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Pattern selection and stability in viscoelastic convection are studied in the framework of amplitude equations
derived in the vicinity of stationary and oscillatory instabilities. The oscillatory instability corresponds to a
Hopf bifurcation with broken translational symmetry. When this instability is the first to appear with increasing
Rayleigh number, such systems may be described by coupled one-dimensional complex Ginzburg-Landau
equations for counterpropagating waves. The coefficients of these equations, as computed from the underlying
Navier-Stokes equations, are such that the selected pattern corresponds to standing waves. The phase dynamics
of these waves is derived and leads to coupled Kuramoto-Sivashinsky equations. Their stability range is also
determined for different typical fluid parametefS1063-651X96)03108-X

PACS numbes): 47.20.Ky, 47.54+r, 47.27.Te, 47.506:d

[. INTRODUCTION the constitutive equation, which relates the stress and strain

rate tensors. Finding this relation, which should generalize

Convective instabilities of the Rayleigh-Bard type have the linear dependence characteristic of Newtonian fluids, is
been known since the turn of the century, and the propertie§'® main purpose of rheology. The simplest constitutive
of the spatial pattems they induce have been extensivel quation capable of describing realistically the ylscoelastlc
studied, either experimentally or theoreticgllj. However roperties of diluted polymers, such as Boyer fluids or water
- ' . ' ' .. _solutions of polyacrylamides, is given by the so-called Old-

it is only during the last decades that a global understandin

of pattern formation in hydrodynamic instabilities has been yd model[11]. In this model, the stress tensor is decom-

; . osed into both a polymeric contribution and a solvent con-
achieved thanks to both carefully controlled experiments an@ibution. Furthermore, the binary mixture aspects of these

the development of an appropriate theoretical frameW2Ik  f)i4s are assumed to be irrelevant versus their viscoelastic
The related theoretical methods are based on new analyticgioperties. In the weak shear regime, nonlinear stress-strain
and numerical tools. The analytical methods are inspired bygte dependences may be neglected, and the model may be
the mathematics of dynamical systems and the possible reeduced to its linear approximation, known as the Jeffreys
duction of complex dynamics, close to instability points, tomodel. This model contains three parameters: the static vis-
much simpler forms, many aspects of which may be studiedosity, the stress relaxation tintehich gives an estimate of
analytically[3]. This reduction of the dynamics leads to am- the time the stress tensor needs to react to a strain change in
plitude equations of the Landau-Ginzburg type, which arethe system, and is characteristic of a Maxwell fjuiand the
able to describe the formation, selection, and stability of theetardation time, which results from the fact that the strain
convective patterns, quantitatively agreeing with several exelynamics is usually not purely relaxational. The relaxational
perimental observations. time is very short in normal fluids but increases strongly in
In simple Newtonian fluids, the Rayleigh-Bard instabil-  polymeric solutions. The ratid of the retardation and relax-
ity, which occurs in a fluid layer heated from below, can only ation times is an important rheological parameter, and it var-
lead, at the first instability threshold, to stationary patternsies from, 0 in the case of a Maxwell fluid, to 1 in the case of
In this case, the main questions are thus related to the syna- Newtonian fluid.

metry of the selected structuréslls or hexagons to the Linear stability analysis has been performed by various
wavelength selection mechanisms, and to the transition beauthors to determine the onset of convection in such systems,
tween patterns of different symmetrigg5]. either with free-free or rigid-rigid boundary conditions. It has

Of course, in more complex fluids, such as binary mix-been found that, besides the usual stationary convection, os-
tures or liquid crystals, oscillatory and even more complexcillatory states can also be obtained at of$ét-15. Which
spatiotemporal patterns may also appear near the first comype of convection—stationary or oscillatory—appears first
vective instability[6,7]. The main properties of these pat- is determined by the values of the rheological parameters. At
terns have also been successfully described in the framewoflked Prandtl number and relaxation time, it is the stress re-
of the amplitude equations formalism. Therefore, it appearfaxation timel that fixes the relative position of the station-
to be natural to apply this formalism to polymeric fluid con- ary and oscillatory instability thresholds.
vection, where additional degrees of freedom can also lead to This oscillatory instability can lead to traveling or stand-
a very rich dynamical behavigB—10]. ing waves, and the stability of these solutions has to be stud-

In fact, the viscoelastic properties of such fluids appear iried in a nonlinear analysis framework beyond the instability

threshold. The derivation of amplitude equations for oscillat-
ing viscoelastic convection in the weakly nonlinear regime
*Deceased. has been presented and analyzed elsewl&e21]. Hence,
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the aim of this paper is to review these previous results and 7+ N\ D7=27,[D+\,D,D]. (4)

to perform the selection and stability analysis of the oscilla-

tory convective patterns, including their phase stability. 1t This equation contains three parameteys; the static(or

will be shown that, while traveling waves are always foundzero shear viscosily \;, the so-called relaxation time; and

unstable, standing waves may be stable in a wide paramet&p, the retardation timg0=<\,=<\,). In rheology, the so-

range. In addition, the derivation of the phase dynamics ofalled frame-indifferent principle should be applied. It states

