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Quantum suppression of chaos in the spin-boson model
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We identify a transition to chaos in the semiclassical spin-boson model that occurs for relatively large boson
fields, as one of two periodic orbits becomes unstable. We have studied the quantum dynamics in the vicinity
of this transition, as characterized by phase-space trajectories followed by quantum expectation vdlijes,
spectra of such trajectorie§iji) subsystem entropies for the spin and boson systems,(iahdrowth of
operator variances for the boson system. We find that the transition to chaos in the classical system has no
apparent effect on any of these variables, in the épiase. This is in disagreement with some claims made in
earlier studies of this systerf51063-651X96)10106-9

PACS numbgs): 05.45+b, 03.65.Sq, 42.65.5f

I. INTRODUCTION nature of each subsystem'’s evoluti®j. Moreover, the sys-
tem (1) is the restriction to thg =3 subspace of the more
The spin-boson Hamiltonian general Hamiltonian
_ t t
H= L hwoo,+fhiwatatigo(atal) (1) H=wol,+hwa'at2g)(a+a’), @)

o . which describes, in general, a quantum rotor coupled to a
(where o; are Pauli spin matrices araf,a are boson cre- guantum harmonic oscillatdiEg. (3) may also describe a
ation and annihilation operatorenay describe a number of ¢qjjection of N=2] two-level atoms interacting with the ra-

physical systems, including a two-level atom coupled 10 &jjation field|. In some limits(if the reaction of the rotor on

single mode of the quantized radiation fi¢ld or to its own  the oscillator and/or the quantum nature of the latter are neg-

center-of-mass motion in an atomic trfg). Taking expec- jigible) this may be like a periodically driven rotor, which is

tation values in the Heisenberg equations and making a fagy, archetypal model for quantum chdas].

torization assumptiofi.e., (o,8)=(0,)(a), etc) yields the It has been shown by Graham andtterbachsee[4(b)]

semiclassical equations for detail9 that a classical Hamiltonian for this problem may
be written as

He=wol 1+ ol o+ 4g\1,1/32— 12c0g ¢1)cos ¢y),  (4)

wherel; and ¢; are canonical action-angle variables altd
X=— wgY, (20) is a constant, correspondin.g to the total angular momentum
[for correspondence with the quantum problem,
J2=j(j+1) or, in terms ofN equivalent two-level atoms,
J?=(N/2)(N/2+1)]. It can be verified immediately that
the canonical equations of motiorp;=dH./dl; and
li=—dH./d¢; are identical to the equation®) obtained
where a;=(a+a")/2, a,=(a—a')/2i, x=(o), y=(ay), from the factorization assumption in the quantum Heisenberg

andz=(a,). The systeni2) has long been known to exhibit €duations of motion, with the correspondence
chaos for certain values of the paramef{&@k A continuing

él= a)az, (Za)

é‘2: —wa;—gX, (2b)

y:wox_4galzv (2d)

z=4gayy, (2¢)

question has been whether or not there is any signature of ay= 1l ,costy,
this semiclassical chaos in the solutions, especially the dy- ,
namics, of the full quantum probleitl) [4—8]. This is the ay=— VI 5sing,, -
subject of the present paper.
The system(1) is not of the “standard” form of most x=\J?—Iicosp,,
guantum chaos problems, which typically involve particles
in externally prescribed potentials, but this very difference y= \/Jz—lfsindq,
makes it interesting in the context of the hitherto relatively
little studied “dynamically driven” systems, where new z=1l4.

