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Coarsening dynamics of falling-film solitary waves

H.-C. Changt E. A. Demekhin' E. Kalaidin! and Y. Ye
Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556
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Because interfacial wave dynamics on a falling film involves quasisteady localized solitary pulses, its
complex spatiotemporal dynamics exhibits certain generic features and scalings. We construct a statistical
theory for such dynamics from our earlier theory for binary pulse intera€Rbysica D63, 299(1993; Phys.

Rev. Lett. 75, 1747 (1999; J. Fluid Mech.294, 123 (1995]. The theory shows that the average pulse
separation increases linearly downstream from the inlet with a universal slope and that the average pulse
velocity increases with a generic power of 2/7. Prediction for the final equilibrium separation is also offered by
the theory. The coarsening features are driven by an irreversible coalescence of the pulses whose local dy-
namics can be renormalized via an affine transformation due to the scale invariance of the localized pulses. The
generic scalings for the dynamics arise from the affine transformation and are favorably compared to numerical
simulation and experimental da{&1063-651X96)01508-3

PACS numbgs): 47.20.Ky, 47.35+i, 47.11+j, 47.20.Ma

I. INTRODUCTION Schralinger equations, such irreversible coalescence creates
a single larger pulse which does not split into two pulses.
Open-flow extended-domain systems, such as the fallinghe created pulse then coalesces with more smaller pulses in
film, are often “convectively unstable” such that inlet noise a cascading fashion. However, the larger pulses also decay in
is convected into the flow channel and triggers complexamplitude and speed as they approach the slower and smaller
spatio-temporal behavior within the otherwise noisefree dofront pulses. As a result, the frequency of coalescence de-
mains [1,2]. As a result, simulations with low Reynolds creases gradually until it stops entirely when the pulse sepa-
number and weakly nonlinear models such as the Kuramotaation is so large that the large pulses created from prior
Sivashinsky(KS) equation yield such highly irregular fluc- coalescence events cannot chase down their front neighbors
tuations in space and time that the KS equation has beconte precipitate further coalescence. Such cascading coales-
a prototype for spatiotemporal chaf3]. However, it was cence sequences are seen in the world lines of Fig. 1. As the
shown recenthyf4—6] that, when dispersion is added to the pulses are eliminated by coalescence, the pulse separation
KS equation, the irregular fluctuations synchronize intoincreases downstreatthe wave texture coarsenas is evi-
pulselike coherent structures and that, while the dynamics ident in Fig. 1. There is a concomitant increase in the average
still quite rich, it is far less random than the KS equation.pulse speed, pulse amplitude, and thickness of the substrate
This observation suggests that low-dimensional deterministitayer beneath the pulse as seen in our simulation shown in
dynamical systems can capture the pulse interaction dynanfrig. 2. A striking feature of the coalescence dynamics is that
ics faithfully. Since dispersion is introduced by inertia atthe pulse separatiofh) increases linearly downstream before
high Reynolds number, this also suggests that highit saturates at an equilibrium valge... The pulse speed, on
Reynolds-number film§10<R<300) can give rise to low- the other hand, seems to increase in some fractional power of
dimensional dynamics dominated by solitary pulses. Thighe downstream distanee We shall show that both scalings
was verified numerically7,9] with a more realistic model of with respect tox are universal for falling-film pulses and
falling film than the KS equation and experimentally by Liu obtain estimates for them from first principles. We also note
and Gollub[8] for an inclined film. In the snapshot of Fig. 1 that the local substrate thicknesss much smaller than the
from our simulation, such pulses appear at aboaR00 in  unit flat-film thickness at the inlet and gradually increases
the normalized coordinate or=22 cm in actual units for from pulse inception to an equilibrium value,, which is
water from the inlet where random noise was introducedabout 0.8 for the standard case shown in Fig. 2.
While residual effects of inlet noise can still be felt in the  The statistical theory that yields these generic scalings is
random distribution of the pulses, the dynamics beyond théased on our earlier deterministic theory for how a large
inception of pulses was observed to be largely deterministipulse interacts with a smaller front neighld@j. Due to the
[9]. localized structure of the pulses and their slow, quasisteady
This pulse-driven deterministic dynamics involves adynamics, the binary interaction exhibits certain scale invari-
unigue irreversible coalescen@fasion) of a large pulse with ance such that all interactions can be transformed by an af-
a smaller front puls¢8]. Unlike solitons of integrable sys- fine transformation to a normalized binary interaction prob-
tems such as the Korteweg—de VriggdV) and nonlinear lem involving a family of solitary pulses. At every station
along the channel there are then, on the average, two distinct
members of the pulse family, a small pulse and a large pulse.
* Author to whom correspondence should be addressed. The latter pulse arises from fusion of two of the former
"Permanent address: Department of Applied Mathematics, Kubapulses and hence has twice the area. Knowing the relative
State Technological University, Krasnodar, 3500072, Russia. fraction of these two pulses, their speeds, and the decay rate
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FIG. 1. A snapshot of the wave tracihgx,t) for =0.216. Zero-mean random white noise is introduced to the inlet flow rate while the
inlet film thickness is the Nusselt thickness such thatl. Small-amplitude sinusoidal waves precipitate solitary pulsgs-200. The pulse
separation, amplitude, and substrate thickness increase downstream due to coalescence. Two pulses about to coalesce-¢5apd at
a large pulse results from a coalescenc&=a¥80. The coalescence events are also seen in the world lines tracing the pulses below. The
pulse speeds are locally constant but gradually accelerate downstream.