the standing waves is presented, and the properties of thbat the constitutive equations must be invariant under local

defects, which may be expected as the result of oscillatoryigid rotations. Then, in order to satisfy the frame invariance,

instability associated time and space symmetry breakinggbjective time derivatives ought to be taken in the constitu-

are discussed. tive equation. The symboD, is denoted as an invariant
The interest of this study is twofold. On the one hand, it is(frame-indifferent time derivative, defined as

shown that even small viscoelastic properties may strongly

modify the convective patterns. On the other hand, the sen- Di7=di7+(v-V)7+7W—W-7+a[D-7+ 7 D], (5

sitivity of convective patterns to fluid properties could be

used to either determine the rheological parameters of g/herew is the skew-symmetric part of the velocity gradient,

given fluid or test the soundness of the type of <:onstitutiveand a is a phenomenological parameter that can vary be-
tween—1 and 1. The casa= —1 corresponds to the lower

equation used to describe it.
the paper is organized as follows. In Sec. Il, the basicconveCtEd Jeffreys modeDldroyd B), a=0 to the so-called

hydrodynamic equations for viscoelastic convection are pre(_:orotatlonal Jefireys model, amd=1 to the upper convected

sented. In Sec. lll, the linear stability analysis of the conduc—‘]eﬁcreys mode{Oldroyd A).

tion state is performed, and the conditions for the onset of The constitutive equation can be derived from a molecular

convection are discussed. In Sec. IV, the amplitude equation@ec.)ry' in V.Vh'Ch the polymer _moIecuIes are conS|dere<_:i as
oninteracting Hookean elastic dumbbells immersed in a

for the convective patterns are derived and, in Sec. V, th wioni lvent. The st A then be d
pattern selection and stability, including the phase stability ewtonian solvent. 1he stress tensocan then be decom-

are analyzed. Finally, conclusions and outlook are presente[&‘)sed as

in Sec. VI. =1t T, (6)
Il. BASIC EQUATIONS AND CONSTITUTIVE EQUATIONS where 7 is the Newtonian solvent contribution
A layer of incompressible viscoelastic fluid of depth 7s=2usD, (7)

and of infinite horizontal extent is considered. The fluid is

heated from below and remains at rest until a critical tem-and the polymeric contribution of a concentrated Maxwellian

perature gradient is reached. In the Boussinesq approximgonvected model is given by the contribution of the solvent

tion, the balance equations can be written as and polymer viscositiesjs and 77, , respectively. Moreover,
the relaxation and retardation times are related by

V.v=0, 1)
n
No=——"— 1. ®
pol v+ (V- V)V]==Vp+ V- 7+po[1-a(T—-To)g], s 7o
@) For weak shears, the linear approximation of the Oldroyd
model leads to the more simple Jeffreys constitutive equation
[oT+(v-V)T]= VT, 3 for a polymeric fluid
wherev is the velocity fieldp the pressurer the extra stress (14+X10) 7=2750(1+ \,0,)D. 9)

tensor,T the temperatureg the acceleration of gravityy the
thermal expansion coefficient, the temperaturey, the ref-  The relaxation time\; gives an idea of the time the stress
erence density, and the thermal diffusivity. tensor needs to react to a strain change in the system. Usu-
In a normal incompressible fluid, the extra stress tensor iglly, this time is very small in normal fluidé\.,=10"*?s for
related to the strain tensor via the Newton law27D,  wate) but can be sufficiently large in polymeric solutions.
whereD[v] =[(V-v)+(V-v)T]/2 is the strain rate tenson,is However, the evolution of strain and stress often needs a
the viscosity and a superscrifit stands for transposition. second time because the strain dynamics is not purely relax-
But, usually, a more general constitutive relation betweerational: there is an interrelation between stress and strain
stress and strain rate=7(D) is necessary to describe the relaxation. As an example, in the polymeric solution Boger
behavior of complex polymeric fluids. This relation is sub- fluid (B11), constituted by watef1.6%), syrup(98.3%9, and
jected to symmetry restrictions. A type of constitutive rela-polyacrylamide(0.1%9. The relaxation and retardation times
tion that satisfies these restrictions and that may be furtheare\;=2.54 s, and\,=1.97 s[22], respectively.
justified by the kinetic theory of dumbbells are those pro- The quiescent solution of the system of equatiths-(4)
posed by Oldroyd. These models, developed in the 1950%s simplyv=0, 7=0, T=T;—[(T,—T,)/d]z, whereT, and
include particular cases that are widely used for differenfl, are the temperatures in the hot lower and cold upper
kinds of polymeric solutions. plates, respectively. This corresponds to a purely conductive
In the Oldroyd model, the constitutive equation is state. Now, as usual, the stability of this reference state is
written as studied via the evaluation of small perturbations or linear
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stability analysis. This analysis is performed by rescaling thavhere R=p,aATd®* 5o« is the Rayleigh number,
variables byd (length, d? « (time), x/d (velocity), nok/d®>  P=5/pox is the Prandtl numbed; =\ ,«/d? is the nondi-
(stress tensgrandAT=(T,—T,) (temperaturg mensional stress relaxation time, ang=\,/\; is the ratio