phenomena may arise due to, for instance, the nonunitary
In the classical problen), J is an arbitrary constant that
can, in fact, be scaled away by redefining the coupling con-
*Present address: USAFA/DFP, U.S. Air Force Academy, ColoStant g and the boson field amplitude, as if=1,/J,
rado Springs, CO 80840. I,=1,/J, and g’ =g+J. For the quantum Hamiltoniaf8),
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on the other hand, there is an infinite hierarchy of essentially Ill. MAIN FEATURES OF OUR APPROACH
different problems, in Hilbert spaces of different dimension-
alities, associated with all possible values of the constant
all of which lead to the same equivalent semiclassical equa- In order to be able to relate a particular feature of the
tions (2) under the factorization assumption. guantum dynamics to the presence or absence of classical
Given that the correspondence between the classical syshaos, one should check for the presence or absence of that
tem(4) [or (2)] and the quantum syste(B) is expected to be feature in the classically chaotic versus the classically regular
exact only in the double limi}>1 andl,>1, a very inter- regimes. Two criteria for comparisons may be used. One is
esting question arises: At what point down the ladder ofto take as the reference nonchaotic system the rotating-wave
decreasing do the uniquely quantum effects begin to blur approximation version of the modél), known in quantum
the classical structure, in particular, the traces of the classicalptics as the Jaynes-Cummings modkLM). The other ap-
chaos? Or do any such traces persist even in the most noproach is to stay within the modél) and vary parameters
classical limit, thegj = 3 case? The following section summa- such as the coupling strengthto move from a classically
rizes some of the partial answers offered to these questiorehaotic to a classically regular regime. Both approaches have

A. Meaningful comparisons: Importance of initial conditions

by previous workers on this problem. been used to some extent in the past.
In either approach, there is an important difficulty that
Il. BRIEF SUMMARY OF PREVIOUS RESULTS needs to be recognized. Unlike the global properties of en-

Sy level distributions mentioned earlier, the dynamical

Perhaps the most thoroughly established characteristic . .
guantum chaotic systems is the distribution @fearest- properties such as growth of operator variances, system en-
tropies, and revivals turn out to be quite sensitive to the

neighboj energy level differences, which is found to be . o : -
Poissonian for classically integrable systems and of thénItIaI .condmon cho_sen fp.r,.sgy, the_ spin system. This in
Wigner form (level repulsion for classically chaotic ones |t'self IS not a chaot!c trait; 1t Is e?<h|b|ted as we]l by the
[10]. It was shown by K$5] for the present system that in rigorously nonchaotic .J.CM. We find that the crlten_a sug-
the j=3 limit the level distribution has neither of these gested by Graham and Hoerbact{4(b)] generally fall into

forms, whereas Graham and hterbach latef11] showed this ;omewhgt ambiguous category: that is, it is possible to
that the level distribution does approach the chaotic formObtaln very different power spectra and to suppress strongly

with increasingj (their published results show an essentially.(and r_nodlfy _subst_amUaIbythe appearance of the populatlon
Wigner-like distribution forj=3 already. This particular inversion re_\/lvals ln_th_e nonche_u_)tlc JCM already_, simply by
trace of classical chaos, therefore, does seem to vanish in t 0osing dlﬁ_‘e_rent |n|_t|al conditions _fqr_ the Spin_system.

onversely, it is possible to choose initial conditions in the

very smallj limit, altpough we nqte that in a recgr]t article full spin-boson mode(1) that lead to very similar quantum
S:slgg?j,s?L:)(f:hedai?SligraglsZ]inC?elrgatiﬁ ?eaz;ltirgser(])t;ﬂt?g tQee(::[rajectories to those of the JCM or at any rate to trajectories

q_ 1 PEChose differences cannot be unambiguously attributed to the
trum of thej =3 system.

There are, however, other characteristics that may be e)?_lassical chaos. e
' ’ To be more specific, it has been shown by one of14g

hibited sometimes by quantum systems whose CIaSS'C?%]at for the JCM in the limit of larga (wheren is the

counterparts are chaotic, such as, e.g., very fast growth g . .
operator variances. This has in fact been observed in a hybri verage occupation of the boson midl the main features

