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We identify a transition to chaos in the semiclassical spin-boson model that occurs for relatively large boson
fields, as one of two periodic orbits becomes unstable. We have studied the quantum dynamics in the vicinity
of this transition, as characterized by~i! phase-space trajectories followed by quantum expectation values,~ii !
spectra of such trajectories,~iii ! subsystem entropies for the spin and boson systems, and~iv! growth of
operator variances for the boson system. We find that the transition to chaos in the classical system has no
apparent effect on any of these variables, in the spin-1

2 case. This is in disagreement with some claims made in
earlier studies of this system.@S1063-651X~96!10106-9#

PACS number~s!: 05.45.1b, 03.65.Sq, 42.65.Sf

I. INTRODUCTION

The spin-boson Hamiltonian

H5 1
2 \v0sz1\va†a1\gsx~a1a†! ~1!

~wheres i are Pauli spin matrices anda†,a are boson cre-
ation and annihilation operators! may describe a number of
physical systems, including a two-level atom coupled to a
single mode of the quantized radiation field@1# or to its own
center-of-mass motion in an atomic trap@2#. Taking expec-
tation values in the Heisenberg equations and making a fac-
torization assumption~i.e., ^sza&.^sz&^a&, etc.! yields the
semiclassical equations

ȧ15va2 , ~2a!

ȧ252va12gx, ~2b!

ẋ52v0y, ~2c!

ẏ5v0x24ga1z, ~2d!

ż54ga1y, ~2e!

where a15^a1a†&/2, a25^a2a†&/2i , x5^sx&, y5^sy&,
andz5^sz&. The system~2! has long been known to exhibit
chaos for certain values of the parameters@3#. A continuing
question has been whether or not there is any signature of
this semiclassical chaos in the solutions, especially the dy-
namics, of the full quantum problem~1! @4–8#. This is the
subject of the present paper.

The system~1! is not of the ‘‘standard’’ form of most
quantum chaos problems, which typically involve particles
in externally prescribed potentials, but this very difference
makes it interesting in the context of the hitherto relatively
little studied ‘‘dynamically driven’’ systems, where new
phenomena may arise due to, for instance, the nonunitary

nature of each subsystem’s evolution@9#. Moreover, the sys-
tem ~1! is the restriction to thej5 1

2 subspace of the more
general Hamiltonian

H5v0Jz1\va†a12gJx~a1a†!, ~3!

which describes, in general, a quantum rotor coupled to a
quantum harmonic oscillator@Eq. ~3! may also describe a
collection ofN52 j two-level atoms interacting with the ra-
diation field#. In some limits~if the reaction of the rotor on
the oscillator and/or the quantum nature of the latter are neg-
ligible! this may be like a periodically driven rotor, which is
an archetypal model for quantum chaos@10#.

It has been shown by Graham and Ho¨hnerbach~see@4~b!#
for details! that a classical Hamiltonian for this problem may
be written as

Hc5v0I 11vI 214gAI 2AJ22I 1
2cos~f1!cos~f2!, ~4!

whereI i andf i are canonical action-angle variables andJ2

is a constant, corresponding to the total angular momentum
@for correspondence with the quantum problem,
J25 j ( j11) or, in terms ofN equivalent two-level atoms,
J25(N/2)(N/211)#. It can be verified immediately that
the canonical equations of motionḟ15]Hc /]I i and
İ i52]Hc /]f i are identical to the equations~2! obtained
from the factorization assumption in the quantum Heisenberg
equations of motion, with the correspondence

a15AI 2cosf2 ,

a252AI 2sinf2 ,
~5!

x5AJ22I 1
2cosf1 ,

y5AJ22I 1
2sinf1 ,

z5I 1 .