For the sake of simplicity, the analysis was limited to between retardation and relaxation timesand M are de-
two-dimensional motion. Therefore, we can use a strearfined as
function ¢(x,z,t) that gives the velocity field

- 2 -
(vy,v,)=(d,4,— d4p). Due to its symmetry properties, the v 0 0 00
extra stress tensor has only three independent coefficients: 0 1 0 0 O
Tuxs Tzz1 Tox= Txz- INStead of these individual components, | 2
the following three scalar quantities are usually considered in L= FAA2 o T 0 of (12)
rheology: the trac&) = 7., + 7,,, the normal stress difference —4T'Ady, 0 0 I' O
S= Tx ™ T2z and the in-plane shear stresg,. In re_scaled 0 00 0T
variables, Eqs(1)—(4) reduce to a system of evolution equa- B -
tions for the five scalar perturbation, 6, 7,,, S, andU. T 0 —PRd PA? P#, 01
(Here # denotes the nondimensional temperature perturba- ’
tion.) — dy v 0 0 0
The set of adimensional perturbation equations of the con- M=| A2 0 -1 0 01, (12
duction state is written in its compact form 402, 0 0 1 0
L =M, d+N (o &), (10) e 0 0 0 -1

where the vectorg is simply ¢(x,z,t)=[v,6,7,,,S,U]",  while N(¢,¢) is the nonlinear part of the dynamics and takes
while r represents the set of external paramet&$[I",A] the following form:

— (4, V2)
—J(4,9)
N(p,d)=| TA{I(,A20)+2(92,0) (V2 —T{I(¢h, 70 — 3(V29) S+ 3a(A2y)U} | (13)
T A{A3(,0%,00) — 2(V2) (A%)}+ T{2(V24) 7, — I(4,S) + 2a( 95,4 U}
— 2T Aa{(205 1)+ (M%) 2+ T{2a( A2y 7+ 2a( 95 ,1) S— I(4,U) }

J(f,9)=0,fd,9—d,fd,g denotes the Jacobian, and? ing linear stability problem reduces to the equation
= agz_ ‘9>2(xv V2= ‘9>2(x+ agz-
This system of equations must be supplemented with ap- L d=M, ¢, (15

iate bound ditior{bc). The simplest choice i . . . . N
propriate boundary conditiorto). The simplest choice s an with the bc Eq.(14). Notice that in the linear approximation

extension of the conducting, stress-free bc, that can be writy
ten as g the general Oldroyd model reduces to the Jeffreys model.

Looking at the linear operator,, and M, Egs. (11) and
Yy=02p=0 atz=0,1 (149  (12), it can be observed that the variable is decoupled
from the other variables, and it has a purely decaying expo-
and implies nential evolution. Hence, this variable is always linearly
stable and needs not to be considered in the linear stability
%= 09;,5=U=0 atz=0,1. (14b  analysis. As usual, the solutions of the syster§) with the
The secondtherma) b is equivalent to bc (14) may be expressed in the form of the normal modes,

6=0. (149 b(x.2,0) =€%Y(x,2), (16)

Although unrealistic, these bc have the advantage of provig/nere the vectoe has only four component vectors after the
ing the analytic resolution of the instability problems. Fur- elimination ofU and, therefore, the following expression can

thermore, as shown ifil7], the use of realistic bc in the P€ taken for the modes:

linear stability analysis does not affect the results quantita- : ;
tively, but it only leads to quantitative changes in the insta- BA?O:((EI&)%:&(TZZ))
. ~ a
bility threshold. v(x2)=| o simksinnmz) |* (17)
lll. LINEAR STABILITY D cosmkxcognnz)

In considering small perturbationg, the nonlinear term whereA, B, C, andD are arbitrary constants, ase- o+iw
in Eg. (10), may be neglected and, therefore, the corresponds in general a complex quantity is the growth factor of a
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perturbation andb its frequency. Introducing Eqs(16) and  the characteristic polynomi&20), and this corresponds to an
(17) in Eq. (15), the linear problem is reduced to the eigen-oscillatory instability. The first condition defines the corre-
value problem, sponding marginal curve

- °A ?
sLy(x,2)=My(x,2). (18 «'slo="311""2_’R0=q|<2 +k2F(1q+AP)

This equation has nontrivial solutions if the following con-

dition is satisfied:

22A+AP+P 1 +1+P
-1 a ) re

de{M—sL)=sl+ > as'=0, mn=1. (19
=0

(26)

Examples of these curves can be seen in R&f515,17. In
general, the critical valuef., and k., (the subscripto
stands for oscillatory instabilijymust be obtained numeri-
cally from Eq.(26).

