx)= 73(qx)a (3156) .
(LOT+ TN D(OT=0 (3.21
—w3(—0y) = w3(dy), (3.15h . .
. . of the zeroth-order eigenvalue problem
3 (=) = P3(ay). (3.159 .
_ _ _ (LO+s M) D=0 (3.22
The other two eigenvalues and eigenfunctions are
cross-related to each other —5;=s;,,d;=®,, for the eigenvalus{” . Note thats®)"=s{* is the complex
ands,=s,,®,=®, — so that according t¢3.14), conjugate of the orlglnal eigenval®® . The Fredholm al-
ternative(3.20 leads to the first-order correction fey:
71(_qx): 72(qx)1 (316a (1) .
s =—ipj, (3.23
—01(—0y) = w(dy), (3.16b
where
@7 (—qx) =D2(qy). (3.160 <(i)J(0)T|£(1)(i,J(0>>
For Re=0 the relations(3.15 and (3.16 reflect the facts Pi= (@}O)TIM&)EO)> (3.29

that in the absence of through-floly the solutions depend

onkZ only, (ii) one eigenvalue is real, say;=0, with real  js determined by normalized “matrix elements” of

eigenfunctiond;=®3 that describes nonoscillatory dynam- through-flow perturbation “operators” containing the

ics, and(iii) the other two are a complex conjugate pair —profile P(z) between the zeroth-order eigenfunctions
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Since with the plane-wave perturbation ang@®z) the TW
phase velocityw/k, should be increased for positikg and
- Re by the through-flow one can expect without having per-
e formed an explicit calculation that Rein (3.27h should be
~ o o positive — cf. Fig. 1. And consequently both frequencies
0 > S »$% are shifted upwards by the same amoutR eRep;.
Dol [ ©, On the other hand, to decide whether the growth rate of the
/ \\\ """ o left or of the right traveling wave is increased or decreased
v, S / requires an explicit calculation of Ip. In any case, how-
' ever, Eq.(3.273 predicts that for small through-flow the
! : symmetry degeneracyy{”)=»{"), of the growth rates is
ke Re ky Re lifted by a symmetric splitting that increases linearly with
Re as indicated schematically in Fig. 1 fog and ..
FIG. 1. Eigenvalues for small Reynolds numbers. The variation For idealized ES boundary conditions the frequencies
of growth ratesy and frequencies» with Re resulting from an wj=wj(0)+akae behave as in Fig. 1. However, the growth

expansion up to linear order iRe is shown schematically. The rates are independent oRe so that the degeneracy
liting of the symmetry degeneracgy)=s{”*, by the through- _(0)_ _(0) is not lifted by the FS plug flow
flow and the behavior 0§y is described in Sec. Il D. LERRE y '

~ ~ ~ ~ . . IV. STABILITY AND BIFURCATION PROPERTIES
DO= W, 60 (7). Thus, the smalRe expansion yields

the following results for the eigenvaluss=y;—iw;: Here were present for negative as well as for positive
Soret couplingy the Re dependence of critical properties:
Y= y}°>+ 7 Impj+O(772), (3.253 stability thresholds, wave numbers, frequencies, and eigen-
functions. These results have been obtained numerically by a
wj:w}0)+ 7 Repj+0(7;2). (3.25  variant[43] (cf. Appendix A1 for a short descriptiorof a

standard shooting method that has previously been [B#d

For the subsequent discussion we use the fact that tH® determine stability properties of binary mixtures in the
“operators” entering into the “matrix elements” of Eq. absence of through-flof6]. In order to check these results
(3.24 are real. — in particular some of the unexpectedly strong and peculiar

changes wittRe — by an independent method we have per-
1. Stationary perturbations formed a variational calculation described in Appendix B.

Let us call a perturbation stationary, for shorthand, if the
characteristic exponelsfo) in the absence of through-flow is
real. Then the corresponding eigenfunction is real as well, We introduce Rayleigh numbers and wave numbers
(P =d{®* which implies that als@; (3.24) is real. Thus,

A. Notation

with Imp; =0, one obtains fron(3.25 r= Rac(ReR—i) J=0)" (4.13
¥=7"+0(Ré), (3.263 .

k= —————, 4.1b

;= 0{”+ okReRep;+ O(RE). (3.26h k(Re=0,y=0) (4.1

The frequency grows linearly witk,Re while the growth which are reduced by the critical ones of a pure fluid
rate is an even function d€,Re for these stationary pertur- (#=0) in the absence of flowRe=0)

bations as shown schematically in Fig. 1 for the eigenvalue P
labeled byj=3. Ra,(Re=0,4=0)=1707.76, (4.2a

2. Oscillatory perturbations ks(Re=0,=0)=3.11632. (4.2b

We call the perturbations oscillatory that are described byas explained in Sec. Il C, it suffices to consider wave vec-
the two eigenvaluessay, j=1,2) that in the absence of iorsk=k g, in the through-flow direction with positive com-

through-flow form a complex conjugate pasy”’=s{”*.  ponentk, = |k|=k. The spatiotemporal behavior of perturba-
The corresponding eigenfunctions are complex conjugates @fons with other vectors follows with the symmetries of Sec.
each other®{®=d{"* | according to(3.16), which implies 11l C. We determine the evolution of the three relevant ei-
p,=p; . With Rep,=Rep; and Inp,=—Imp; one obtains genvaluess;=y;—iw; (cf. Sec. Il B) upon increasingRe
from (3.25 the following relations: from Re=0 up to about 1. In particular we evaluate the
critical parameter combinations for which each of the three
1= y? + okRelmp,+O(RE), (3.273  growth ratesy; first passes through zero when increasing

The so obtained critical quantities are marked by a sub-
script ¢ and in addition by a superscrilg, U, D that re-

— (0)
w1=*op +okReRep +ORE).  (3.27h places the running indek of the three eigenvalues used in
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rg(rcD) is depressedenhanceglby the through-flow so that
the conductive state is destabilizéstabilized against con-
vective perturbations traveling upstreafdownstream in
comparison to the symmetry degenerate Hopf bifurcation
threshold without through-flow — see also the schematic
variation of the growth rates in Fig. 1. So at very sniaé it
is upstream traveling wave convection that grows first when
increasing the Rayleigh number quasistatically.

However, whiler? increases monotonically witRe —
first linearly and then quadratically — the initial linear
downwards shift oflcJ changes at largeRe to a precipitous
increase and a subsequent flattening. Thus, in the shown
Re range the two critical curves] andr? have two inter-
sections giving rise to bistable behavior of perturbations
there. Note, however, that the bistable upstream and down-
stream TW perturbations cannot be superimposed linearly to
a standing wave since their wave numblers: kY differ and
furthermorewy# — w2 . So in theRe interval between the
bistable intersections orlf:J andrcD downstream propagating
convection waves grow first while outside this interval at

FIG. 2. Evolution of Hopf bifurcation properties with through- Small Re and largeRe upstream TW convection bifurcates
flow. Shown are critical Rayleigh numbe(@, reduced wave num- first out of the conductive state.
bers (b), and frequenciegc) for upstream(full lines) and down- Considering the critical wave numbd{g and kcD of Fig.
stream (dashed lines traveling perturbations that are symmetry 2(b) it should be noted that their variation is very small —
degenerate foRe=0. Parameters afe=0.01, 0=10, y=—0.1.  |ess than 2% — and th&/ <k in the Re range of Fig. 2.