of the large pulse, we can hence predict the average coale§=R954337° where y=0v *3g"Y3p is the Kapitza
cence time, the new relative fraction, and, from overall massiumber{12], dependent only on the fluid property, while the
balance, the two new members of the pulse family that ar&eynolds numbeR=(uyhy/v is defined with respect to the
generated after the coalescence time. In this manner, an iusselt flat film with average velocityu) and thickness
eration map on the pulse family is established to model thé=(3v(u)/g)*% The dimensionless film heightis scaled
evolution dynamics downstream. The predictions from thedy Ny and the dimensionless flow rateby hy(u). The di-
theory are in good agreement with our numerical simulatiodnensionless downstream coordinate is scalea by where

. ) —n—2/9,_1/3—2/9
and with some literature data. k=321 R - o
In our simulation of(1) in Figs. 1 and 2, we use the
1. NORMALIZATION AND SELE-SIMILARITY boundary condition where a zero-mean inlet noise is applied

to the Nusselt flat film there. As a result, the time-averaged
Under most realistic conditions at low flow rate but with film thickness and flow rate at the inlet are both unity. How-
R in excess of 10, the wave dynamics for a vertically falling ever, after the pulses are formed, any given pulse sits on a
film can be described by the averaged equation first derivetbcal substrate layer with local thicknesshat is less than

by Shkado\ 10], unity, as shown in Fig. 2. As the pulse density decreases
downstreams approaches a constast close to unity but
9_q+§i 2/h)_i (hhy +h—q/h?)=0 never quite gets there. Each pulse on a local substate
ot 5ax 4 55 X q ' moves in a stationary manner with a spexeds seen from

(1)  the world lines of Fig. 1. It is the localized width of the pulse
oh aq structure, which has lost memory of the original thickniegs
ot o and much of the inlet noise, and the stationary speed and
shape of the pulses that allow us to develop a rational,
This equation is used in the simulations of Figs. 1 and 2. Théargely deterministic theory for these complex dynamics.
variableh is the interfacial height and the average flow Transformed to a moving coordinate with speedhe sta-
rate. The only paramete? is a modified Reynolds number, tionary equation that defines each local pulse then becomes
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FIG. 2. Time-averaged pulse separation, pulse speed, pulse amplitude, and substrate thickness as a function of downstream position for
6=0.216. Data are taken over 1000 units of time. Pulse inception occurs20Q0, beyond which the self-similar dynamics begin.

6 J 1 yielding the local normalized equation
—coy+ = — (q%/h)— 55 (Nhooct h—q/h?)=0,

5 9x 6 o , 1 ~
eht g0 2) —DQx+ gz (Q /H)—S—A(HHxxerH—Q/H )=0,
Kkt 0x=0, (58
h(x— =) =s, —-DH+Q=1-D, (5b)
3
q(x— *0o)=s2, H(*xo)=Q(*x)=1. (6)

The substrate flow rate is a factors¥fless than the unit flow The self-similarity allows power-law type scalings #nto

rate because the parabolic flow profile of a flat film stipulatesliminates from (2). We note that while the local Reynolds

that its flow rate scales as the cube of the interfacial heightiumberA is smaller thans (the inlet Reynolds numbgrthe
Sinces varies downstream, it is convenient to normalizelocally normalized speed, flow rate Q, and heightH

each substrate thickness to unity. In essence, we choose thl increased because a thinner substrate layer with a smaller

local substrate thickness and flow rate to rescale the varflow rate is now used as the reference. The subscript denotes

ables. This then transforms the inlet Reynolds numbera  the derivative in Eq.(5a. The fact that every pulse in

local normalized Reynolds numbeY. The corresponding Fig. 1 with a differents can be normalized t¢6) and(6) is

normalizing transformation is a power-law affine transforma-because their localized structure stipulates that a flat-film
tion involving s: substrate exists locally and there is hence an absence of a

specified length scale in thedirection. This allows the af-
fine group transformation parametrized by the substrate
thicknesss. If, for example, the waves were periodic with a