The second condition gives the oscillation frequencsgs
a function of the physical parameters

It can be proved that the critical modéss in the Rayleigh-
Benard problem in a normal flujdcorrespond to the case
m=n=1. In general, fom andn different from 1, the char-
acteristic equatiori19) is quartic. However, in the particular
casem=n=1, one root is always real negatiwe= —1/T
and, therefore, it corresponds to a stable eigenvector. Hence,

the characteristic Eq19) can be reduced to the cubic equa- 8,50 07— q°PI(1-A)—(1+ P)> e 1+P71
tion I?(1+AP) 9% (1-A)°
(27)

P(s)=s%+a,s’+a;s+ay,=0, (20)

Note that the oscillatory instability can appear before or after
the stationary instability, according to Eq&5) and (27).
1 This problem has been solved by different authidrs—
a2:F+q2(1+AP), (21)  14]. The Rayleigh number for the oscillatory instability for
different nondimensional stress relaxation timiés shown
as a function of the wave numbér (Fig. 1), for a diluted
(1+P)— R), (220 polymer(P=100.0 andA=0.75. The dotted line represents
the stationary convection.
PK2 (q In Fig. 2, the critical Rayleigh numbeR., the critical
Y <__ R) (23)  wave numbek,, and frequencyw for the onset of oversta-
I'q bility are plotted as functions of the logarithm of the nondi-
mensional stress relaxation tim&for both a diluted poly-
meric fluid (P=100.0,A=0.75 and a Maxwellian fluid(P
=1000.0,A=0.0). The dashed lines indicate the stationary
instabilities.

where

=g | %@ Tieer

Pk? (q A gf
q

andg?=k?+ 72. The roots of the polynomigl20) give the
different bifurcations that may appear in this problem. We
will study them in some detail in the following subsections.

A. Stationary instability
IV. WEAKLY NONLINEAR ANALYSIS

This instability corresponds to a simple zero eigenvalue AND AMPLITUDE EQUATIONS

(s=0), which is obtained whea,=0 anda;>0. The first
condition gives the marginal stability curve A nonlinear analysis must be carried out in order to de-
termine the type of convective motion that could be devel-
oped beyond the instability threshold. Close to the instabil-
ity, this analysis can be made in the framework of a weakly
nonlinear analysis, which leads to the derivation of ampli-
which is the same as in normal fluids, because viscoelastiyde equation of the Ginzburg-Landau tyf@]. This ap-
properties do not affect the stationary case. The minimunproach basically assumes that the constant amplitudes of the
value of this curve glves the mStabl'lty threshold deflned bynnear ana|ys|s are now space and time dependent above the
the critical Rayleigh and wave numbeRs,=277*4 and  convection threshold. These amplitudes evolve on the space
k.s= V2, respectively(The subscrips indicates a station- and time scales of the unstable modes.

ary solution, while SUbSCfim indicates critical values of the The solutions of the nonlinear problem in the neighbor-
corresponding instability.The conditiona; >0 corresponds  hood of the convection threshold, i.e., for small values of the
to values ofl" that respond to the relation reduced Rayleigh number=(R—R.)/R., and small ampli-
tudes, may be expressed as follows) for stationary con-

o

= 0_>RS: kZ '

(24

1+p~1 .
- 25 vection,
Pa-A) 29
do(X,Z2,t) =Uyo(2)[ A expikeex) +A* exp(—ikeeX) ]
B. Oscillatory instability (28a

Whenag=a,a,, anda;>0 is a pair of complex conju-
gated imaginary eigenvaluess =i may be the solution to and(2) for oscillatory convection,
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FIG. 1. The Rayleigh number for the oscillatory instability for

different nondimensional stress relaxation tinléss shown as a N _ N
function of the wave numbek, for a diluted polymer(P=100.0 FIG. 2. The critical Rayleigh numbét., the critical wave num-
andA=0.75. The dotted line represents the stationary convectionberk., and frequency, for the onset of overstability are plotted as

functions of the logarithm of the nondimensional stress relaxation

time I" for a diluted polymeric fluid(P=100.0, A=0.75 and a

o(X,2,1) =Ugo(2){A exfli(KeoX + ct) ] Maxwellian fluid (P=1000.0,A=0.0). The dashed lines indicate
s _ the stationary instabilities. In all figures the logarithm is plotted to
+B exfg —i(keoXx— wct)]}+c.c., (28b the base 10.
where c.c. refers to the complex conjugate of the first term. Lp=N(o, ¢), (2939

The perturbation vectokp, gives rise to traveling waves
(TW) for w.#0 eitherA=0 or B=0, and stationary waves where
(SW) o #0 if |A|=|B|.
The purpose of this paper is to derive the evolution equa- L=0,L—M. (29b
tion for the amplitudesA andB of Eq. (28), i.e., the ampli-
tude equations, and to compute both the nonlinear coeffiAamplitudesA andB vary on the slow scales
cients that determine the character of the bifurcation
(subcritical and supercriticaand the type of convective pat- X=e¥%, T;=eY%, T=et, (30)
tern that may be obtained in the system.
A formal scheme for the derivation of the amplitude equa-which are treated as independent variables. Hence,
tions following Refs.[2] and[3] is described below. First,
we write Eq.(10) in its compact form, A=A(X,T{,T,), B=B(X,T{,T) (31
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is obtained. We expand the solution @9) with respect to 95.0 ‘ .