This behavior holds also for the other Soret coupling

Sec. lll. The superscriptS, U, andD identify the critical  strengths/= —0.25,—0.01, and-0.001 that we have inves-
perturbation behaviog' (>~ <) in the limit Re—0. Eigen-  tigated[43].
values for whichw.(Re—0)=0 are marked byS since Somewhat unexpected to us is the nonmonotonical varia-
these perturbations are stationary Foe=0. Eigenvalues for tion of k‘cJ and also ofawg/& Re [Fig. 2c)] in the interval
which o (Re—0) is positive(negative carry the superscript belowRe=0.5 wherew_ changes sign and wher¢ shows
D (U) since they characterize f&®e—0 perturbations that its strong increase. To check that this variation is not a nu-
propagate in the downstreampstream direction. We stress merical artifact of our shooting algorithm we have performed
again that the caseS (“stationary”), D (“downstream”),  a stability analysis with a variational approximation being a
and U (“upstream”) characterize the perturbations in the fundamentally different method. The variational results pre-
limit Re—0 — see also Fig. 1. In general all critical fre- sented in Appendix B also show the peculiar variation of
qguencies are finite in the presence of through-flow. HoweverklcJ with Re obtained from the shooting method thus support-
for a special value oRe one haswy =0 while o5 andw?  ing the latter behavior.

15 F
Y/
L5}

1.004 |
w1.000 i
0.9% |
0992 |

Sul

are positive(cf. Sec. IV B and Sec. IV L The critical frequencies; andw? shown in Fig. Zc) are
practically linear functions oRe and in this respect similar
B. Effect of through-flow on the oscillatory instability to the frequencies of the idealized FS system. They start at

zero through-flow with the Hopf valude”’)] and —|w{?],
respectively, and they can be very well approximated by the
first-order resul{(3.27b of the low Re expansion

We present in this subsection critical properties of a bi-
nary mixture such as water-ethanol with=0.01, o= 10,
and separation ratigg= — 0.1 as a representative case for a
moderately negative Soret coupling. For these parameters the we=0+ck”Rep;Re, 4.3
nonlinear solution of stationary convection in the absence of
through-flow,Re=0, is already disconnected from the con-
ductive state since the stationary bifurcation threshfias ~ with ok{”’Rep;~41.9 for o=10. Comparing this rate of
moved already ay’=—L/(1+L) to infinity [27]. How-  changedw./dRe~41.9 with results for other separation ra-
ever, atr2=rY=1.1200 there is foRe=0 an oscillatory tios including the pure fluid cas#2] one finds only very
threshold into symmetry degenerated left and right — or inSmall deviationg43]. Obviously Re; (3.24 depends only
our language upstream and downstream — propagating traeakly on the Soret couopllng. o _
eling waves with critical wave numbek = kY = 1.0022 and Note tha& forRe>|wf_; _)|/41-9 both critical frequencies,
critical Hopf frequencyw? = — »Y = 6.4659. w; and wg, are positive. Then_ _the phase ve_locmes,

In Fig. 2 we show the variation of these two critical Ve~ @c/Kc, Of the two different critical TW's are in the
thresholds, wave numbers, and frequencies with increasing0Sitivex direction in the laboratory system, i.e., in through-
through-flow Reynolds numbers. In each case the fulffow direction. Howeverp ' is always smaller — by about
(dashedl line represents the upstreaownstream critical ~ 2|v{?)| — thanv?. Only for Re<|w(|/41.9 is the phase

quantity. Initially, for smallRe, the bifurcation threshold velocity vg negative, i.e., opposite to the through-flow. So
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2. 1°(Re, 9

The bifurcation threshold? (dashed lines in Fig.)3al-
ways increases monotonically with the through-flow
strength. The initial sIopérCD/aRe increases somewhat with
decreasind|. For ¢y= —0.001 andiy= —0.01 the stability
curvesr? andr? collide in theRe range displayed in Fig. 3.
This property is elucidated in Secs. IVC4 and IV C5 fur-
ther below.

3. r3(Re, )

= T In pure fluids, =0, the bifurcation threshold
19 5, y=lol ] r3(Re =0) (lowest dotted curve in Fig.)3slightly in-
W 4 5 creases with growine[42]. In binary mixtures with nega-
: : tive Soret coupling, on the other hand, the stationary thresh-
L1 R 1 old rf gets very strongly depressed by a small through-flow
SE—— — see the dotted curve fogy=—0.001 that starts at
e LN N— rS(Re=0, y=—0.001)=1.1816,
' Y0, L . ! In the absence of through-flovRe=0, the threshold g
01 03 035 rapidly increases with |4/ and diverges at
Re $2=—L/(1+L)=—0.0099 forL=0.01. Beyond this Soret
coupling the solution branch of stationary nonlinear convec-
FIG. 3. Re dependence of bifurcation thresholds for negativetion is disconnected from the ground state solution as
Soret couplingy. The stability boundaries? (dotted lines, ro  rS(Re=0, y=<y2)=«. A small but finite through-flow,

(dashed lines andr! (full lines) are shown for some representative however, moves the threshoﬂ@ down to finite values: The
¢ values as indicated. The behavior beyond Revalues where dotted curve for rS in the inset of Fig. 3 for
c .

D S i i i i - - . .
re andr; collide is discussed in Secs. IVC 4 and IV C 5. Param y=—0.01< 1//90 shows (i) that r§:oo below a finite

it d.=0.01, 0=10. o A
elers ar o Re,~0.019,(ii) thatrf is finite for Re>Re,, and(iii) that
o ) N r steeply drops down foRe>Re, . The Reynolds number
the wording “upstream propagating perturbations” that WeRe. Whererf diverges grows with increasirjg/| — a stron-

are using in this work does not necessarily imply that theyer goret coupling requires a larger through-flow to move the
phase velocity of such a TW is negative in the laboratoryj,ig,cation threshold 2 from infinity to a finite value.
frame. It would be negative in a frame that is moving in the

through-flow direction with a conveniently defined mean lat- 4. Collision of the 2 and r? stability boundaries
eral velocity such as, e.g,=3(v2+vY).

With increasingRe the bifurcation thresholds? andr?
approach each other. The former decreases rapidly and the
latter increases wittRe and they almost coalesce in the

C. Bifurcation thresholds at negative s Rer plane of Fig. 3. This behavior is most easily understood

In Fig. 3 we show the bifurcation threshold§ (full by investigating how the relevant eigenvaluss y—iw

lines), r2 (dashed lines andr S (dotted lines as functions of ~ vary withr andRe. To that end we show in Fig. 4(r) and
Re for a few characteristic negative Soret couplings o(r) of the two relevant eigenvalues for a representative

Soret couplingy=—0.01 atRe=0 (thick curves and at

1. rY(Re, ) Re=0.4 (thin curves$ for a fixed wave numbek=1. The

real part of the third eigenvalue is always negative in the
parameter range of Fig. 4 and thus irrelevant for the follow-
ing. Figure 5 shows in achematiovay the motion of these