: . . of the quantum evolution can be understood in terms of the
guantum-semiclassical version of the present mddeke o ft ial trajectorié® d|w
with a quantized rotor and a classical fieldy Fox [13]. superpc_)smon ot two specia_ trajector +) @an ‘.>'
Such a model has the factorization assumption intrinsicall he trajector),i\If+_(_t)> [W_(1)]is Fhe total wave function
built in, so this result may be expected to hold in the large or a system initially prepared in the staferx)|e) [

j limit of the fully quantized model. The question is whether | _X>!a>]’ wherea is a boson field coherent state with a real
this feature too disappears in tfwe 3 limit or whether it may amplitudea and|£x) is the corresponding eigenstate of the

still be identified there. Epln_ op?r:ihtom . As the tW(; m:tlill co_r:dflnlcl)nébt(r}] f:)rtrr? at_
In a series of recent papers, Bomtial.[8] have claimed asis or the spin space ol states, it follows that the ime

that the latter is, in fact, the case. Specifically, they suggesf?vmut'On of any initial condition will be of the form

for thgj =1 quantum system, a correlation between the semi- [T (t)) = a| W, (1)) + BT _(1)), (6)
classical chaos, fast growth of some operator variances, and

fast decay of the state purity for the spin and/or boson sub-

system(or, equivalently, a fast increase in the correspondingVith appropriate weighte: andg. In particular, for the often
Subsystem entropyWe sha” address these issues at |engt|‘phosen initial conditions where the Spin starts out in an

in what follows. eigenstate ofo,, the two weights are equala|=|g|
Finally, Graham and Hmerbach too have claimgd(b)] =1/\2.
that “prominent quantum effects in the dynamjcs. . ] can It turns out that the wave functions along the trajectories

be directly related to regular features of the classical dynaml¥ - (t)) remain approximation factorizable into a spin part
ics for weak coupling and their change to chaotic behaviond a boson part for a long time. Moreover, the evolution of
for stronger coupling.” They single out certain features inmost dynamical quantitiegexpectation valugsalong these
the power spectrum of the boson mode, as well as the vigrajectories is very simple. For instance, the boson
ibility (or lack thereof of the well-known population inver- field amplitude (a)=a;+ia, basically oscillates as
sion revivals. We shall present some comments about the<a).. ~exp( wt+igt/2/n). Thus, for each of the two trajec-
ideas in the following section. tories the power spectrum afwould have a single peak, at
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wtglz\/ﬁwhereas for any other initial condition leading to these special initial conditions that an initially factorizable
a superposition such 46) one would observe two peaks, of State remains approximately factorizable for the longest time,
generally unequal weights; equal weights and a symmetri@nd factorization is precisely what we need in order for the
power spectrum would result for the special initial conditionssemiclassical system of equatiof® to describe approxi-
leading to|a|=|B|=1/\2 (such as the eigenstates of = Mately the quantum evolution as well. We have found, more-
mentioned earlier over, that these initial conditions hold the key to some im-
Similarly, the branchesW . (t)) by themselves display portant features of the classical problem and the transition to
only very small population inversion oscillations and a “re- chaos in the region of relatively large as we discuss in the

vival” that is qualitatively different[15] from the well- remainder of this section.
known revivals seen by Eberly, Narozhny, andn8wez-
Mondragm [16] for the initial condition |+2z). The B. Classical results

;:onverltrllontal r%vwalsh res_uItI,E |n) E?Z} Lromte;fe{ﬁn_cebe— For the classical systerf2) we have restricted ourselves
ween the two branches in E( - AS SUCh, TheIrmag- +, ha choices of initial conditions that make the conserved

nitude and appearance for different initial conditions can : : :
vary greatly an)pthe weightsr| and|g| are changed, from a quantty x*+y?+2z°=1. Thus the point representing the

. ; _18l=1/\2 i state of the rotor moves on a sphere of unit radius called the
maximum interference whefw|=|B|=1/y2 to practically  pjqch sphere. This is not a real restriction since, as explained
no revival as«| or | 8| approach 1.