1/2
’ a
8.1k )

¢(X|Z:tyx!Tl1T):81/2¢0+8¢1+83/2¢2+“' 1 (32) -78.7¢
-165.61

where the arguments on the left-hand side are repeated on the P=1000.0" A=0.0

right-hand side, and substitute)—d,+&"%ir +edr, o B
d,—dy+eY%,, according to Eqg. (30) as well as -339.4r P=100.0 A=0.75
R=R.(1+¢). Inserting all this into Eq(29), -426.2}
-513.1
‘CO¢O: 0, (33) 600 . ‘ ‘ ) ) . )
90 18 16 44 13 11 09 07 05
Lo¢1=N(¢o,$0) —L1o, (34 log’
Lopo=+Na(po, 1) +N(b1,¢0) — L1d1— Lo 3000 b)
(395 431.3f
yields at successive orders of>. 362.5
The new operatorsC,,L, and N;,N, are complicated 293.8¢
functions of the new variables, but their explicit form may e 225.0f
remain unknown, as is shown belogy is the linear operator 15631  P=1000.0 A=0.0 P=1000 A=075
L, defined in Eq.(11), andR is replaced byR.; then, Eq. 87,5/
(33) is simply the linear part of Eq.29) presenting the so- '
lution (28) already known, but where the amplitudes are now 188}
functions of the slow variabldsee Eq(31)]. The right-hand S0 R o6 T4 O3 1l o9 o7 s
side (rhsg) of Eq. (34) depends only orb,, which is already logT

calculated at ordes'? and is found in the form of Eq(28).
Therefore, Eq.(34) is an inhomogeneous boundary-value

problem foré(x,z,t,X, T, T) that can be solved by integra- represented as a function Bffor both a concentrated Maxwellian

tion. After inserting¢, and ¢, into Eq. (35), there is no real ) B = . . }
need to solve this equation. Instead, by projecting the wholgUIOI (P=1000.0, A=0.0 and a diluted polymeric fluid(P

equation ontog!, where ¢} is the solution to the adjoint ﬂUil(g)SO (()éoz’[}: 1());-7(3)- ff)ar) Jg:r;ZEigsnfegf?g;; rz%r;\ézc(:g_o'droyd
equation of(33), the rhs of Eq(35) yields a solvability con-

dition. By now rescaling the old variablesandt [and by
choosing a slightly different form of the expansi¢82), o ) i o .
where the factore™ is included in ¢,], these solvability As in binary fluids, oscillatory convection is possible

conditions are the amplitude equations fomnd B. when two time scales compete in the system. Since the in-
stability occurs at a finite wave number, traveling or standing

waves may be expected beyond threshiatt and right trav-
eling waves correspond t&=0 or B=0, and standing
In many other problems of this type in the regime wherewaves correspond | =|B|).
the first instability is the stationary one, the amplitude equa- |n applying the formalism presented in E&8), the non-
tion is linear spatial behavior of the system may be described, in
5 3 this case, by the following coupled Ginzburg-Landau equa-
A= pA+ ad;A— BA®, B0 tions:

FIG. 3. The cubic coefficient in the stationary amplituées

B. Amplitude equation for oscillatory convection

A. Amplitude equation for the stationary instability

where coefficientg, a, and are functions of parameteas (G V) A= uA+ (a +ia) ZA— (B +iB)|AlPA

P, T, A, k.s, andR.s. The bifurcation is always supercritical

for a==*1, sincep is strictly real and positive. We found —(y,+i7)|B|?A,

that this is also true in the particular case of Maxwell fluid (37)

(A=0.0), which is opposed to what some authors have found  (j,—y9,)B= uB+ (a,+ia;)92B— (B, +i5;)|B|?B

that by using simple material derivatives instead of objective

material derivatives, supercritical and subcritical transitions —(y+iy)|AlI’B,

become separated by a tricritical point. In Figa)3 B is

represented as a function Bffor a different Maxwell fluid, where the sets of linear and nonlinear coefficients are

and upper and lower convective Oldroyd fluids={*+1). (v, 0 ,ap) and B, .8,y ,7i), respectivelyp represents
It must be emphasized that the valuesof|a] <0.825) is  the group velocityu measures the deviation from the insta-

crucial to the existence of subcritical bifurcation and poly-bility, «, is a diffusive termg; represents dispersive effects,

critical points observed, for instance, on the corotational Jef; andy; are nonlinear renormalization frequencies, ghd

freys model 6=0) [Fig. 3b)]. As a function ofl', coeffi-  andy, are nonlinear saturation terms.

cient 8 runs from positive values for viscoelastic fluids, = The various nonlinear coefficieng andvy, are presented

whose concentrations range from the Maxw@l=0.0) to a  as functions of the nondimensional relaxation tim#r both

high diluted polymeric fluidA=0.75. concentrated Maxwellian fluidP=1000.0,A=0.0) and a
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FIG. 4. The nonlinear coefficients,, v,, and Bsy are pre-
sented as functions of the nondimensional relaxation timfer
both a concentrated Maxwellian fluid=1000.0,A=0.0) and a
diluted polymeric fluid(P=1000.0,A=0.75 for upper and lower
convective Oldroyd fluidsg==*=1).

diluted polymeric fluid(P=1000.0,A=0.75 [Figs. 4a) and
4(b)]. As coefficient, is always positive, we could expect a
supercritical bifurcation towards TW. However, singeap-

ears to be negative for both fluids, the travelin a es( s i ! ;
pears gatv uies velng wav (!E_khaus instability, and is thus given by

should be unstable, as is shown for upper and lower conve
tive Oldroyd fluids @= =1.0) in the next section.