The typical shape of the stability cur\léJ that is dis-
played in Fig. 2a) for /= —0.1 does not change much for

lqther.nelgatlve dseparatlonfranos;ﬁs 3fun|ct|orR@‘ 'JCJ .(fu” two eigenvalues in the complexplane with increasing for
nes in Ulg' 9 decreases for smae, EVEIopS a minimum  po_ g (thick curves and for a smalRe#0 (thin curves.
where w; goes through zero, steeply increases thereafter, Let us consider firstRe=0. Then there is for

and finally flattens asymptotically toward§(Re¢=O) at  gmall r a complex conjugate pair of eigenvalues

large Re. Thus a sufficiently large through-flow eliminates (.,u_ D wY=— P) that produce the symmetry degenerate

the Soret induced coupling effects between concentratiopiopf bifurcation[at r°=rY~1.021 in Fig. 4b)] when yY

field on one side and temperature and velocity field on the,,q P pass simultaneously through zero. This situation is
other side: The bifurcation threshokﬂf(Ra i) approaches marked in Fig. 4 and Fig. 5 by thick upwards and downwards
for any Soret coupling/s the pure fluid stability boundary pointing triangles. With increasing the real partsy grow
re(Re,y=0) at largeRe. For smally, e.g., aty=—0.001,  and the frequencies approach zero and the pair of eigen-
the stability boundary ¢ lies always belowr? while for  values meets in the complexplane of Fig. 5 on the reay
larger || (see, e.g.p=—0.01) there are two intersections axis(i.e., in Fig. 4 atr ~1.231). Then, at larger, this pair of

of the curvesr? andr! with r2<r! in between — cf. the real eigenvalues splits and moves apart along theyeadis
related discussion in Sec. IV B. (cf. thickly dottedS1 andS2 curves in Figs. 4 and)5So we
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20

10 1.50

1.25

1.50

r 1.25

FIG. 4. (a) Frequencieso(r) and(b) growth ratesy(r) of the
two eigenvalues that cause collision of the stability cum)g}sand
r$ in Fig. 3. Thick (thin) lines and symbols referring tRe=0
(Re=0.4) were obtained for a fixed wave number 1. Arrows 025
indicate deformation directions of the curves. TRe variation of
the zeros ofy at rV (upwards pointing triangle r® (downwards

“ H ” D/S I
pointing triangl®, andrS (circle) is discussed in Sec. IV C 4. Pa-  FIG. 6. The “mountain landscape” of ™'~ over thek-r plane

rameters aré =0.01, =10, y=—0.01. foljrlngz 0.4 (a) andRe=0.475(b). .Gra)./ scales show Fhe height. of
v°"> in the range wherey>0. Thick lines are marginal stability

) ) ) curves wherey=0. In the white parts of the figures ig?’S<0.
have a transformation of two oscillatory eigenvaluesdnd  Dashed lines are isg-lines. The zeros ofy°’S marked by circle

D) into two stationary ones31 andS2). ForRe=0 the two  and downwards pointing triangle are those of Fith)4Parameters
thickly dotted branchesyS! and 2 in Fig. 4b) remain  areL=0.01, =10, andy= —0.01.
above zero, i.e$1 does not reach the imaginary axis in Fig. ) ]
5. perturbed. Moreover, the eigenvalue branches become dis-
Now for finite Re the symmetry degeneracy of the Hopf connected(thin lines in Fig. 3 as the thick eigenvalue
eigenvalue pair is lifted. The value wherey" goes through Pranches of Fig. 4 are deformed by the through-flow into the
zero[upward pointing triangle atY~1.05 in Fig. 4b)] dif- thln ones — the arrows in Flg.(u)sindlcate the Qeformat|on
fers from the one wherg® =0 [downward pointing triangle  directions. In particular the lowey™" branch of Fig. 4o) and
atrP~1.112 in Fig. 4b)] and the frequencies" and w® §|mllarly the left movingS1 branch in I_:lg. 5 goes at a suf-
[thin lines in Fig. 4a)] are shifted upwards. Thus the ficiently largeRe through zero at the circle in Figs. 4 and 5
Re=0 pitchfork topology of the eigenvalue paths in Fig. 5 is thereby producing aB instability fork=1 at the circle, i.e.,
at a finite value off S [~1.296 in Fig. 4b)]. Coming from
o the Sl intersection(circle) in Fig. 4(b) has moved with
increasingRe to the left to finite valuerS. By increasing
Re further the thinD/S1 curve in Fig. 4b) is pushed down-
wards towards smalley, i.e., to the left in Fig. 5. Thereby
the zero crossings at® (downward pointing triangleand
rS (circle) move together and vanish simultaneously at a par-
ticular Revalue. Thereafter there is only the zero crossing of
yY atrY (upward pointing triangle This is in principle what
happens when ther? and rJ curves in Fig. 3 at
y=—0.001 and—0.01 approach each other with increasing

Re
U 5. Opening of a wave number gap
0 in the D-S marginal stability curves
Y The above described merging of the zeros of vt

curve that occurs in Fig. () for k=1 slightly above

FIG. 5. Schematiovariation of the eigenvalues of Fig. 4 in the R€=0.4 corresponds to the opening up of a gap in the mar-
complexy-w plane. Arrows indicate the motion of the eigenvalues ginal stability curves againdd and S perturbations. This
with increasingr. Line styles and symbols are those of Fig. 4. scenario is documented in ther plane of Fig. 6. There we
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show with gray scales the height distributiongt'S! in the

k-r range wherey>0. Thick lines labeled by=0 are mar-

ginal stability curves. In the white parts of Fig. 'S is

negative and the dashed lines indicatésolines for y<0. “

The third eigenvalue/V’S? being positive — cf. Figs. 4 and

5 — is not shown. The open triangle and the circle in Fig.

6(a) mark the zeros o§°/S! at Re=0.4, which are shown in 0.5 F y=001 .

Fig. 4(b) by the same symbols. : (@ |
Upon increasingRe the eigenvaluey®’S! decreases.

Thus, the “mountain landscape” of®’S! somewhat glo-

bally “sinks” down. Thereby they=0 isolines come to- 1.00

gether in thek-r plane of Fig. 6 and since the “mountain

ridge” of yP/S! does not have constant heightf. gray

scales in Fig. @)] the y=0 curves are connected into two <2

tonguedFig. 6(b)] that are separated by a wave number gap

in which y®/S! is negative. Increasin®e further the gap

widens and thek-r regions with y>0 between they=0 0.95

isolines narrow down as the latter move away fréum 1

towards larger .

We have difficulties resolving this behavior of the=0
isolines with'our_shooting method. Wg Fherefore séhow in Fig. FIG. 7. (a) Critical Rayleigh numbers ar@) wave numbers for
3 a”‘?' later n Flgs. 8 and 15 the mlnlmg andr¢ of the positive ¢ versus through-flow Reynolds numbers. Parameters are
marginal stability curves onlypeforethe wave number gap | —g.01, ¢=10.
opens. The ending af2 andr in Figs. 3, 8, and 15 should
therefore not be interpreted as a termination of bifurcatiorrf(Re ) which is strongly bent down by the through-flow
branches: after the opening up of the gap the tongue shapegk <0. See SecsM C 4 and IV C 5 for a discussion of the
stability curves move towards largerand with them their fyrther fate of these bifurcation surfaces.
minima. The physically relevant, i.e., lowest lying, surface at

larger Re is rg(Re,w) (thin full lines). For any <0 it
_ _ _ . asymptotically approaches with increasing through-flow the
D. Bifurcation properties at positive i #=0 stability threshold, i.e.,rg(Re,zjf)—ﬂf(Re,z//:O).