S=s 13

(4)

x=s"X, h=sH, q=s°Q, c=s°D,
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FIG. 3. Normalized solitary pulse family with increasing pulse
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known wavelength, the transformation=s'3X would not
have been compatible. This existence of self-similarity is
quite common for problems in an unbounded domain with no
specified length scales. Althoug#) has been applied to the
averaged equation, similar affine transformations in powers
of s exist for solitary waves of the Navier-Stokes equation.

The advantage of this local normalization is that the three
parameterg, 8, ands of (2) and(3) are transformed to two
parameterd andD. The construction of the pulse solution
then corresponds to the determination of the nonlinear eigen-
value D as a function ofA. The construction of this one-
parameter family was carried out jal] and we reproduce
the constructed pulse family in Fig. 3 as well as its spped
area above the substrate= [ *_(H—1)dX, and maximum
amplitudeH,,,, in Fig. 4. In Fig. 5, we show that the time-
averaged pulse speed from our simulation of Fig. 1, scaled
by the time-averaged local average substrate thickness ac-
cording to(4), falls on theD(A) curve for the speed of the
solitary pulse family. This indicates that, while the separa-
tion between the pulses is quite random with a broad distri-
bution, each pulse is a quasisteady solitary pulse, and the
distribution in the pulse speed is quite narrow at every sta-
tion, such that the local average pulse is still described by
D(A). In the next section, we shall show that there is an
intermittent coalescence event, whose frequency is lower
than the average pulse frequency, that creates larger pulses.
As a result, there are two types of pulses at every station—a
small pulse and a largéexcited pulse. However, we shall
also show that, due to the linearity &fA) and the constant
asymptote oD(A) at a relatively large\, the average speed
still belongs toD(A) of the solitary pulse family. Hencell
time-averaged pulses at every station belong to the one-
parameter pulse family in Fig. 3 after normalization (gy.

We further support this theory by recording the pulse

amplitude asA increases. All pulses have unit substrate thiCkness.Speed and Separation distribution of our simulation as shown
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0 . . : . i , pulses). Applying this averaging td5b), which is valid for
every pulse in a randomly spaced train, and siDcis iden-
tical for every pulsdor at least has a narrow distribution as
seen in Fig. Hsuch that DH)=D(H), one obtains

DA(A)
L

D rL
<Q>=D<H>+1—D=rf (H=1)dX+1= +1,
0

()

where the last equality applies due to the narrow width of the
localized pulse which is much smaller that The quantity

(Q), the space-averaged flow rate, is also the time-averaged
flow rate measured at any station as the pulse train passes by.
Hence, due to a global mass balance, it must be equal to the
time-averaged flow rate at the inkgi) after returning to the
original variables of1). In such variables{g)=1 since the

0.02 0.2)3 0.04 0.65 0.;)6 O.‘07 0.2)8 . . .
A inlet conditions are chosen to scale the variables, and one

obtains, after invoking4),

FIG. 5. The normalized spedd and Reynolds numbeh at 3
every station at the indicatedlocation from the time-averaged data (Q)=s"". (8)

of Fig. 2 plotted against the pulse speed of the normalized family. o o )
Quasisteady evolution along the family is clear after pulse inception Combining this with(7), we obtain the mass balance con-
at x=200. dition which relates the average separatjbnin the original

coordinatex to the substrate thicknessof the original scal-

in Fig. 6. While the separation distribution clearly broadensing and the local normalized Reynolds number,
after pulse inception, the speed distribution actually narrows
downstream. Although the larger pulses travel faster, their (Y=Ls®=D(A)A(A)s¥(1-5%). (9a)
speed is close to the smaller pulse and it is continually de-
caying towards the latter speed. Consequently, the recordinghis estimate neglects the presence of the excited large
sees a continuous but small band of speeds for these pu|s@§|SeS which will be considered in the next section. Near the
ranging from the speed of the small pulse to the highesinception point of the pulse&=200 in Fig. 3, s is small
speed, corresponding to when the excited pulse is first crdsee Fig. 2 and (99 can be further simplified to a relation
ated by coalescence. As a result, the speed distribution With a power-law dependence sn
narrow, smooth, and skews to the right. 103