In the classical problem~4!, J is an arbitrary constant that
can, in fact, be scaled away by redefining the coupling con-
stant g and the boson field amplitude, as inI 185I 1 /J,
I 285I 2 /J, andg85gAJ. For the quantum Hamiltonian~3!,
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on the other hand, there is an infinite hierarchy of essentially
different problems, in Hilbert spaces of different dimension-
alities, associated with all possible values of the constantj ,
all of which lead to the same equivalent semiclassical equa-
tions ~2! under the factorization assumption.

Given that the correspondence between the classical sys-
tem ~4! @or ~2!# and the quantum system~3! is expected to be
exact only in the double limitj@1 andI 2@1, a very inter-
esting question arises: At what point down the ladder of
decreasingj do the uniquely quantum effects begin to blur
the classical structure, in particular, the traces of the classical
chaos? Or do any such traces persist even in the most non-
classical limit, thej5 1

2 case? The following section summa-
rizes some of the partial answers offered to these questions
by previous workers on this problem.

II. BRIEF SUMMARY OF PREVIOUS RESULTS

Perhaps the most thoroughly established characteristic of
quantum chaotic systems is the distribution of~nearest-
neighbor! energy level differences, which is found to be
Poissonian for classically integrable systems and of the
Wigner form ~level repulsion! for classically chaotic ones
@10#. It was shown by Kus´ @5# for the present system that in
the j5 1

2 limit the level distribution has neither of these
forms, whereas Graham and Ho¨hnerbach later@11# showed
that the level distribution does approach the chaotic form
with increasingj ~their published results show an essentially
Wigner-like distribution for j5 9

2 already!. This particular
trace of classical chaos, therefore, does seem to vanish in the
very small j limit, although we note that in a recent article
Cibils, Cuche, and Mu¨ller @12# claim to have identified the
‘‘seeds’’ of quantum chaos in certain features of the spec-
trum of the j5 1

2 system.
There are, however, other characteristics that may be ex-

hibited sometimes by quantum systems whose classical
counterparts are chaotic, such as, e.g., very fast growth of
operator variances. This has in fact been observed in a hybrid
quantum-semiclassical version of the present model~one
with a quantized rotor and a classical field! by Fox @13#.
Such a model has the factorization assumption intrinsically
built in, so this result may be expected to hold in the large
j limit of the fully quantized model. The question is whether
this feature too disappears in thej5 1

2 limit or whether it may
still be identified there.

In a series of recent papers, Bonciet al. @8# have claimed
that the latter is, in fact, the case. Specifically, they suggest,
for the j5 1

2 quantum system, a correlation between the semi-
classical chaos, fast growth of some operator variances, and
fast decay of the state purity for the spin and/or boson sub-
system~or, equivalently, a fast increase in the corresponding
subsystem entropy!. We shall address these issues at length
in what follows.

Finally, Graham and Ho¨hnerbach too have claimed@4~b!#
that ‘‘prominent quantum effects in the dynamics@ . . . # can
be directly related to regular features of the classical dynam-
ics for weak coupling and their change to chaotic behavior
for stronger coupling.’’ They single out certain features in
the power spectrum of the boson mode, as well as the vis-
ibility ~or lack thereof! of the well-known population inver-
sion revivals. We shall present some comments about these
ideas in the following section.

III. MAIN FEATURES OF OUR APPROACH

A. Meaningful comparisons: Importance of initial conditions

In order to be able to relate a particular feature of the
quantum dynamics to the presence or absence of classical
chaos, one should check for the presence or absence of that
feature in the classically chaotic versus the classically regular
regimes. Two criteria for comparisons may be used. One is
to take as the reference nonchaotic system the rotating-wave
approximation version of the model~1!, known in quantum
optics as the Jaynes-Cummings model~JCM!. The other ap-
proach is to stay within the model~1! and vary parameters
such as the coupling strengthg to move from a classically
chaotic to a classically regular regime. Both approaches have
been used to some extent in the past.