In the absence of through-flow there is only a stationaryThus a sufficiently large through-flow effectively eliminates
bifurcation thresholdr(Re=0,) at =0 that strongly the influence of any Soret coupling betwemsmvectivecon-
drops fromrf(Re: 0,4=0)=1 towards zero when increas- centration field and temperature and velocity fiette dif-
ing . Switching on the through-flow has the overall effect
of increasingr> towardsrS(Re ¢=0) as can be read off
from Fig. 7. Thus the lateral flow stabilizes the basic state by
eliminating in the so-called Soret regirf@ the convectively
induced concentration homogenization. Note that already a
very small through-flow has a dramatic stabilization effect: :
rf increases very strongly for smalle. Similarly the critical |
wave numbelkf [Fig. 7(b)] approaches with increasirige \

1‘0 _..:1:::::::::::: ................................................ ‘

¥

C

: 1.15
the pure-fluid valuk3(Re, ¢=0). 0 \
E. Bifurcation surfaces in r-Re-y space = ’ g 7».._,
To give an impression of the form of the three critical 1004 /
surfaces in the-Re-y space wher&J, D, andS convection ’ JOR i P

patterns bifurcate out of the conductive state we combine in
Fig. 8 in a three-dimensional plot thiee dependence of the
bifurcation thresholds? (thin full lines), r2 (thin dashed oss |

lines), and rf (thin dotted liney presented so far together 2001

with their » dependence foRe=0 (thick lines. The bifur- M\O } Re
cation surfacescD(Rew) andrt’(Re ) emanate for nega- 002

tive Soret coupling/<<0 out of the degenerate Hopf thresh- v

9'0' line rCD(R.e: 04)=rg(Re=04) (thick dashed gnd full FIG. 8. To give an impression of the bifurcation surfaces in
line) and split apart when the through-flow is switched on.;_re space we show? (thin full lines), r® (thin dashed lines

Upon increasingRe furtherr gets indented slightly. On the and r$ (thin dotted liney together with theiry dependence for
other handr? curls up and comes very close to the surfaceRe=0 (thick lineg. Parameters are=0.01, o=10.
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fusively induced concentration stratification in the conduc-

tive state(2.10, on the other hand, is not altered by the

lateral shear flow The bifurcation thresholds of the mixture

approach thatrf(Re:A:O), of the pure fluid. This also =
holds for mixtures with positive Soret coupling — cf. the

thin dotted line forr3(Re, ) at >0.

Re=0.0

¥ = —0.25: Downstream (D)

F. Structure of critical convective patterns fan)

Here we show how the spatial structure of the critical field
deviations from the conductive state changes with increasing
Re To that end we have evaluated the complex eigenfunc-
tions ®(x,z,t)=d(z)e'**~ ) at the critical thresholds O
r, r, andrS. Thus the critical convective fields, 8,c
have the form

W(X,2,t)=|W(z)|cog kex— wt— ¢y (2)] (4.9

and similarly foré andc. Being solutions of complex linear
equations we choose the abitrary complex scaling constant
by fixing the modulus of the convective temperature field in
the middle of the layer,

(4.5

and by fixing the vertical mean of the phagg(z) of the
vertical velocity field to zero ©

1
f dze,(z)=0. (4.6)
0
FIG. 9. Spatial structure ob patterns that propagate down-
stream, i.e., to the right. Contours of the fields 6, c in vertical
cross sections of the fluid layer are shown for differBatas indi-
cated. White(black) implies large(smal) field values. The largest

We present gray-scale contour plots of the fieldg, and
c in the verticalx-z cross section of the fluid layer with
white (black) denoting larggsmal) values. Each of Figs. 9,
11, 13 has nine contour lines denoting the fractions/5 of vertical up(down) flow is atx=0(=1). Contour lines mark frac-
the maximal field values witm=0,1,2,3,4. In addition we tions *=(0,1,2,3,4)/5 of the field maxima. Parameters are
present in Figs. 10, 12, 14 vertical profiles of the moduli and-> 001, ¢=10, ¢=-0.25. The critical frequencies are about

phases of the complex field amplitud@sg, andé. wc~11.21+41.Re

1. Propagating patterns for R&0

o0
} @7

— @y~ arctan———
Pw™ Po +72+(k(co))2

First we briefly recall the critical TW field structuifgop
part of Fig. 9 in the absence of through-floj80—-32 for a
relatively large Soret coupling/=—0.25. The TWs of ve- . .
locity, temperature, and concentration are vertically not As a result of the smallness of the Lewis numbeii.e.,

plane but their phases show a vertical variation that is Iargeé%f the diffusive concentration transport thefield shows
for the concentration wavéFigs. 9 and 10 The lateral lo- charac_terlstlc boundary layer behavior near t_he plates where
cation of a concentration surplgshite ellipse in thec field advection decreases to zero — see the variation of the modu-

of Fig. 9 phase lags by about a quarter wavelength behin%JS €(2)| and OI the_phasepc(z) in Fig. 10. Whithin the
the lateral position of vertical downflogblack ellipse in the oundary Ia_yer$c(z)| IS S“pre_ss,efj and the phase lag of the
w field). Thus, since thev field advectively transports con- ¢ Wave behind thev wave is significantly enlarged.
centration surplugdeficiency from the Soret induced alco-
hol rich top (poor bottom boundary layer into the bulk fluid
this feeding mechanism between boundary layer and bulk is Upon turning on the through-flow the phase lines of the
laterally phase shifted by roughly/4 in the propagating downstream propagating patterns get bent furtberFig. 9
wave. Also the crestvalley) position of the temperature and in particular the right column of Fig. 1@nd the phase
wave phase lags — albeit by a smaller amount — behind thdifferences between the different waves increase near the

obtained[16] from a Galerkin model.

2. “Downstream” patterns

lateral location of maximal vertical upwardslownward$
flow, which advectively feeds the bulk with warifcold)
fluid from the warm bottonicold top region. This phase lag
agrees quite well with the result

plates. The vertical moduli profiles o and # do not
change. On the other hanld(z)| decreaseéincreasesnear
the plategin the center of the fluid laygiso that the vertical
profile of |c| flattens near the plates and becomes more
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according ta4.3) with Rep;~1.34 we can rewrite the lateral

o bo1 velocity that is effective for the concentration distribution
5k 5 profile (4.10 of the D wave as
3 100 %3 5 0
= sl 1 u ~ ud(2)~v P+ oRg1.34-62(1-2)]. (412
1055 Thus, in the bulkuZ(z=1/2)~v"—0.160Re decreases
081 _—— ] with increasing through-flow whilail; increases near the
el R Lo 2 plates withRe, e.g.,ul(z=1/4)~v?+0.21sRe This ex-
=04} oy 1 L d plains the flow-induced changes in the profilé4.10 to be
02 R 14 seen in Fig. 10 fory= —0.25 withv(¥=3.6.
06 ¢ = 3. “Upstream” patterns
LA In the absence of through-flow the field structure of TWs
_02 | | U propagating to the left, i.e., in the upstream direction is the
’ X | o mirror image of theRe=0 downstream patterns shown in
00 ‘ 1 the top part of Fig. 9. Therefore we have not included the
0002 04 00 02 04 Re=0 reference upstream pattern in Fig. 11 where we show
z Z upstream patterns fdRe=0.3, 0.45, and 0.6.