The irreversible and self-sustained coalescence events that (IN~D(A)AA)s™ (9b)
produce the large pulses and coarsen the wave texture al
increase the average pulse speed and pulse height as see
Fig. 2. This is because, as the pulse density decreases, tH
pulses must become bigger to carry the same flow rate. A
the pulses get bigger, their substrate layer thickness mu 4
also increase to maintain the force balance that sustains th&
stationary motion of the pulses. There is hence a quasisteady s=s 113 (10)
increase in the local normalized Reynolds numbeipulse '

speedD, height Hn,,, and areaA as the average pulse Hence, the quasisteady evolution of nearly identical but ran-
climbs the solitary pulse family in Fig. 5. domly distributed pulses along the solitary pulse family, their
The global mass balance that specifies the member of thgarrow width, and simple mass balance have allowed us to
pulse family at each station can be derived by consideringg|ate the average separatiy at any station to the local
the normalized kinematic conditiob), which represents a average substrate thicknes$or a givens. What remains is
simple mass balance in the moving frame. For a solitaryg gecipher the evolution ofl) downstream, and the entire
pulse to be steady in the moving frame, the flow rate at evergynamics is known.
position X, Q(X)—DH(X), must be the same and equal to " Before proceeding to the binary interaction dynamics that
that of the flat film 2-D. Both flow rates are measured in the getermine the evolution ofl), we simplify (9) and (10) by

moving frame Which_ accounts for the termdDH andD. noting a certain asymptotic behavior Bf(A) and A(A) at
Because of the localized structure of the pulses, the averaggatively largeA,

over a sequence of randomly spaced pulses with identical

is power-law scaling and its corrected version will yield
gneric coarsening exponents near the inception point.
The local normalized Reynolds numbéris also related
the actual inlet Reynolds number through a power-law
aling ins according to(4):

speed is equal to that of a periodically spaced pulse train, D(A)~D.,=7.70,
11
1 [X+X 1 [X+L
()= lim - °.. dx:_f ceedX, A(A)~23.3A.
Xoo Xo Jx L Jx

It seems that the pulses reach a constant “terminal velocity”
where L is the average separatiofiVe shall correct this at largerA and their widths reach a constant, while the area
formulation later to account for the existence of two distinctincreases linearly with respect th. We are unable to pro-
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FIG. 6. Pulse speed and separation distributions at various stations from the simulation of Fig. 1. The downstream evolution of the
mean pulse speed in Fig. 2 is also depicted. The speed distribution sharpens dramatically after pulse ingef2ia®, athile the separation
distribution broadens. The speed distribution also has a longer tail to the right of its mean.

vide a physical explanation for this largdebehavior bu{11) I1l. BINARY INTERACTION
allows us to simplify the correlatio(®b) near the pulse in- AND COARSENING DYNAMICS

ception point to .
P P Much as the average pulse at every station can be normal-

; ized to 1 with a unit substrate thickness, the local coales-
(1)~23.9.5'6 (12) cence rate can also be studied after proper normalization.
Such coalescence events correspond to a large pulse chasing
for relatively largeA and smalls. This provides a more down a smaller front pulse. We shall use the smaller pulse as
explicit relationship betwee(l) ands for a given inlet Rey- the reference pulse for normalization. We shall also assume
nolds numbers. More importantly, it retains the power-law that the large pulse has decayed to the extent that it re-
affine scalings irs for the average separatigh). This will ~ sembles the small pulse at the time of coalescence. Each
allow us to produce generic exponents common in systemigrge pulse is then created from the coalescence of two
invariant to affine transformation. The rangefofvhere(11) smaller pulses and is assumed to have twice the area of the
is valid also corresponds to most practical conditions fordatter. Due to its slow decay dynamics, we showed in the
common fluids like watef13]. earlier reporf 7] that the large excited pulse is also a member
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of the solitary pulse family and exist on a substrate thicknes$x=200 in Fig. 2, Fig. 2 indicates thast is small in the

s, different froms of the small reference pulse. The normal- region and the denominator ¢I6) can be approximated by

ized Reynolds numbek, based ors, is then different from  (p/c.)+(1—p)/c. If we further carry out an expansion i