Effectively, sincep, is positive, the uniform solutions of
Eg. (37) may be eithe(1) of the traveling wave type,

|A|=\/[§r ex

Bipn
Br

t), B|=0 for u>0 (39

or

MART[NEZ-MARDONES, TIEMANN, WALGRAEF, AND ZELLER

54
M Bim
Al=0, |B|=\/—=—exp— ) 39
Al=0, [Bl=/5 exd 39
or (2) of the standing wave type,
[ M Bit+vi
Al=|B|= exp( t). 40
| | | | Br+ v, :8r+7r’u 40

Evidently, this supercritical bifurcation towards SW im-
plies that 8,+ vy,>0, which is true for high concentrated
fluids, mainly whenl'<64. ForI'<<64, the stability is pro-
vided by the fact thaty, is negative.

As for the standing waves, the phase stability determining
the complete stability range in the supercritical regime
should be studied. While the amplitude stability of the curves
is determined byy, <0, complete stability needs to be deter-
mined by a phase stability analysis.

The analysis for standing wavfSig. 4(c)] shows that the
corresponding coefficiens,y is given by the addition of,
and the previous coefficierly,, is evaluated for the travel-
ing waves. The value oBsyw=1v,+ By IS always negative
for diluted polymers. Nevertheless, it is positive for highly
concentrated fluids, wheh is lower than 64, a range where
there are supercritical solutions for standing waves. A tric-
ritical bifurcation is found at this point, and since for higher
values ofl" the coefficient becomes negative, the bifurcations
are subcritical. It is necessary then to apply a fifth-order non-
linear analysis of the amplitude equation in order to describe
the evolution of the physical system.

The situation is completely different for corotational Jef-
freys model 6=0). Results based on this model are shown
in Figs. 5a)—5(c). These results show that the convective
properties can change drastically, depending on the kind of
derivative used in the constitutive equation.

V. PATTERN SELECTION AND STABILITY

When the stationary instability is the first instability to
appear, in increasing the Rayleigh number, the system will
develop roll patterns corresponding to the steady solutions of
the amplitude equatio(86). These solutions form the family

7
A H ak qilkx+ ]
ﬁ 1

where ¢ is an arbitrary phase.
These solutions exist in the rangeyu/a<k<sula
©=0), but their stability range is reduced, as usual, by the

Ak

(41

[ [ 1
3a$ k< 30 (42
On the other hand, when the oscillatory instability is the

first to appear, the possible patterns will correspond to the
solutions of the amplitude equatiori87). These solutions
may be either of the traveling or the standing wave type. In
order to analyze the amplitude equations with standard meth-
ods, these equations could be written as
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FIG. 5. The nonlinear coefficientg,, v,, and By are pre-
sented as functions of the nondimensional relaxation timfer
both a concentrated Maxwellian fluid=1000.0,A=0.0) and a
diluted polymeric fluid(P=1000.0,A=0.75 for the corotational
Jeffreys model §=0).

A+ CoA=uA+ (1+ia)d2A—(1+iB)|A|?A

—(y+i5)|BI?A,
(43
#B—coB=uB+(1+ia)d’B—(1+ipB)|B|°B

—(y+i8)|AlB,
with a=e«/a,, B=BilB;, v=v/B:,, 6=vi/B,, and c

=v/\a,. Equations(43) admit two families of traveling
wave solutions given by

A= u—Kexp{k(x—ct)— But—(a—B)K’t}, B,=0,

(44)

or

1485
A=0, B,=u—k?%exp{—k(x+ct)—But
—(a=B)Kt}. (45)

The linear stability of such traveling waves versus stand-
ing waves may be easily analyzed. In fact, the linear evolu-
tion of the Fourier transform of the wave amplitu8ewhere
subindexq represents the Fourier transform in the presence
of a traveling waveA,, is given by

(at—iqC)Bq=,qu—q2(1+ia)Bq—(y—H6)Bq|Ak|2.(
4

Hence, the maximum linear growth rate of these modes,
corresponding to thg=0 mode, is

(47

As a result, sincey is found to be negative in this problem,
the traveling waves are always unstable versus the standing
waves.

The family of standing wave solutions of E@3), which
is given by

Rew=u—y(n—K?).

A=Q exp[Qat+kx], (48
By=Q exp[Qat—kXx], (49
with
n—k?

Q=V717 " (50)

(B+8)(u—k?)
Qp=—ke—K?a— ity (51

L2
Q= + ko k2a— PHOL—K) (52)

(1+vy) '

should be considered.