In either approach, there is an important difficulty that
needs to be recognized. Unlike the global properties of en-
ergy level distributions mentioned earlier, the dynamical
properties such as growth of operator variances, system en-
tropies, and revivals turn out to be quite sensitive to the
initial condition chosen for, say, the spin system. This in
itself is not a chaotic trait; it is exhibited as well by the
rigorously nonchaotic JCM. We find that the criteria sug-
gested by Graham and Ho¨hnerbach@4~b!# generally fall into
this somewhat ambiguous category: that is, it is possible to
obtain very different power spectra and to suppress strongly
~and modify substantially! the appearance of the population
inversion revivals in the nonchaotic JCM already, simply by
choosing different initial conditions for the spin system.
Conversely, it is possible to choose initial conditions in the
full spin-boson model~1! that lead to very similar quantum
trajectories to those of the JCM or at any rate to trajectories
whose differences cannot be unambiguously attributed to the
classical chaos.

To be more specific, it has been shown by one of us@14#
that for the JCM in the limit of largen̄ ~where n̄ is the
average occupation of the boson mode!, all the main features
of the quantum evolution can be understood in terms of the
superposition of two special trajectoriesuC1& and uC2&.
The trajectoryuC1(t)& @uC2(t)&] is the total wave function
for a system initially prepared in the stateu1x&ua& @
u2x&ua&], wherea is a boson field coherent state with a real
amplitudea andu6x& is the corresponding eigenstate of the
spin operatorsx . As the two initial conditionsu6x& form a
basis of the spin space of states, it follows that the time
evolution of any initial condition will be of the form

uC~ t !&5auC1~ t !&1buC2~ t !&, ~6!

with appropriate weightsa andb. In particular, for the often
chosen initial conditions where the spin starts out in an
eigenstate ofsz , the two weights are equal:uau5ubu
51/A2.

It turns out that the wave functions along the trajectories
uC6(t)& remain approximation factorizable into a spin part
and a boson part for a long time. Moreover, the evolution of
most dynamical quantities~expectation values! along these
trajectories is very simple. For instance, the boson
field amplitude ^a&5a11 ia2 basically oscillates as
^a&6;exp(ivt6 igt/2An̄). Thus, for each of the two trajec-
tories the power spectrum ofa would have a single peak, at
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v6g/2An̄, whereas for any other initial condition leading to
a superposition such as~6! one would observe two peaks, of
generally unequal weights; equal weights and a symmetric
power spectrum would result for the special initial conditions
leading to uau5ubu51/A2 ~such as the eigenstates ofsz

mentioned earlier!.
Similarly, the branchesuC6(t)& by themselves display

only very small population inversion oscillations and a ‘‘re-
vival’’ that is qualitatively different @15# from the well-
known revivals seen by Eberly, Narozhny, and Sa´nchez-
Mondragón @16# for the initial condition u1z&. The
conventional revivals result, in fact, frominterferencebe-
tween the two branches in Eq.~6! @14#. As such, their mag-
nitude and appearance for different initial conditions can
vary greatly as the weightsuau and ubu are changed, from a
maximum interference whenuau5ubu51/A2 to practically
no revival asuau or ubu approach 1.

In a recent publication@17#, we have established that, in
fact, a decomposition of the same form as~6! holds for the
full spin-boson system~1! ~that is, in the nonintegrable, non-
rotating-wave approximation case! with generally very simi-
lar properties. Specifically, we showed that~i! there are spe-
cial initial states of the spin, which in@17# we called
uc6(0)&, which lead to approximately factorizable wave
functions for long times~a point of notation: here, as in@17#,
we shall usec for a state of the spin, andC for a state of the
total spin plus oscillator system!; ~ii ! the boson field evolu-
tion along these trajectories is largely monochromatic and
goes aŝa&6;exp(ivt6 idvt), wheredv is an interaction-
induced detuning, similar to the one found for the JCM; and
~iii ! revivals of oscillations at the Rabi frequency occur for
initial conditions that result in superpositions~and hence in-
terference! of both branches as in Eq.~6!.