A of the small reference pulse. In this model, we hence rep¢16g can be simplified to yield a power-law relationship

resent all the pulses at every station by two members of thenportant for our estimate of the initial coarsening dynamics

solitary pulse family al\ and A, related by near inception, which is a correction (b2) for the presence
of excited pulses,

25"PA(A)=s2PA(A,). (13
+p
The scaling s*® results because the true area (1)~23.D.,,55 I +1-p (16b
a=["_(h—s)dxis related to the normalized aréathrough
(4) by a=s""A, Condition(14) then identifies the large pulse at every sta-

Strictly speaking, the area of the large pulse should be&ion given the reference small pulse with substrate thickness
equal to the sum of two coalescing pulses upstream. Thesg To obtains from (9a), the evolution of 1) must be known;
two pulses may also have different areas if the larger pulse obtains from the more accuratél6), however, the evo-
has not decayed sufficiently. Nevertheless, pulses upstreaition of both (1) and p downstream must be deciphered.
are smaller than the pulses at any given station and we u®oth require knowledge about how a large pulse chases
(13) as a reasonable estimate of the identity of the large pulsgdown a smaller pulse in front to induce coalescence. Such a
at every station. The existence of two distinct pulses is nobinary pulse interaction was studied in our earlier pdér
apparent in the snapshot of Fig. 1 since the large pulses are@here we placed a large pulse whose thickness in the nor-
different stages of decay. However, the world lines in themalized coordinate of4) is S=s./s behind a reference pulse
same figure clearly show two distinct slopes at every giverwhich exists on a substrate of unit thickness in the normal-
station. Such world lines capture the pulses over a long inized coordinate. Due to the difference in the substrate layer
terval and are hence more revealing. thicknesses, mass drains out of the back excited pulse, and

SinceA is also related te through(10) at a givens, (13)  its substrate layer thicknegsdecreases in time according to
yields a nonlinear equation,

d
2A(A)= BPAA BB, (14) g1 (B~ D=—>A)(B-1), 17)

for B=s,/s. Hence, knowingA(A) from Fig. 4 and knowing where T=s
s, we can determine the substrate thickness beneath the lar
pulse,s,, from (14). For the largeA limit of interest, the
linear scaling ofA(A) in (11) implies a constant generic ratio
close to unity:

*% is the time coordinate for the normalized
gﬁoblem. The decay coefficient was computed in our ear-
lier paper and is plotted in Fig(d). For largeA values when
(11) applies, this decay coefficient can also be approximated
by
~ o5
B~2"" (15 y~0.004" 1, (18)
We shall expandB about 1 in our theory to simplify the
analysis.

The fact that B is close to unity also implies that
(AJA)=pB3~2115_1 66 and the ratio between two unnor-
malized pulse speedsggc)=p? are both close to unity.
The latter explains why the coalescence frequency is lower dL
than the pulse frequencg/(l). Since D(A) approaches a —=—[D(A)—D(A)]. (19
constant at larg@, according to(11) and as seen in Figs. 4 dT
and 5, the closeness Af to A implies that the average speed

of the large and small pulses also lies on i) branch of more convenient to represent both the large pulse speed
the solitary pulse family, regardless of the fraction of eaChDe:D(Ae):D(ﬁs“’3) and the reference pulse speed

This explains why the time-averaged speed still follows the_ ¢ e/ 1/ : )
D(A) branch in Fig. 5. D=D(A)=A(Js % as functions of, ands. Equation(19)

The overall mass balan¢@a), however, must be modified was deri\(ed based on the observation that bot_h the back
to account for the presence 01" the Iargé pulses large excited pulse and_ the front puls_e are quasisteady and
' hence belong to the solitary pulse family.
pA(Ae)s;“3+ (1—p)A(A)s™3 Sinceg is close to unity from our estimate ¢f5), we can
(163 relateD, to D by a local expansion aboi=1 or s=s,,

which retains the power-law scaling required for universal
exponents.

The separatioi. between the two pulses decreases at a
rate equal to the speed difference between the pulses,

Since A ands are related througlf10), it will be much

{1y= p/ce+(1—p)lc—psic.—(1—p)si/c|’

. . 2. De~D+a(s.—s) (20

wherep is the fraction of large pulses.=D(A.)ss is the

unnormalized speed of the large pulséy.=AB"" o in the unnormalized form

=A(s%s)3 andA,=A(A,) is the normalized area of the ’

large pulse defined ifl3). Ce~CH+ a(s.—S),
For largeA, (11) and(15) can be used to simplify163.