) ) _ Switching on the through-flow decreases and eventually
FIG. 10. Vertical proflles oD patterns. S_.hown are modLﬁleft_ reverts the originaRe=0 phase bending of ther and
column and phasesright column of the critical complex ampli- waves(cf. right column in Fig. 12while the moduli|w| and
tudes that are symmetric around the mid positionl/2. Their -~ . .
o ; . . |6] remain practically unaffected by the through-flow of
normalization is explained in Sec. IVF. Parameters are_.
L=0.01, 0=10, y=—0.25. Figs. 11 and 12. On the other hand, the upstream concentra-
tion wave is significantly changed with increasirige
|c(2)| develops two side maxima in the upper and lower half
of the fluid layer while flattening in the center padf. left
(folumn of Fig. 12 or also Fig. 21These structural changes
0 .
of the c wave always occur in thRerange beyond the zero

peaked in the bulk near=1/2. The phase lag ap.(z) in-

creases in the boundary layers with the through-flow.
The above described flow-induced structural changes

¢(z) can easily be understood within the=0 approxima-

tion [30,32 to the concentration field balan¢g.1¢ crossing Of"’g Whe_re alsort’ and kt’ show a significant
variation. Thus, we infer that these phenomena are related to
W(2) each other. . A
c(z)~i ¢RacD 5 5 4.9 The flow-induced structural change ©fz) can be under-
w; — ok P(z)Re stood within theL =0 approximation
in a critical TW that is propagating downstream with the . ) RatJ W(Zz)
critical frequencyw?® . Thus forL=0, i.e. in the absence of c(2)~i lﬂW M) (4.13

diffusive concentration currents — which, by the way, is

quite a good approximation to the real situation of ethanolyg the concentration balan¢8.19 in an upstream TW with
water mixtures withL =0.01 — thec(z) profile is advec-  gffective lateral velocity

tively slaved to the vertical velocity(z) and the through-

flow velocity U(z)=cP(z)Re The prefactori in (4.8 ugﬁ(z):vg_gp(z)Re (4.19

reflects the overall phase shift af2 betweenv andc. The

effective z dependefteral velocity Againv2=wg/kS can well be approximated by
ud(z2)=vl—oP(z)Re (4.9 vl~—|v'?|+oRep;Re (4.15

that enters in the denominator @f.8) renormalizes the pro- SO that
file W in the numerator of4.8) so that theL =0 concentra-

tion profile Ugi(2)~— o] +oRg1.34-62(1-2)]. (4.16
RaE W(2) Note, however, that ignoring the dissipative contribution
C()~iy—p 5 — (4.10 —LV?2c on the left-hand side of the concentration balance

Ko Uef(2) (3.10 causes in theL=0 concentration profile/(4.13—

(4.16)] a divergence at
is determined by the quotient of these two velocity profiles.

Since the phase velocity of the wave,v2=w2/k2, can 11 2 B
well be approximated by zi=§ ii 1- 3 1.34- “Re (4.173

ve~v+oRep;Re (410 via the zeros ofi%(z) whenever
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ay)'d

FIG. 12. Vertical profiles ofJ patterns. Shown are modyleft
column and phasegright column of the critical complex ampli-
tudes that are symmetric around the mid positionl/2. Their
normalization is explained in Sec. IVF. Parameters are
L=0.01, 0=10, y=-0.25.

It should be noted that for the large Soret coupling
= —0.25 the upstream fields displayed in Figs. 11 and 12
for Re=0.6 have not yet reached their asymptotic laRye-
form — cf. also the bifurcation threshold$ in Fig. 3. For
large Re the modulugc(z)| decreases substantially and be-
comes more flat, as was obsenjd@] explicitly for smaller
Soret couplinggy/=—0.001,-0.01.

4. “Stationary” patterns

Here we discuss the effect of through-flow on stationary
patterns at a moderately positive Soret couplipig;0.01, as
a representative example. In the absence of through-flow,
Re=0, the perturbation fieldétop part of Fig. 13 and full
lines of Fig. 14 are real, in phase, and laterally mirror sym-
metric around the vertical lines of maximal upflow=0)
and downflow k= =*1). Thus, forRe=0 the lateral loca-
X tions of largest alcohol surplygeficiency coincide with the
_ largest vertical upflow(downflow) velocity that feeds the
FIG. 11. Spatial structure of) patterns. They propagate for i with warm, alcohol richcold, alcohol poor fluid from
Re—0 upstream, i.e., to the left. Contours of the fields 6, ¢in bottom(top) plate. Note that fors>0 the Soret effect
vertical cross sections of the fluid layer are shown for different - L
causes concentration surpl(deficiency at the warm(cold)

Re as indicated. Whitgblack implies large(small field values. lat Th itical " trati litud
The largest vertical ugdown) flow is atx=0(=1). Contour lines plate. e cntical convective concentration amplitude

mark fractions=(0,1,2,3,4)/5 of the field maxima. Parameters arelc(z)_| is for ,R e=0 S,O large that the full line representin_g_ it
L=0.01, 0=10, y=—0.25. The critical frequencies are about " Fig. 14 lies outside the chosen plot range. The critical
©Y~—11.21+ 41.Re wavelength A (9)(4=0.01)=2.9833 of theRe=0 pattern
(top part in Fig. 13 is substantially larger than 2.
[l Already a small through-flow changes the above de-
Re>T=4 (417D scribed field structure of stationary convective perturbations
dramatically. The wavelength decreases toward 2. The flow
The diffusive contribution in3.1¢ prevents the divergence amplitude§w(z)| and even more conspicuously the concen-
atz. leading to side maxima ift(z)| instead(cf. Fig. 12 for  tration amplitude|c(z)| decrease. The phase(z) of the
Re=0.45 and 0.6). Their location is shifted slightly towards concentration field exhibits a strong vertical variation reflect-
the bulk in comparison with, e.gz_(Re=0.45)=0.1 and ing the almost passive advection by the flow that is roughly
z_(Re=0.6)=0.144. characterized by the parabolic lateral through-flow profile su-
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@ FIG. 14. Vertical profiles ofs patterns. Shown are moduleft
column and phasegright column of the critical complex ampli-
tudes that are symmetric around the mid positionl/2. Their
normalization is explained in Sec. IVF. Parameters are
L=0.01, =10, 4=0.01.
Q
(k2=1.089, k$=0.9678) increases. Thuk? — kS increases
with || when the bifurcation branches collide as described
in Secs. IVC4 and IV C5.
F V. ABSOLUTE AND CONVECTIVE INSTABILITY
Whenever at a stability threshold the frequency is nonzero
with a finite group velocity
® Jor(K)
Vg™ Jk (51)
kC
S one has to distinguish between spatiotemporal growth behav-
ior of spatially extended and of spatially localized perturba-
tions. The former having a form-e'*™ have a positive

growth rate above the bifurcation threshotdgletermined in
x the previous section.

FIG. 13. Spatial structure & patterns. They are stationary for A wave packets, front propagation, and saddle point analysis
Re—0. Contours of the fieldsv, 6, c in the vertical cross sec-

tions of the fluid layer are shown for differefe as indicated. A spatially localized perturbation, i.e., a wave packet su-
White (blacK) implies large(smal) field values. The largest vertical P€rposition of plane-wave extended perturbations of a par-
up (down) flow is at x=0(+1). Contour lines mark fractions ticular kind moves in the so called convectively unstable
+(0,1,2,3,4)/5 of the field maxima. Parameters areparameter regimg44—47 with the velocityv, faster away
L=0.01, =10, =0.01. The critical frequencies are about than it grows — while growing in the frame comoving with
wg~41.Re vg the packet moves out of the system so that the basic
conductive state is restored. In other words, the two fronts
) that join the wave packet's intensity envelope to the struc-

For /<0, however, amplitudes and phasesSopatterns  tyreless state both propagate in the direction in which the
become more and more similar to thoseDbpatterns when packet center moves. On the other hand, in the so called
the two bifurcation branches’ andrg approach each other apsolutely unstable parameter regime the growth rate of the
with increasingRe in Fig. 8. However, thecritical wave  packet is so large that one front propagates opposite to the
numbers of these two structures differ: Fgr=—0.001 center motion. Thus the packet expands in the laboratory
we find kE’= 1.001 and kfz 0.998 and for ¢y=-—0.01 frame into the direction of packet motion as well as opposite
the difference of the critical wave numbers to it [44,45.