By choosing the right initial condition one could therefore
produce a quantum trajectory in the full spin-boson system
having traits very similar to those found in the JCM as re-
gards symmetric spectra and large, visible revivals: one
would only have to chooseuau5ubu51/A2. ~See@18# for a
more detailed discussion of these and other related points.!

The catch is that for the full spin-boson system, unlike for
the JCM, the special initial atomic statesuc6(0)& leading to
quasifactorizable evolution depend on the value of the cou-
pling constantg. Thus, asg is changed, the same initial
condition can and will result in a superposition of the two
branches of the form~6! with changed weights and one will
see different spectra, revivals, etc. Ifg is changed so that the
semiclassical dynamics goes from regular to chaotic, one
might then be tempted to relate the observed differences to
the chaos, but this, in our opinion, would be incorrect, since
in general these differences can be, for the most part, elimi-
nated simply by changing the initial condition asg is
changed in such a way as to preserve the relative weights in
the expression~6!.

Our approach to the study of the dynamics is then as
follows: In order to minimize spurious differences between
trajectories computed for different values of the couplingg,
we choose our initial conditions so that we always start right
on one or the other of the two branchesuC6(t)&. This makes
good sense as well from the point of view of searching for
the closest correspondence between the quantum and semi-
classical systems, since, as was explained in@17#, it is for

these special initial conditions that an initially factorizable
state remains approximately factorizable for the longest time,
and factorization is precisely what we need in order for the
semiclassical system of equations~2! to describe approxi-
mately the quantum evolution as well. We have found, more-
over, that these initial conditions hold the key to some im-
portant features of the classical problem and the transition to
chaos in the region of relatively largen̄, as we discuss in the
remainder of this section.

B. Classical results

For the classical system~2! we have restricted ourselves
to the choices of initial conditions that make the conserved
quantity x21y21z251. Thus the point representing the
state of the rotor moves on a sphere of unit radius called the
Bloch sphere. This is not a real restriction since, as explained
in the Introduction, the actual value ofx21y21z2 can be
scaled away by modifying the boson field amplitude and
coupling constant appropriately.

Considering then the system~2!, we would expect that the
quantum-classical correspondence would be more nearly ac-
curate for large values of the boson field amplitude,a1 or
a2. ~Note that, quantum mechanically,n̄5a1

21a2
22 1

2, where

n̄ is the average number of oscillator quanta; for the large
numbers of quanta we shall be considering here, we will
neglect the12 term.! For sufficiently largen̄, we expect the
reaction of the rotor on the oscillator to be approximately
negligible, in which case an initial conditiona1(0)5An̄,
a2(0)50 would evolve approximately asa15An̄cos(vt),
a252An̄sin(vt). ~We shall also take the initial phase of the
oscillator to be zero throughout, again with no real loss of
generality.!

If, accordingly, one setsa15An̄cos(vt) in the subsystem
~2c!–~2e! that describes the evolution of the rotor, a periodic
solution ~Floquet solution of characteristic exponent zero!
may be found for the three-dimensional vectorx(t). We shall
call this periodic solutionx0(t) here; it corresponds, in fact,
to two different periodic trajectories6x0(t), since the sym-
metry x→2x holds for the incomplete system~2c!–~2e!. In
@17# we called these periodic orbits the ‘‘Autler-Townes’’
~AT! trajectories~see@19#!. Most importantly, we showed in
@17# that if the initial condition for the quantum system is
chosen to be one of the special statesuc1(0)& or uc2(0)&,
discussed in Sec. III A, with the oscillator initially in a co-
herent state of relatively large~real! amplitudea, the expec-
tation values for the quantum system follow closely the
semiclassical AT trajectories, with only minor changes such
as the interaction-induced detuning mentioned above.