1Pl , __in the Introduction, the actual value of+y2+2z? can be
In a recent publicatiof17], we have established that, in scaled away by modifying the boson field amplitude and
fact, a decomposition of the same form (& holds for the coupling constant appropriately
full spin-boson systel) (that is, in the nonintegrable, non- '

. Ry ith I o Considering then the systef®), we would expect that the
rotating-wave approximation caseith generally very simi- g antm-classical correspondence would be more nearly ac-
lar properties. Specifically, we showed ttigtthere are spe-

curate for large values of the boson field amplitude,or
cial initial states of the spin, which ifl17] we called 9 P £

. ) ! a,. (Note that, quantum mechanically=az+a2— 3, where
|.(0)), which lead to approximately factorizable wave—2( q y=aitaz—s

functions for long timega point of notation: here, as [17], n is the average number of oscillator quanta; for the Iarge
we shall usey for a state of the spin, anl for a state of the numbers of quanta we shall be considering here, we will

total spin plus oscillator system(ii) the boson field evolu- "€glect the; term) For sufficiently largen, we expect the
tion along these trajectories is largely monochromatic and€action of the rotor on the oscillator to be approximately
goes aga). ~exp(i ot *idwt), wheresw is an interaction- negligible, in which case an |_n|t|al conditioa;(0)= Vn,
induced detuning, similar to the one found for the JCM; and?2(0)=0 would evolve approximately aa;=Jhcos(t),

(iii) revivals of oscillations at the Rabi frequency occur for@,= — Vnsin(wt). (We shall also take the initial phase of the
initial conditions that result in superpositiotend hence in-  oscillator to be zero throughout, again with no real loss of
terference of both branches as in E¢p). generality)

By choosing the right initial condition one could therefore  If, accordingly, one seta; = Jncos(wt) in the subsystem
produce a quantum trajectory in the full spin-boson systent2c)—(2€) that describes the evolution of the rotor, a periodic
having traits very similar to those found in the JCM as re-solution (Floquet solution of characteristic exponent 2ero
gards symmetric spectra and large, visible revivals: ongnay be found for the three-dimensional vect¢r). We shall
would only have to choosgr|=|g8|= 1/\/5, (See[18] for a  call this periodic solutiory(t) here; it corresponds, in fact,
more detailed discussion of these and other related ppints.to two different periodic trajectories xo(t), since the sym-

The catch is that for the full spin-boson system, unlike formetry x— —x holds for the incomplete syste(@c)—(2€). In
the JCM, the special initial atomic statgg. (0)) leading to  [17] we called these periodic orbits the “Autler-Townes”
quasifactorizable evolution depend on the value of the coutAT) trajectories(see[19]). Most importantly, we showed in
pling constantg. Thus, asg is changed, the same initial [17] that if the initial condition for the quantum system is
condition can and will result in a superposition of the two chosen to be one of the special staft#s (0)) or [_(0)),
branches of the forn6) with changed weights and one will discussed in Sec. Ill A, with the oscillator initially in a co-
see different spectra, revivals, etcglis changed so that the herent state of relatively largeea) amplitudea, the expec-
semiclassical dynamics goes from regular to chaotic, oné&tion values for the quantum system follow closely the
might then be tempted to relate the observed differences teemiclassical AT trajectories, with only minor changes such
the chaos, but this, in our opinion, would be incorrect, sinceas the interaction-induced detuning mentioned above.
in general these differences can be, for the most part, elimi- As for the full classical syster®), it is clear that it will
nated simply by changing the initial condition ap is not follow the AT trajectories exactly, but our numerical
changed in such a way as to preserve the relative weights igfudies show that for sufficiently large oscillator amplitude
the expressior6). one can always find two periodic trajectories in the