perimposed upon a roll-like closed-flow pattern.
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We would like to emphasize that we are dealing here onlythe complexk plane lies close to the critical wave number
with a linear analysis of the convective fields. Thus we dok. and (ii) that the relative distance
not address the question whether, e.g., at a subcritical bifur-
cation the above decribed wave packet grows to a stable lc-a

nonlinear state that then expands back into the system with a "’“C'a:f_ 1 5.4

larger nonlinear front velocity so that the nonlinear struc-
tured state ultimately invades the region occupied by thédetween the convective-absolute bordgy and the critical
The boundary in parameter space between convective and )

absolute instability is marked by parameter combinations for Js 1 J°s Js

y yp s(kir)=s.+ (K—kg) ﬁ) +§(k—kc)2(a—kz> +,u(ra—r)
propagation direction in the laboratory frame: In the convec- ¢ ¢ ¢
tively unstable regime this front propagates in the same di- + (higher-order terms (5.5
regime it moves opposite to it, and right on the boundary Here we have introduced for convenience the relative dis-
between the two regimes the front is stationary in the labotance

homogeneous state. Rayleigh number. is small we expand
which one of the fronts of the linear wave packet reverts its

rection as the center of the packet, in the absolutely unstable

ratory frame. This parameter combination can be determined

by a saddle point analysis of the linear complex dispersion = r 1 (5.6)
relations(k) over the complexk plane[46]. Here we do not re '
display the dependence of on the control parameters _ o
r, Re andy. of the Rayleigh number from its critical valuer . for onset
The condition of vanishing front propagation velocity is Of conv3e/£:t|9n. The higher-order terms (8.5 should be of
equivalent to finding the parameters for which order x> since for small 6<u<1 only extended perturba-
tions with (rea) wave numbers out of a band of width
Res(x)=0 (5.2 k—k,~/u can grow.
with « denoting the appropriate saddle positions¢k) de- 2. Relation to linear amplitude equation
termined by solving The expansion coefficients @.5 appear also in the lin-
ear parts of the complex GLE
ds( k) ) 2 ) 2
P =0 (5.3 To(ditvgd ) A= u(l+ice) + &(L1+icy)dx A
+ (nonlinear termp. (5.7

in the complexk plane[46]. In Appendix A 2 we describe
our numerical method of finding the solution 6.2) and
(5.3 It yields the sought after surface inRRe-y parameter
space, e.g., in the form of a function_,(Re ¢) depending
on Re and ¢. This borderr._, lies above the bifurcation
thresholdr ;. for growth of extended states. Thus focr . the
basic conductive state is stable, focr <r_, it is convec-
tively unstable, and for. ,<r it is absolutely unstable.

Here A(x,t) is the common complex amplitude of convec-
tion fields® = (w, 6,c),

D(x,2,t)=A(x,1)D(2)e/ ke 4 ¢ c., (5.8

that bifurcate out of the conductive stateat0. The ap-
proximation(5.8) can be expected to be a good one as long
as A is small and, more importantly, as long as the spatial
field structure is well represented by that of the critical eigen-
B. Ginzburg Landau amplitude equation approximation functionsd(z) e,

The relations between the expansion coefficients afd
the coefficients in the amplitude equation are

as) B ,(am) .
W C——I W C——Ivg, (5.93

To solve(5.2) and(5.3) for r.., one has to determine the
dispersion relatiors(k;r,Re ) for complexk; i.e., one has
to solve the eigenvalue proble8.9) for complexk. This is
in general a quite involved numerical task. A somewhat sim- (
pler, yet approximate method, is to use an expansion of
s(k;r,Re ) that corresponds to approximate the full field

equations by the Ginzburg Landau amplitude equation Js dy . dw 1+icg
(GLE). We recapitulate the derivation of the relevant equa- (rﬁ) - C(E_' E) I (5.9
tions here for completeness. The comparison with results
from the full field equation(Sec. V Q shows that the GLE 72 2 &2
) ; S . S & .
yields quite useful approximations to the borderlines be- (—2> =——(1+icy). (5.90
tween absolute and convective instability. K/ To
1. Expansion of gk;r) In (5.99 we have used the relatiqd0]
ConsiderRe and ¢ to be fixed for the moment so that we Py 0y 8F gt
do not have to display them explicitly in the argument list of (—2) = —(— Sza) (5.10
s. Under the assumption® that the sought after saddiein JK c ar ok c
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to relate the seconll derivative of the growth rate to the ‘ ' ' ‘ ' 7
critical curvature£y= (9%r g/ 9k?)/(2r) of the marginal i 45
stability curverg,{K). Note that the approximated disper- 00 . //'

sion relation(5.5) is precisely that of the GLE approxima- £ 111
tion. N ! !

3. Saddle and convective-absolute instability border

With the notation(5.9) the saddlex (5.3) of the approxi-
mated dispersiof5.5) lies at

K (sl k) _ I vgTo -
e (%slok?). ° 1+ic, 2502' (.19
Then the condition5.2) “
as\ 1 (9sldk)2
0=Re u rE —Em (5.12
C
yields the GLE approximation
2.2
UgTO
I P T (5.13
Hea™ 4 2(1+c) 3
or
Fea=(1+pcallc (5.130

for the boundary between the convectively and absolutely
unstable parameter reginié6—48§.

C. Convective and absolute instability against
S, U, and D perturbations FIG. 15. Borderlines ., between absolute and convective in-

stability versus through-flow rate. Symbols athick curves repre-

Here we present in Fig. 15 our numerical results for thegenyr "~ obtained from the full field equations and from the GLE,
borderlines between absolute and convective instability obregpectivelyThin curves show stability curves, discussed in Sec.

tained from the full field equationécf. Appendix A2 in IV. The different types of perturbations are identified by circles and
comparison with the GLE results. dotted lines §), upwards pointing triangles and full line&/{, and
There are three different types of extended perturbationgownwards pointing triangles and dashed linBg .(The case of a
in our system, namel$, U, andD, against which the basic pure fluid, #=0, is shown by dash-dotted lines: thick one fgr,
conductive state becomes unstable at the bifurcation thresland thin one forr{ Parameters aré =0.010=10, and ¢ as
old rg,r andr? that have been determined in Sec. IV. shown.
Consequently one has to investigate the spatiotemporal
growth behavior of three different packets consisting of sudecreasing withRe and v, increasing withRe reaches a
perpositions ofS, U, orD p|ane-wave perturbations_ Their maximum. In the1/1=001 case a second maximum is visible
analysis along the lines of Sec. V A and Appendix A 2 yieldsat smallRe that is possibly associated with a root®f. In
three functionsrf_a (circles, rt’_a (upwards pointing tri- contrastr?_a of the full field equationgcircles is monoto-
angles, and r2_ (downwards pointing triangl¢seach de- nously increasing withRe. For negative Soret coupling
. . _ U :
pending onRe and ¢ that mark the boundary surfaces in ¥=—0.001, —0.01, —0.1, and—0.25r, first decreases
r-Re- parameter space between the convectively and absavith increasingRe, coincides at its local minimum with
lutely unstable regimes of the basic state against t§pe Whenvy=0, and afterwards increases wike. The GLE
U, or D perturbations. approximation yields good quantitative agreement with the
In order to determine the three boundaries within the GLEesults of the full field equations faiy , (upwards pointing
approximation we have determined the derivatiy®$®) of  triangleg in the vicinity of the local minimum, while for
the respective eigenvalue$, sV, andsP at their respective higher Re the GLE results increase more strongly. For
critical pointsr.(Re ¢), k.(Re ) [43]. Then(5.13 yields  smaller Reynolds numbers this validity range is typically en-
the functionsr..,(Re ) for the three patterns. They are larged down tadRe=0 for the s values presented here.
shown in Fig. 15 for a fewy as functions ofRe by thick As discussed in Sec. IV C 5 we have limited our investi-
lines (S: dotted,U: full, D: dashed together with the corre- gation ofrcD and rf as functions ofRe to cases where the
sponding bifurcation thresholds (thin lines. For positive  wave number gap in thB-S marginal stability curves has
Soret couplingyy=0.01, 0.001 one obtains within the GLE not yet appeared. Therefore, within the GLE approximation
approximation a local maximum of?, (4#=0.01 at r2_andr:, are determined by the expansion coefficients of
Re~0.25, #=0.001 atRe~0.1), when the product of, s (5.9 at the critical Rayleigh numbet, only as long as the