Furthermore, if we focus on the region near pulse inceptiorwhere
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_( aD(5X11/3)

o )XZS- (219

60

a=

@1 4l

aXZD((lem)) _(ac)
ax v=s s 5.
This approximation then couplés?7) and(19) to yield a ¢ 4oy
simple relationship for how the separation between the two
pulses decrease as the decaying large pulse chases down theer
smaller reference pulse in front,

. a(Bo—1)s

20

L(T) (1-e"),

where the subscript 0 denotes the initial values. Hence, the . . .
time T, for coalescence in the normalized coordinate is de- ° 500 oo B 2000
fined byL(T.)=0 or

FIG. 7. The coarsening dynamics with downstream separation
1 In(l— vLo ) (22) evolution. The linear initial coarsening rate and the equilibrium
v(A) a(Bo—1)s)’ separation are well approximated 86) with p=0.5 and by(26),

respectively.
From(22), an estimate of the equilibrium separation when

T.= (the separation is too large for the back pulse to cap-

Te=—

.. R . .. 1_px+(pw/182) 1/3
ture the front ongis immediately available. In the original S, = ,
unnormalized coordinate, it becomes 0.0411+p.)/(B—1)+1—putp=f
- (25)
a(B.—1) 4
Yoo = . 2 ).=D(B—1)5s,/0.002.
() WS (23 " (B—1)
Equation(23), along with(14) and(16), then specifies.,, As we shall demonstrate, a good estimate for the fraction

B, and(l).., the equilibrium substrate thickness, the equi-of excited pulses is 0.5 and it remains relatively constant
librium ratio between the substrates of the large and smalbver a large distance. For this value mf, we obtain from
pulses, and the average separation. There remains an u®5) s,=0.83 and(l).,.=58, which are in good agreement
known variablep,., corresponding to the fraction of large with our simulated results of Fig. 2 and Fig. 7, where the
pulses at equilibrium ir{16). simulateds,.=0.80 and(l)., is 60. Since the average wave-
At relatively large A values when(11) and (18) hold, length near inception is approximately®5)~*2[13] and &
simple estimates of the equilibrium values can be obtainedk less than unity for water witR<100, it is clear thafl).,

by noting 8,.= 8=2"° from (15) and is an order of magnitude larger than the average wavelength
. at inception—there is significant coarsening.
a~2sD., (24 To obtain the linear coarsening rate in Fig. 7, we need to

estimate the coalescence rate from the coalescencdtiine
(22). It is convenient for this estimate to define a length scale
lexp (Where the subscript exp denotes expected yatoere-

while (18) can be used to simplify23)

2(8-1)D.s¥?

()= - ’ sponding to the distance, measured in the laboratory frame,
y(9s:; ) traveled by the large pulse before coalescence. Given an ini-
tial separation of and neglecting the speed differential be-
_ D.(B—1) 55t tween the large pulse and the reference pulse in this deter-
0.002 - mination, which is consistent with the estimai®5), we
obtain in the original coordinates fro(22),

An extra relationship betwees), and{l)., is provided by

(16). Sinces is close to unity near equilibrium, as seen in C ys®3
Fig. 2, the more accurate versigh6a must be used. We lexp=1— P In(l— m) (26)
still invoke the largeA approximation of(11), which be- Y

comes increasingly accurate at lagsinceA increases with  wherel is the initial separation between the large pulse and
s, such that the front pulse when the former is first created by the prior
coalescence event. Near the inception point of the pulses, the
(CelC)=(Se/s)?= B2=2%5, quantity within the logarithm is close to unity and one gets

(Ae/A)=p"7,

C
1+—&(ﬁ_1)s). (27)

to yield lexp|
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There is a distribution of separatidbrwith an average equal as a continuum approximation when viewed from a scale
to (1), the average pulse separation. Due to the linear depemauch larger thar.,). From (29), it is then clear that this

dence of, one can simply usél) to describe(l ¢, binary interaction yields a rate
¢ &«l) p(l-p)
e =(D| 1+ ———]. 28 N/ 2 B
If we now impose the largd limit of (11), we obtain The coarsening rat@2) will be constant if the fraction of