Our approach to the study of the dynamics is then agieighborhood of the AT “branches” &;,a;,x)=
follows: In order to minimize spurious differences between(y/ncos(wt), — Vnsin(wt), = Xxo(t)). More specifically, for
trajectories computed for different values of the coupling any given value of the coupling constagitand any initial
we choose our initial conditions so that we always start rightondition for the oscillator of the forma,(0)=+n,
on one or the other of the two brancH#s. (t)). This makes a,(0)=0, with n sufficiently large(greater than 10 or $o0
good sense as well from the point of view of searching forone can find two different initial conditions for the rotor that
the closest correspondence between the quantum and ser@ad to periodic trajectories for the whole system. These ini-
classical systems, since, as was explainefllifi, it is for  tial conditions may be mapped onto the quantum system
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merely by making the initial rotor state/(0)) an eigenstate A=100 =81
of J-n along the appropriate direction in the Bloch sphere, s g
although it is usually sufficient to just choose the nearby AT
initial condition, as described ifl7], in order to achieve
essentially the closest possible correspondence between the
guantum and the classical evolution.

The periodic orbit followed by the classical system de-
pends both oy and on the initial oscillator quantum number
n=a3(0)+a3(0), but wefound in[17] that on resonance
(0= wy, the only case we shall consider hgrall combina-
tions ofg andn that yield the same value for the parameter

Classical

“+"” branch

Quantum

e=—— (7

lead also to quite similar orbiteup to small corrections of
order 1h). Accordingly, and again motivated by our desire
to eliminate as much as possible spurious differences be-
tween the various situations to be compared, what we have
done is to change as we changed, so as to keeg con-
stant.

Essentially, then, our methodology is to track as closely
as possible one or two periodic orbits for the classical sys-
tem, through the various phase spaces that are obtained as
the coupling constarg is changed. This is motivated, origi-
nally, by the fact that it is near these orbits that we find near
factorization of the quantum wave function and the closest
guantum-classical correspondence, but it has also an unex-
pected bonus: We have been able to show numerica”y that in FIG. 1. Classical and qUantUm trajeCtories on the Bloch Sphere
this region of the phase spagehich does not appear to have (@xesx,y, andz). (8—(d) are for the chaoti¢+) branch,(e)—(h)
been investigated by earlier researchechaos begins, in for the nonchaotic {) branch. (@) Classical trajectoryn=100
fact, in the neighborhood of the periodic orbis first one ~ (Stable: (b) classical trajectoryn==81 (chaotio; (c) and (d) the

and then the other become unstable whés increasedand corresponding guantum trajectoriég) and(f) classical trajectories,
b d — branch,n=100 and 81, respectivelboth stablE (g) and (h)

n is decreased accordinglf20]. . corresponding quantum trajectories. The total length of time shown
The fact that the two branches do not become chaotic fog ,t=200.

the same values af andn, but that, rather, one of them

remains stable for a wide range of parameter values after thg —0.876) on the Bloch sphere and the corresponding initial

other one has become chaotic is ul_tlmately a consequence ef)ndition for the quantum rotor is

the fact that the symmetrx— —x is broken for the full

system(2) [by the term proportional t& in (2b)]. This some- |-(0))=0.249+2)+0.968 — z), (8)

what fortuitous circumstance allows us to carry out a double

comparison: We may compare the quantum evolution for avhere|*z) are eigenstates ¢fr,).

initial condition in the neighborhood of the unstable trajec- Figure 1 shows a classical trajectory, in the Bloch sphere,

tory before and after the instability and we can also comparé the neighborhood of the periodic orbit we have called the

both to the quantum evolution for an initial condition in the “ +” branch, before[Fig. 1(a)] and after[Fig. 1(b)] it be-

neighborhood of thetabletrajectory to ascertain which dy- comes unstable. The trajectory in Figbllis weakly chaotic,

namical features, if any, can be unambiguously associateds indicated by a calculated maximum Lyapunov exponent

with the classical chaos. The results of these comparisons afé ~0.01>0; the trajectory in Fig. (B) is quasiperiodic. Fig-

presented in detail in the following section. ures 1c) and Xd) are the corresponding quantum trajecto-
ries. Clearly, the quantum system is not significantly affected
by the semiclassical transition to chaos; after the transition,