54 INFLUENCE OF THROUGH-FLOW ON LINEAR PATTER . .. 1525

calculation ofr2 andr? was numerically possible. Neverthe- fect's influence on the bifurcation thresholds is eliminated by
less, for higheRe critical Rayleigh numbers still exist to the sufficiently large through-flow.
left and right hand side of the wave number dap Fig. 6). Finally we have evaluated the borders,, r¢,, and
We also found that th& saddle point of the full field equa- ., between convective and absolute instability &y D,
tions (evaluated by successively increasiRg) evolves mo- andS perturbations, respectively. To that end we have deter-
notonously wherRe increases beyond the threshold wheremined the relevant saddles of the dispersion relations
the wave number gap occurs. The wave number of thi§"(K), s°(k), ands%(k) in the complex wave number plane.
saddle point is always above=1 and increases witRe. These _num_erically exact results were compared Wi_th GLE
The GLE results forr2, are increasing stronger than @PProximations, which agree reasonably well with the
those of the full field equationédownwards pointing tri- former. _The Iq’gter were obtained by an expansion around t_he
angles. For = —0.001 ther®, stability limit seems to ter- respective critical values and by evaluating all the coeffi-

minate close to the Reynolds number where the wave numf—'ems that enter into the linear GLE fef, D, andS pat-
ber gap(cf. Sec. IVC35 opens up in theD-S marginal ems.
stability curves. There Im seems to change sign when in-
creasingRe further. A graphical analysis of this saddle that ACKNOWLEDGMENT
has moved into the lower complex plane suggests that Support by the Deutsche Forschungsgemeinschaft is
there Re<0 at_)ove a certaifRe limit for all r so that this gratefully acknowledged.
saddle can be ignored.
V1. CONCLUSION APPENDIX A: NUMERICAL ANALYSIS

. . . . 1. Shooting algorithm
We have investigated the influence of an externally im-

posed horizontal shear flow on linear convective structure Here we describe our version of the shooting algorithm
formation in binary fluid layers heated from below. To that modified so as to better cope with the numerical problems
end we have solved the linearized field equations for conveccaused by the concentration boundary layers near the hori-
tive perturbations of the basic conductive state numericallyontal plates. _ _ _ _

with a shooting method. In addition we have checked our The equationg3.1) are written as an eight-dimensional
results — in particular some of the peculiar changes winsystem of first-order differential equations

Re— by a variational calculation that gave good agreement. _

We have determined for positive and negative Soret coupling dy— Az \)y=0 at 0<z<1, (AL)
4 th.6. Re dependence of the critical blfurcat|(_)n Properties: \ here the coefficient matrix follows directly fro3.9). The
stability thresholds, wave numbers, frequencies, and e'gerb'igenvalues

functions for three different types of perturbations. The latter

are identified by different characteristic exponents that cause AN=[reaiK),0(K)],o OF A=[%(K),0(K)];fned
perturbations to be stationaryS), downstream traveling

(D), or upstream travelingy{) at Re=0.

The Hopf symmetry degeneracy dfandD perturbations are determined as a function &f either for y=0 on the
at Re=0 and <0 is broken by a finite through-flow — marginal stability boundarys.,{k) or for fixedr. The eigen-
wave numberk! andk?, frequenciesn’ andw® and bi-  functions
furcation thresholds. andr? develop differences. At small s
Re upstream traveling wave convection grows first upon in- y=(W,d,W,d;W,d;W, 6,9,0,{,d,{) (A3)
creasing the heating sine¢ is depressed andf is shifted
upwards. But then, with increasing through-flow the bifurca-
tion linesry andr? intersect, giving rise to bistable bifurca-
tion behavior. EventuallyéJ flattens out and approaches for
largeRe the pure fluid’s stability boundarls/?(Re,;b: 0) —  following from (3.3).

a sufficiently strong shear flow eliminates the Soret induced Fijrst (A1) is integrated with a fourth-order Runge-Kutta
coupling effects between the convective concentration fielgnethod with the initial vectoré&z=0)

and temperature and velocity fields. This also holds for mix-

tures with positivey. The bifurcation thresholds? monoto- yi=8;, v’=8¢,, v’=6&;, v*=6, (A5)
nously curve upwards when increasiRg and collide with L _ _ o _
ther? threshold lines that foy<<0 sharply drop downwards Whereg is the unit vector in thg direction. Then an arbi-
with growing Re. This behavior is easily understood by ana- trary linear combination

fulfill the boundary conditions

Y1=Y2=Y5=Yg=0 at z=0,1, (A4)

lyzing the Re variation of the paths of the relevant three .
(;|(gke|r1;/.alues in the complexw plane and of the variation of v(2) :JZI ajyj(z) (A6)

At >0 the stationary thresholdf rapidly approaches
the y=0 asymptote of a pure fluid from below — again the fulfills the boundary conditions a&=0, but not az=1. The
shear flow suppresses the vertical convective transport détter is guaranteed by choosing the correct coefficiants
Soret induced concentration gradients. Thus, any Soret effhis leads to a set of homogeneous equations
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y} y% yi y‘ll a, Res(k) and Ins(k) with a shooting method frorz=0 to
1 .2 3 .4 mid heightz=1/2 (see Appendix A 1for givenr, Re, and
Y2 Y2 Y2 Y2 2 _, (A7) % and complexwave numberk. Then we solved for fixed
Toy2 o yd oyl e Re and ¢ the nonlinear system of the three equations
Y5 Y5 Y5 Ys az eandy the no yste ee eq
Ys Y3 Vs Vsl |,.,\% Res(k,1)=0, (AL2)
The nontrivial solution of(A7) requires the determinant of 9 Res(k,r)
the coefficients to vanish. Thus, this solvability condition but “Rex) =0, (AL13)
also the explicit evaluation of the eigenvalues requires the
knowledge of the eigenfunctions a&1. This is a problem 9 Res(k,r)
because of the strong variations in the boundary layers — W:O' (Al9)

see, e.g., Fig. 9. Our integrator is not able to shoot exactly

from z=0 to z=1 so that we cannot evaluate the eigenvaI-WhiCh correspond t¢5.2) and(5.3) with a Newton-Raphson

ues\ with a fixed accuracy. Especially, this fact makes it method with backtracking. The solution yields the borderline
difficult to find a good critical wave number. To UnderSta”dvaluerc_a and the saddle positior of s in the complexk

this, we can expand the stability curvg,, aroundk*®, plane.