excited pulsep remains constant with respecttoA model
1+ ) :<|>( B— >~4 1) of how p evolves downstream requires some statistical
2(B—1) 2(B—1) BN analysis of how the large pulses are distributed among the
(29 small reference pulses, viz., their average fractions are inad-
equate and higher spatial correlation information is neces-
The reasonrl ., scales linearly with respect {b) near pulse sary. The reason is that when large pulses are arranged in
inception is because, in this region, the separation is so smallackets separated by packets of reference pulses, the hydrau-
that the speed of the large pulse hardly changes during th jump at the front, which is responsible for the decay dy-
time it chases down its front neighbor, and the elapsed tim@amics in(17), will only cause the first few large pulses to
for coalescence is simply determined by the difference in thelecay, while the large pulses in the back of the pack remain
two speedsAc=a(B—1)s, and the distance travelet[1  excited over a distance df,,,). Exactly how many excited
+(c/Ac)], where /Ac) is only a function of8=2"®inthe  pulses within a packet will decay and become smaller refer-
largeA region and is hence constant. The rdtig/(1)=4.3  ence pulses over a distance (bf,, is difficult to estimate.
corresponds to the ratio of coalescence frequency to averagfowever, we shall show below thatdoes not vary signifi-
wave frequency. cantly near pulse inception by this mechanism.
Due to the binary coalescence mechanism, the change in Consider a particular pulse train wit¥l reference pulses
the pulse densityl) ! at a particular station over a distance and N large pulses whilgp=N/(M+N) asM and N ap-
of (lexp is then the product of the large and small pulseproach infinity. Arrange the large pulses inko nonempty

(lexp~(1)

fractions, packets which are separated by at least one reference pulse.
We allow for all such possible arrangements, and there are
1 1, p(l-p) M!/(M—K)!K! possible ways of inserting thi€ packets in
mxw ’)_mx__T' B0 M small pulses K<M,N) while there are K—1)!/(N

—K)!I(K—=1)! kinds of excited pulse packets. Hence, the
number of all possible sequencesf small pulses andN

or large pulses is SN_,(MI/MIKD[(N—1)!/(N=K)!(K
—1)!] for the case ofM=N. We assume that ovet.,),
d(l)  p(1=-p)I) i i
NP P/ (31) every boundary small reference pulse leading an excited
dx (lexp pulse packet is eliminated due to coalescence, while its back
0.95 90
80 §=0.216
0.9
Seo L, 70
0.85 60
FIG. 8. Dependence of equi-
08 50 librium substrate thickness, equi-
40 librium separation, and coarsening
rate on the fractiorp of excited
0.75, 05 y 300 OF ” pulses. The equilibrium separation
{) p |, scales ass"* and one of the
plots corresponds to the standard
400 0.1 case 0f6=0.216. The other quan-
tities are independent aof. Their
350 0.08 only dependence on the inlet flow
!? % condition and noise is throughy,
300 0.06 which is also generic at about 0.5
due to the subharmonic secondary
250 0.04 instability.
200 0.02
1500: 0.5 1 00 0.5 1
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FIG. 9. Simulated downstream evolution of time-averaged
speed for(1) 4R=60, (2) 4R=75, and(3) 4R=125 with a white sk 2 2:-:553
noise amplitude of 5.8107° to the unit mean inlet flow rate plotted © Re=130
against Stainthorp and Allen’s measured data in circles, triangles, 1s} S e
and crosses. The power-law evolution is evident beyond pulse in- | @ Reurs
ception at the minimum near 10 cm, corresponding 200 in o M . -7 :xz
. o -
Fig. 2. < . Iy .- ‘o T R
3 L % = -7
large neighbor remains a large pulse due to the coalescence. i A °,/' %
Also, we assume that no other large pulses behind the one o ° o7
participating in the coalescence decay to become smaller ref- | § .-~
. . 4
erence pulses. The number of reference pulses eliminated by -
‘@

coalescence is theN—N?%/(M +N) in the limit of largeM 16 . 2 t L -
andN. Since the large pulses that participate in the coales- !
cence events remain large pulses dygy, the change ip is

FIG. 10. The raw pulse speed data of Stainthorp and Allen for a
N N vertically falling film. Their Reynolds number Re is related to &ur
Apo= 5 by Re=4R. The collapsed data for pulse speeds after inception with
N+[M=N+N7(M+N)] M+N R>10 and the dotted curve represent the predictiofB36f.

2_ K3
= %N p?, (33  (32) while the variation irp is at most ofO(p?). As a result,
p+p over the first fewl ¢, (@bout 1@l judging from Fig. 7,
where the subscript 0 denotes no natural decay of large d(l)
pulses. Equatiori33) is derived forM=N but the same re- ax ~Po(1=Po)/4.3 (39)

sult is true forM <N.