IV. QUANTUM DYNAMICS RESULTS the trajectory still remains largely in the neighborhood of the
now unstable classical periodic orbit. Figurege):1(h)
show for comparison the trajectories in the neighborhood of
Figures 1-3 show some typical results for the quantunihe classical orbit that does not become chaotichranch,

system(1) with the initial conditions| ¥ (0))=|#.(0))|a),  both semiclassical and quantum.

where « is a harmonic oscillator coherent state with=n" The impression that the quantum system is oblivious to

and we choosa andg so as to keeg=1. For reference, we the classical chaos is reinforced by the spectra shown in Fig.

note that for this particular value efthe AT trajectories for 2 [Fourier transforms of the time series ) ]. The quan-

the semiclassical system begin atxy(0)=*(0.483, tum spectra for trajectories in the neighborhood of the un-

branch
Classical

[TERE]

Quantum

A. The j=13 case
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6 FIG. 3. (a) Entropy for the spin system aril) uncertainty prod-
uct Aa;Aa, for the boson fieldcasej :%). Solid line, + branch,
n=281 (classically chaotic trajectoyy dashed line,+ branch,
FIG. 2. Power spectrfabsolute value squared of the Fourier n=100; dotted line~ branch,n=81; dash-dotted line;- branch,
transform ofz(t)] for the classical and quantum trajectories, beforen =100. The maximum possible entropiyn2) corresponds to the
and after the transition to chaos, both branches. Curves are labelégper edge ofa). The time axis in(b) has been scaled by to
as in Fig. 1. The frequency resolutionAs» = 0.008v,. The vertical ~ account for the fact that the field uncertainty generally grows faster
scale is logarithmic, the same for all plots, and spans six decadedor smallern.
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[ 35

3 4
W/ 0,

stable orbit look essentially the same as those in the neiglacteristic exponents asis varied has opposite signs for the
borhood of the stable one, both before and after the classicilvo branches; that is, initially, as is decreased, the two
transition to chaos. peaks move closer along one branch but move away along
Incidentally, Fig. 2 shows how the destabilization of thethe other branch. This asymmetry explains why one of the
classical orbit takes place. The spectrum in Fi@) & fora  branches always becomes unstable before the other one.
guasiperiodic trajectory, since the initial condition is not ex- As we mentioned in Sec. Il, some authors have suggested
actly on the periodic orbit; it is, however, close enough thathat the quantum entropy of the two subsysteisiEn and
the additional frequencies seen in the spectrum can be idefield) might grow faster in a semiclassically chaotic region,
tified with the Floquet exponents for the linearization of theand similarly for the variances of some operat@mstably
system(2) around the periodic trajectory. Two of these ex- the field uncertainty producc=Aa;Aa,) [8]. Even in the
ponents, which are imaginary and complex conjugates ofionchaotic Jaynes-Cummings model, the evolution of these
each othefcorresponding to real frequencieapproach zero quantities is very sensitive to the initial conditions chosen,
and merge at some point between Fig®) 2and 2b); these  with growth being generally minimized when the initial con-
correspond to the peaks seen in Figa)2around the fre- dition is the starting point for one of the x,(t) trajectories,
guencyw= wq. Presumably, after merging at zero the char-as we have chosen here. With these initial conditions, Fig. 3
acteristic exponents migrate along the real axis, one of thershows no correlation between entropy and/or uncertainty
becoming real and positive and resulting in the instabilitygrowth and chaos. Both the entropy and the uncertainty
observed. product do grow faster for the smaller valuesroiwhich
Figure 2e) shows also a double peak near wy for a  also imply largem), but they do so for both the chaotic and
quasiperiodic trajectory in the neighborhood of the stablehe nonchaotic branch and, in any event, they do so in the
periodic orbit in the— branch, but here the two peaks remain nonchaotic JCM as well[For the uncertainty product, in
distinct asn is decreased below=90 [Fig. 2(f)]. We have particular, the general arguments sketchedlif] and[21]
been able to establish analyticall§8], using perturbation suggest the scaling with that we have adopted in Fig(8.]
theory around the Autler-Townes orbits, that in the>w, If anything, Fig. 3 shows the opposite of what Bomgtial.
e=const limit, the rate of separation of the two Floquet char{8] claimed: namely, that the entropy and uncertainty are, in
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this particular example, actualljigher for the nonchaotic values ofj large enough for factorization to hold. Whether
branch[the dotted line, corresponding to the trajectory inthe subsystem entropy will behave similarly in this limit re-