The Jacobian matrix as well as the partial derivatives

— exact _ exac
AT =1 s KT Q) ~ T s k) were obtained in discretized form by using central differ-

1 9 ences in the variables Relmk, andr. Mainly two problems
_ 2 stab 3 R

=50z +0(qg°) (A8)  occur: one needs a good initial guess to ensure convergence

kexact of the Newton-Raphson method, and for higher Reynolds
] numbers, which are not discussed here, the shooting method

and we find the defect starts to fail for the given accuracy linisee Appendix A L

AT/ We also used an alternative iterative method to evaluate

g~ / rer_ (A9) the saddle points. It yields the same results as our first

& method, but it does not require partial derivatives. First we

s calculate the eigenvalue
With £5~0O(1) the accuracyAr strongly affects the accu-

racy of the critical wave number and of the coefficients en- [w(?é),r(';?)]yzo (A15)
tering the GLE. _

One could Change the integrator_ But the prob]em can b@.t a suitably chosen initial value for the saddle pOSitiOﬂ.
solved more easily. Using the mirror symmetry of the eigen-Then, along a circle in the complei plane of radiusp
functions (v, 6,¢) one only needs to shoot from=0 to mid ~ aroundx we determine, say)=10 values
heightz=1/2. There the new boundary conditions are [k y(K)r—rz. 1=0,...n—1 (AL6)

Y2=Y4=Ye=Ys=0 at z=3. (A10) .
with

The new homogeneous equations repladiig) are then

K =7+ s(zjw tisi zjw) A17

Y: V3 Vi Y2 a, j=rp|cog T Fisin . (ALY

Ya Ya Ya Va a ~

4 J4 Ja o Ja 2l 2o, (A11) The function valued w(k),w(ky), . .. w(k,—1)} are then

Yo V2 y: ye ag used for a biquadratical fit

1 2 3 4

Ys Ys Ys VYa/ |, ,,\ 24 w(k)=ay+ a;lmk+a,Rek+as( Imk)?+ a,(Rek)?
Now, shooting only fromz=0 toz=1/2 we can compute the +agImk Rek (A18)

eigenvalues with a fixed accuracy in our parameter range. A ) ) ]

welcome secondary effect is that one saves CPU time. How2nd the analytically determined saddle(fl8) is used as a
ever, it must be said that this trick only delays the boundary?@W initial valuex. Now, we reduce the circle radiysby a
layer problem without eliminating it completely: If the pa- factor « and continue as above. We repeat this procedure

about 20 the boundary layer a¢ 0 has become so thin that Method is fast, robust, and easily programmable. However,
it is no longer possible to use our integrator. the firstp and the reducing factax have to be chosen care-

fully. Typically we putp~0O(10~?) anda= 2.

2. Saddle point analysis

h i . | . APPENDIX B: COMPARISON WITH A
The borderliner .., between convective and absolute in- VARIATIONAL METHOD

stability is defined by the condition®.2) and (5.3 on the

dispersion relation after a continuation into the complex In view of the unexpecte®e dependence, say, of Fig. 2
wave number plane, which also gives the saddle point posiwe wanted to compare our results obtained with a shooting
tion « and the frequencyw(x). We have determined method with a completely different and independent method.
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To that end we used the variational method of Prigogine and 1 [s
Glandsdorff[49,50. While this method does not yield exact ¥ = | dz i2
results it still is very valuable in providing an independent
check for our numerical analysis. 20

The aim of this variational method is to find a functional, + 09, W09, W— kz(r? 2W) 2+ @ 2WO9AW
called the local potential, and to minimize it. We start with
the linearized field equations

3, W00, W+ S(WOW+ 829+ £°7)

. B T T
+iko Re RWoW+ 6%+ £°0) + E(azw)2

du=—o Re Po,u—d,p+oV2u—o Re w,P,

1.
(Bla + ok?| WOW+ — 0°0+ go —o(1+ ) %W
dW=—c Re PO W—d,p+oV2w+ o[ (1+¢) 6+ (], N U S U SV PP O
B1b) Ra Wo+ 2(529) + Z(azg) al®W— yk?6°¢
YR = Lo Re Waiia,P+ o Re P,
9,0=—o Re Po,6+V26+Raw, (B10) Yo, 070 = o WP+ o AW W
(BS)
__ 24 102
Ii=—0 Re PhL+LVIL=yveo, (B1d) Here we have elimitated the pressure by usiBga):
0=dcu+d,w. (Bl  —po kzaw +ka' Re Py,W° —Ea' Re Wao,P— k2‘9
Hereu, w, 6, ¢, andp are convective disturbances from + o WP, (B6)

the conductive profiles an&(z) the Poiseuille shear flow
(2.8b. Following the procedure explained in R¢f9] we
multiply the above equations by increments of the respectiv
fields: (B1a by — éu, (B1b) by — éw, (B1c) by — &6, and S
(B1d) by — 8¢. Here, e.g.,

Furthermore, partial integrations inhave been applied. One
gan check directly that the Euler-Langrange equation for,

ov Jd ov
o A—/ =0, (B7)
w=w"+ sw (B2) % 9t12)
leads to
with w® being a solution of(B1) that is not varied in the . 201 (225 _ 1,230y _ 2_ 1,2\ 70
following. Then we add and obtain [s+iko Re PIT=L(0:0 =k = (o, — kD) 6. (B8)

This is together with thea posteriori subsidiary condition
g 50 the Eqg.(B1d). An analogous calculation leads with
= gu°su+dwoow+ a,6°86+ 4,£°5¢ respective subsidiary conditiors= 8%, Ww=wW° to the other
differential equations. R

To get the critical values we expand the unknowwsd,
+9,pSU—aduV2u+o Re Powow andZ,

— W[ (1+ ) 6+ {]— ooWwV?w—Ra wsd

— 20 (8U)2+ (6W)?+(56)*+(5¢)%]

+o0 Re P)udu+o Re wi,Pdu

Ny Ny
A = W f- /0 = ~0 .
 56V20+ o Re PA, 050+ 3,pow w(z) 2‘1 wifi(2), wi(2) ,Zl wifi(z), (8%

—L&IV2e+y6LV?0+ 0 Re Po LS (B3) N N
:,Zl 0;0;(2), Z‘, 079;(2), (B9b)
when making use of relations such as
N3 N3

) — = 2005\ — ~o
— GWOW= — G (WO+ SW) SW= — 1 d,( SW)2— dwOow. g(z)_,zl G2, ¢ (Z)_; i@ (B899
(B4)
in functionsf;, g;, andh; that satisfy the NSI boundary
- _ conditions. As trial functions we use
We expand the fields in plane wavek= d(z)e'**es!, and _
we integrate over the entine-z cross section of the fluid f,-(z)z[z(l—z)]zl, (B10a
layer. Following closely the prescriptions of R¢&0] we

then obtain the local potential 0i(2)=2(1-2)(2z—1)20"Y, (B10b
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hj(z)=[z(1—z)]2(j‘1). (B10¢) With N;=1, N,=3, N;=4 the software packag&ATH-
EMATICA is able to solvgB12) exactly.
We insert(B9) and (B10) into the expression foW’, we The variational results display the same structural proper-
minimize with respect to the variational parametersties as the shooting results and they agree within less than
w;, 6;, and{;, and we use the subsidiary conditions 1%— 2% forRe+0. ForRe=0 the agreement is better. We

~ ~ =5 = = found, e.g., for ¢=-0.25 the critical values

wi=w:, 6=07, (=(;. (B11) _ ~o _ e

o o =l r.=1.33497, k,=1.00451, andw.==*11.20027 differing
Then we obtain a system ®f=N;+N,+ N5 linear homo- Py 1ess than 0.2% from the shooting results. As an interest-
geneous equationdx=0 where the vectok hasN compo- N aside we mention that the variational calculus yields

—0 = ~ i 0_

nents containingv®, 92, and¢?. For nontrivial solutions N the absence of through-flow..=~L/(1+L) exactly.
to exist the determinant off must be zero, so that we have Furthermore, the separation ratiy, for which k=0 is

to solve the equation obtained as o= L/(f_ L) with f=6695603/25739142
=0.2601.., which has to be compared with the analytically
detA[r s K), 0(K)],=0=0. (B12)  exact resultf =34/131=0.2595...[41,37.
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