These standing waves appear via a supercritical bifurca-
tion at =0 when Bsy=1+y>0, which is true for highly
concentrated polymers, namely, whErs lower than 64, as
may be seen in Fig.(4). For diluted polymersfsyy is al-
ways negative, and an inverted bifurcation is expected. The
analysis of this situation would require going further, that is,
to the fifth-order nonlinearities in the amplitude equation.

The situation is completely different for the corotational
Jeffreys modelwhena=0). The values of the parameters
for this model are shown in Fig. 5. In this casgsy is
always positive for a diluted polymer and negative for a con-
centrated polymer.

These results clearly show that the nature of the bifurca-
tion and of the convective patterns can change drastically,
depending on the exact nature of the constitutive equation.
Therefore reliable experimental results would be highly de-
sirable in solving this problem in order to test the validity of
the constitutive relations used to describe the viscoelastic
properties of the fluids under consideration.

Due to the complexity of the computation required to ob-
tain the fifth-order terms of the amplitude equations, this
paper will be limited to the casgsy>0, where a supercriti-
cal bifurcation towards standing waves may be expected.
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Waves with wave numbeg.+k may thus exist in the range The following expressions,
defined byk?< . Sincey is negative, the waves have stable

amplitudes. In effect, the linear evolution equations for am- A=(Q+a)exp{Qat+kx+ oa}, (56)
plitude perturbationgkeeping the phase fixed in this way
are given in the Fourier transform by B=(Q+b)exp{Qgt—kx+ ¢z}, (57)
dag=—(2Q*+k?)a—2yQ%by, 53
=~ (2Q7 kD a—2yQby (53 Lill be substituted in the amplitude equatiofs). The am-
ab=—2yQ%, — (2Q%+k2)by, (54) plitude perturbationsa and b may be adiabatically elimi-
nated through the standard procedure, and after some alge-
|IAl=Q+ay, |BJ=Q+b,. (55  bra, we have the following phase equations for the Fourier

modes of the phases, and ¢z,
The fact that ¥ >0 and y<0 ensures the decay of these
perturbations. Thus, the stability domain will finally be de- (eat ®B)q o (@At ®B)q
termined by the phase stability. In order to perform this t(((PA_ @B)q): ((QDA_QDB)q

) +N*, (58
analysis, the phase dynamics of these solutions will have to

be determined. , _ _ where the lineat.* and the nonlineaN* matrixes are
Due to the symmetry-breaking properties of the oscilla-
tory instability, the phases of the waves are marginal modes D _E
; ; + +
evolving on the longest time and space scales of the system. L* :( ) (59)
As a result, they govern the asymptotic evolution of the sys- —-E. —-D_
tem, and their dynamics may be obtained via the adiabatic
elimination of the wave amplitudes. and
|
N*=| F{[ox(@at @B)]é"’ [Ix(@a— @s)]ﬁ}— G {dx(ea—ep)x(Pat ‘PB)}q) (60)
—G_{[dx(@at @B)]é+ [Ix(pa— (PB)]S}_ F_{0x(ea— ¢B)x(@at @B)}g)
|
The different terms of both matrices are provided in the fol-and
lowing large expressions:
D.— a4t Q¢’B..(q)[aA=(q)—2kc] AL(q)=2(1=y)Q*+?
T T AL (@A (@) a7l
2k 2kA. (q) + acq? ag?
_ 2KA12KkA- () F acd ] 61) B.(0) =28 0)Q+ o 67

A_()A,(q)+g’c? Q"

£ il joo QUB:(D[2KA<(q) + acq’]
== A_(Q)A, () +q%c?

_ 2kq’[@A.(q)—2Kc]
A_(@A.(q)+g°c? |’

c=c+2ak.

(62) The solutions of the linear part of the phase equafif) are

o« keg? QA_(a)B.(q) (((PA+ svs)q)_ .

P T2 A (@A (@ +a%? A (@A, () +q%?’ (pa=pp)g) = SH =t (©9

(63)
2Kcg? QA.(q)B_(q) wherew.. are the eigenvalues of the linear evaluation matrix
C T A @A (@ A(QA @i b
(64)
_ Tr |(Tr\2 ]2

:i[ 2kqA.(@)  cQgB.(q) ] w;—;i{(;) - } , (69)

AL (@A) +g%c? A _(9)A.(a)+g7c? (’65)