Fig. 1(h)]. mains an open question. We have carried[a8] a prelimi-
For the case we have chosen here, which is characterizethry numerical investigation of the quantum mol with
by e=1, the — branch remains orbitally stable asis de- j=1 and? and for the latter case we have indeed found

creased down to=32, whereas the chaos in the neighbor-marginal evidence of an asymmetry, in the transition to
hood of the+ branch grows stronger with decreasingas  chaos, between thé and — branches, which does point in
indicated by more complicated spectra and larger Lyapunothe expected direction, i.e., to higher uncertainty and higher
exponents. Throughout this range £96=32), however, the subsystem entropy in the chaotic region. While we do not
corresponding two quantum trajectories do not exhibit anyegard our results as conclusitg@nce, after all, the evidence
significant differences that correlate with the classical chaogresented above for the=3 model could equally well be
in any particular way. By the tima= 32, the factorization said to point about as strongly in the opposite diredtitimey
assumption does not hold, except for very short times, andre suggestive and we shall briefly present some of them
the quantum trajectories, for both branches, only bear a paskere.
ing resemblance to the classical periodic orbits. To obtain(2) from (3) one must definex=(J,)/#%], etc.,
While our results contradict the expectations of Boeti a,=(a+a")/\2], etc., and replacg in (2) by g'=g2j
al. and also, to some extent, bring into question some of théwhere g is the actual coupling constant in the quantum
claims of Graham and Hmerbach, they are consistent with Hamiltonian(3)]. This means that a classical trajectory that
the conclusions of other authors who, in the study of othektarts off with given values foa_i, 3_%, andx on the Bloch
dynamical propertiegsuch as, e.g., Husimi functiori§]),  sphere and a giveg’, actually corresponds, in the quantum
have concluded that the quantum phase space of #  model with a given value of, to a Hamiltonian with a cou-
system is considerably more robust than the classical one anging constanty2] times smaller and to an initial condition
that the signatures of the classical chaos are rather hard {gith 2j times more bosons than for the- 1 case.
find, if not, as we believe, entirely suppressed. Choosing an initial condition for the spin that corresponds
A remark may be added here regarding the siza,dhe o 3 classical periodi¢Autler-Townes trajectory is slightly
number of oscillator quanta. We believe that conclusionsyontrivial for j 3. Basically, the idea is as follows. The
based on the study of systems with very low values @ie  ¢lassical starting points for the AT trajectories on the Bloch

suspect in general because of the lack of a good quantumphere are, of course, unchanged and given by the unit vec-
classical correspondence in that limit even in the absence qhys +x,(0). Taking x,(0)=n to denote a particular direc-

classical chaos. We have therefore tried to use valuesobf  {ion in space, we can then look at the eigenstatel ofwith
large as we could and found that even for largé is pos- eigenvaluesn=j,j—1, ...,—j. Forj=%, these eigenstates
sible to find chaos in the classical system, provided ghist  5p¢ precisely the initial statdg..(0)), which we introduced
large enough. In this way we have identified a chaotic regimearlier; forj =, there are four such eigenstates, correspond-
for this model that does not appear to have been studieghg to two positive and two negative branches of quantum
before. We have not, however, seen any evidence that ifrajectories. We have focused on the ones with maximal an-
creasingn might eventually lead to quantum trajectories dis'gular momentum rh=+ 2), as they seem to follow more

playing some of the characteristics of the classical chaog|gsely, and for a longer time, the classical trajectories. For
[22]. Increasingn with fixed couplingg does yield betterand =1 ‘thjs yields a starting initial condition

better agreement between the classical and quantum trajec-

tories for longer and longer times, but it also makes the |, (0))=0.018+ 2)+0.109+ % )+0.408— }