A simple derivation then yields the following formula for and is a constant dependent only on the initial fraction of
Ap,, whenm large pulses behind the leading excited pulselarge pulsespg.

decay to become small reference pulses withig,: It remains to determing,, the fraction of large pulses at
inception. This fraction is determined by how the pulses are
pm2_p3 formed from the small-amplitude sinuous waves and is the
Apm=m~0(p3). (34)  only part of the pulse dynamics that is determined by inlet

noise. Its exact value still escapes us, but it seems to be
related to the secondary instabilities of monochromatic
The quantityAp, is zero whileAp, is positive andAp,,<O  waves that precipitate pulse formation 0100 in Fig. 1

for m>1. The actualAp is then some weighted average over[2,14]. We have shown that the dominant secondary instabil-
Ap,,, with the weight decreasing rapidly at largedue to ity is a subharmonic instability with some corruption by a
the rare probability of all pulses decaying in a large packet okideband instability15]. As a result, every other peak in the
excited pulses. In addition, singeis less than unity, we see monochromatic wave field, selected from the broadbanded
that, regardless of the specific weigti{] )/dx is of O(p) in inlet noise by a linear filtering mechanigr5], grows rela-
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tive to its neighbors when all the peaks are evolving intoevolution along a normalized solitary pulse family is obvi-
pulses. As a resulp, is close to 0.5 and this yields a slope ously an important reason which allows the renormalization
of 0.08 from (35) compared to the coarsening rate of 0.09in the affine transformatioit4) in powers of the substrate
from our simulation in Fig. 7. If we use this value pfin  thicknesss. In turn, such power scaling is is possible be-

(25) to estimate the equilibrium average substrate thicknesgause of the scale invariance of the localized solitary pulses
and separation, we also obtain reasonable estimates of 0.8fich have forgotten the inlet conditions. However, the
and 58, respectively, which are favorably compared to simuSimple generic exponents are also obtained because the as-
lated values in Figs. 2 and 7. Before equilibriuonwill most ~ YMPptotic behaviors of the solitary pulse family at lar§en

likely decrease to some unknown valpedue to the natural (11 and(18) are power laws ind, and because the global
decay of the excited pulses. However, as seen in Fig. 8, th&ass balance9) or (16), which is the only way the time-

estimates ors,, and ()., do not change appreciably from averaged inlet condition is felt at every station, can be ap-
p=0.5 topzofcl. ” proximated by a power-law form at smalnear inception.

The combination of all these power-law scalings then pro-
vides the generic coarsening rate and universal scalings in-
dependent of and flow conditions.

While Brock [16] has observed a linear increase in the
wave separatiofperiod as in our prediction and simulation,
his data are for an inclined film which has an additional
parameter—the inclination angle. For vertically falling films,
the only available literature data are the average pulse speed
measurements of Stainthorp and Allglv]; and in a recent
is obtained, and hence one has the generic scaling near iffPort[9], we have shown that our numerical simulation can
ception, accurately reproduce all their pulse speed data. This required

a model of the inlet noise in their experiment, which is as-
(clcg)~ (x/%0)?", (36)  sumed to be white noise with an amplitude that is chosen to
, y o fit their wave inception data. As seen in Fig. 9, this noise
that the average pulse speed increases 4drom its incep- amplitude reproduces their pulse speed evolution accurately

Finally, the asymptotic behavior§ll) of the solitary
pulse speed(A) and areaA(A) yield the near-inception
mass balance conditiofil6b). By combining it with the
power-law scaling=D.,s? and the fact thati(|)/dx is con-
stant, for a givers, the self-similar form

C

X

dc_2
dx 7

tion pointXo. at three different values d® for water. The simulated evo-
lution of ¢ does have a power-law increase nwith an
IV. DISCUSSION AND COMPARISON exponent close to 2/7, as predicted. To further confirm this,
TO EXPERIMENTAL DATA we have taken all of Stainthorp and Allen’s speed data in

Fig. 10 and normalized them in the form @o) to verify the
generic 2/7 power-law speed acceleration. A reasonable col-
lapse of highR data is evident. The theory fails fRR=Re/4
below 10 because in this KS limit, the pulses have been
shown to be convectively unstatlé].

It is quite surprising that spatio-temporal evolution as
complicated as interfacial wave dynamics on a falling film
can be described by simple scaling arguments(#&, (35),
and(36). The quantities other thafl).. depend on the inlet
flow conditions and noise only through the fraction of the
large pulsesp—they are independent & Evenp is found
to have a universal constant of 0.5 due to the generic sub-
harmonic instability during pulse inception. The quasisteady This work is supported by grants from DOE and NASA.
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