_ where Tr is the trace D +D_ and S the determinant
G- kgA-(q) cQQgB_(q) S=D,D_-E,E_.
+=! A_(Q)A,(q)+g%c? 2[A_(q)A.(q)+g%c?]|’ By computing the trace as an expansiongirup to the
(66) fourth order,
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_ 2 2 2 _ 2
E: 1+ a(p 527’)_ kC,f . 2k2 i q2+[ a2 — a(B Zé;y)z_l_ 2k22 . a'BZ )
2 1-vy (1=-y9Q° (1-99)Q 2(1-y9)Q° (1—-y9)°Q° (1—yH°Q" 2(1—-y9)Q
akc k? ac?(B—8y) kcB k?c? kc3 4 6.8
T A 1A AR T A T 21 A T a1 o) (0
is obtained. In addition, the determina®tfollows the relation
S=Ag*+Bq*+Ccf, (71)
with the coefficients
4K3(B*— 8%  4Akc(B—Sy)
_~2
A=c“+ 1_’)/2 1_72 (72)
Bo1i 2a(B—8y) 4k2(,8—5y)_ 4kcp +a2(,82—52)_2ak2 B+ 6 . B=5 ] 2akc . 4k4
B 1-92 (1-9)Q? (1-yHQ? 1-97 Q? [(1-9) (1-99)] (1-99HQ* (1-49HQ°
+k262(32—52) 4akc +4kc_(ﬂ—5y)_ c?B . 2k?c? +kE3(,8—5y)+8ak2(5—5y)
(1-99Q*  (1-9HQ%  (1-9)%Q* (1-99)Q% (1-9)Q*  (1-yH%Q*  (1-99)%Q?
4Kk%(B?— 5% 2kc(B%—6°) 2k*cA(B%—6%)
TR T O 1A% (73
and
c o? 2a(B—358y) 4K? aB 2akc 2k? ac?(B—8y) 2kcp

T1-AZ 127 (1-2Q0 T 1-Q 1-AQF (1% 21-9%Q° T (1- )%

kc3B a®B 20%(B%— 5% 4ak? B+6 B—6 kc3B 2a%ke(B—8y)
TR 1= (-2 (1=AQ 1+ 92 (12 T 20-9%Q (1-9%Q°
2ak?(B—38y) a?c?(B2—6%) 2akc(B2—6%) ak?c?(1—9%) akc3(B2—6°) 2a°k? 4k*
1-2%Q°  20-72%° T 19" T T1-9%Q" T (1-D%Q° T (1-9HQ° (1-9)%Q°
2ak?(B— 67y) ak?c? B+ 46 B—6 | 4k3c(B-—8y) k*c? K3c3(B—68y) a’kc(B+ by)
TTI-A® T 20-9Q 1492 (1497 20-PQ° 1-AQF (1-9°Q°F 21— Q7
2akc(B?—6%) akc(B?—6%) 2ak’c?B  2k*cA(B%2—6%) KZcHB?—6%) 8aki(B—dy) 2akcp

1-2%Q"  (1-22Q° (1-22Q° (1-P%Q° 41— (1-9%Q"  1-2Q°
| 20KC%(B-8y) 2Ke(B— ) KAB-8) KB KR(F-H)  Kap-H) AR )

1-2%Q°  (1-2%Q"
kc3(B%— 6%)
- 2(1—92)%Q%

From these expressions, it follows that

2

a
q3
2\A

+0(q°).
(75

w.=—(ag’+ bq“)ti{ VAQ+

Hence, at the leading order o the real part ofw may be
expressed as

a(B—58y) keB 2k?

17 1A (1—y2>02]q2’
(76)

Rew+=[1+

1-79%Q°  (1-9%Q°

1-9%Q%  (1-92Q" " 4(1- )2Q°

(74)

and the standing wave solutions are phase stable for

a(B— 6y) kcB 2k?
B R e o e o
or
kcB+2k?
cB+ 79

2>
L= ralp—oy)

In substituting forQ?= (u—k?)/(1+ y), and forc=c+ 2ak
in the preceding equation, the following phase stability con-
dition is obtained:
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K2[(1+ v)(B3+2aB— )+ a(B—Sy)]+kecB(1+v) the phase stability of the _standing waves. Due to the large
m= 1-)+alB—57) . values of the group velocity, the decay of phase perturba-

79) tions is usually oscillatory. The phase dynamics appears in
the form of two coupled Kuramoto-Sivashinsky equations
Note that the stability analysis performed in this study isfor the individual phases of the underlying traveling waves.
relevant to extended perturbations. For localized perturbaSince we computed the coefficients of these equations at the
tions, the results presented here may be affected by the predeminant orders, it would be easy to analyze, in a further
ence of large group velocities. In effect, in this case, thestudy, the defect behavior of the wave pattern.
convective and absolute instabilities of the various reference Our results clearly show that the properties of the bifur-
states has to be considered, and the stability domains of theations and of the selected spatiotemporal patterns may
wave patterns may be modified accordingly. From the valueshange drastically with the exact nature of the constitutive
of the kinetic coefficients of the corresponding Ginzburg-equation used to describe the viscoelastic fluids. Hence, de-
Landau equationg20], such modifications may be expected spite the difficulties associated with the possibility of experi-
to be irrelevant to diluted polymeric fluids, not to Maxwell- mental observation of overstable viscoelastic Rayleigh-
ian fluids, as will be shown in a forthcoming publication Benard instabilities[24], it would be highly desirable to
[23]. obtain precise experimental data with fluids presenting well-
defined viscoelastic properties. Comparisons with the theo-
VI. CONCLUSION retical analysis, such as the one presented here, would then

. o _permit us to make a better fitting of the constitutive equa-
In this paper, we presented the derivation of the amplitudgions to real fluid properties.

equations of the convective patterns that arise in viscoelastic

fluids heated from below. Furthermore, we studied the pat-
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