chaos disappear. In a sense, the chaos takes advantage of the

existence of a region of parameter space where the agree- +0.908— %), (93

ment between the quantum and the classical dynamics is still

close (as Fig. 1 indicates yet sufficiently relaxed for the . L L

classical system to become chaotic without anything note-  |#-(0))=0.908+ 3)—0.406+ 5 )+0.103— 3

worthy happening to the quantum system. 0.018 2 b
. >

B. Some results for largerj where the statelsn,) are labeled by the corresponding eigen-

While there appears to be no identifiable limit, for the values ofJ,. _ _ L
j=1 case, where the classical chaos might be relevant to the, For the case=1, a classical trajectory wita;(0)=81,
quantum dynamics, it has been establisksee, e.g.[23])  a5(0)=0 requires(a’a)=243 in thej=3 model and a tra-
that the factorization assumption, and hence the classicgctory with a?=100 requires(a’a)=300. Moreover, the
equations(2), must hold for the general systef8) for suf-  rotor’s space is two times larger than for the ; case. Be-
ficiently large values ofi and j, the total angular momentum cause of this large increase in computing requirements, we
of the rotor. have not been able to follow the quantum trajectories for
Studies on a hybrid quantum-semiclassical version of thi¢imes as long as those shown in Figs. 1-3. The Bloch sphere
model(quantized rotor, classical fieldwhich has the factor- trajectories themselves do not appear substantially different
ization assumption built in, have indeed shown a fast growtffrom the ones shown in Fig. 1 for thje= 3 case and so we do
of the variances to be correlated to ch4®8], so we may not reproduce them here. The evolution of the rotor's en-
expect this to be a feature of the full quantum mo@lfor  tropy, on the other hand, has the suggestive form shown in
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entropy S

FIG. 4. Entropy for the spin systefeasej=3). Solid line, +
branch,(a'a)= 243 (classically chaotic trajectofydashed line+
branch, (a'a)=300; dotted line,— branch, (a'a)=243; dash-
dotted line,— branch,(a*a>=300. The maximum possible entropy
(In4) corresponds to the upper edge of the figure.

Fig. 4. Here, contrary to what was seen in jke3 casegFig.
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We should mention also that the uncertainty product for
the boson field in thg =32 case also displays a behavior
similar to the one seen in Fig. 4 for the entropy, that is, the
classically chaotic branch does grow faster, especially after
the transition to chaos. However, because of the scaling with
n indicated in Fig. 8), we have not been able to cover a
very large range of times, and for those short scaled times the
differences between the uncertainty products for the various
branches would, in fact, be barely visible on the scale of Fig.
3(b).

V. CONCLUSION

In conclusion, we believe that in the= 3 subspace of the
system(3) there is no correlation between any particular dy-
namical variable and the presence or absence of semiclassi-
cal chaos. The quantum dynamics is essentially unaffected
by the classical transition to chaos, and the quantum expec-
tation values follow the semiclassical periodic orbits more
closely than the semiclassical system itself after the latter

3(a)], the branch corresponding to the classically chaotic trapecomes chaotic, showing that these orbits remain about as
jectory clearly exhibits the largest increase in entropy andstaple, or as unstable, as they were before the transition, as
this is especially true after the classical transition to chaogyr as the quantum system is concerned. We may therefore
(solid line, + branch,(a’a)=243). This is precisely what speak of a total quantum suppression of chaos for this

one would expect from the arguments of Bometial. [8].

system—"quantum” because it is clearly the highly non-

Whether it is a real effect or just a coincidence is not entirelyc|assical nature of the two-level systef@s compared to a
clear to us and more work would be required to establish @|assical rotor that is responsible for this result.

positive correlation between classical chaos and growth of
subsystem entropy in this model; in any event, seeing this

particular effect in thg = 2 model only makes more striking
its total absence from thg=3% case(where the effect even
appears to be reversedwhich is the main point of the
present paper.
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