As for the full classical system~2!, it is clear that it will
not follow the AT trajectories exactly, but our numerical
studies show that for sufficiently large oscillator amplitude
one can always find two periodic trajectories in the
neighborhood of the AT ‘‘branches’’ (a1 ,a2 ,x)5
„An̄cos(vt),2An̄sin(vt),6x0(t)…. More specifically, for
any given value of the coupling constantg and any initial
condition for the oscillator of the forma1(0)5An̄,
a2(0)50, with n̄ sufficiently large~greater than 10 or so!
one can find two different initial conditions for the rotor that
lead to periodic trajectories for the whole system. These ini-
tial conditions may be mapped onto the quantum system
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merely by making the initial rotor stateuc(0)& an eigenstate
of J•n along the appropriate direction in the Bloch sphere,
although it is usually sufficient to just choose the nearby AT
initial condition, as described in@17#, in order to achieve
essentially the closest possible correspondence between the
quantum and the classical evolution.

The periodic orbit followed by the classical system de-
pends both ong and on the initial oscillator quantum number
n̄[a1

2(0)1a2
2(0), but wefound in @17# that on resonance

(v5v0, the only case we shall consider here!, all combina-
tions ofg and n̄ that yield the same value for the parameter

e[
gAn̄
2v

~7!

lead also to quite similar orbits~up to small corrections of
order 1/n̄). Accordingly, and again motivated by our desire
to eliminate as much as possible spurious differences be-
tween the various situations to be compared, what we have
done is to changen̄ as we changedg, so as to keepe con-
stant.

Essentially, then, our methodology is to track as closely
as possible one or two periodic orbits for the classical sys-
tem, through the various phase spaces that are obtained as
the coupling constantg is changed. This is motivated, origi-
nally, by the fact that it is near these orbits that we find near
factorization of the quantum wave function and the closest
quantum-classical correspondence, but it has also an unex-
pected bonus: We have been able to show numerically that in
this region of the phase space~which does not appear to have
been investigated by earlier researchers!, chaos begins, in
fact, in the neighborhood of the periodic orbitsas first one
and then the other become unstable wheng is increased~and
n̄ is decreased accordingly! @20#.
The fact that the two branches do not become chaotic for

the same values ofg and n̄, but that, rather, one of them
remains stable for a wide range of parameter values after the
other one has become chaotic is ultimately a consequence of
the fact that the symmetryx→2x is broken for the full
system~2! @by the term proportional tox in ~2b!#. This some-
what fortuitous circumstance allows us to carry out a double
comparison: We may compare the quantum evolution for an
initial condition in the neighborhood of the unstable trajec-
tory before and after the instability and we can also compare
both to the quantum evolution for an initial condition in the
neighborhood of thestabletrajectory to ascertain which dy-
namical features, if any, can be unambiguously associated
with the classical chaos. The results of these comparisons are
presented in detail in the following section.

IV. QUANTUM DYNAMICS RESULTS

A. The j5 1
2 case

Figures 1–3 show some typical results for the quantum
system~1! with the initial conditionsuC(0)&5uc6(0)&ua&,
wherea is a harmonic oscillator coherent state witha25n̄
and we choosen̄ andg so as to keepe51. For reference, we
note that for this particular value ofe the AT trajectories for
the semiclassical system begin at6x0(0)56(0.483,

0,20.876) on the Bloch sphere and the corresponding initial
condition for the quantum rotor is

uc6~0!&50.249u1z&60.968u2z&, ~8!

whereu6z& are eigenstates ofusz&.
Figure 1 shows a classical trajectory, in the Bloch sphere,

in the neighborhood of the periodic orbit we have called the
‘‘ 1’’ branch, before@Fig. 1~a!# and after@Fig. 1~b!# it be-
comes unstable. The trajectory in Fig. 1~b! is weakly chaotic,
as indicated by a calculated maximum Lyapunov exponent
of ;0.01.0; the trajectory in Fig. 1~a! is quasiperiodic. Fig-
ures 1~c! and 1~d! are the corresponding quantum trajecto-
ries. Clearly, the quantum system is not significantly affected
by the semiclassical transition to chaos; after the transition,
the trajectory still remains largely in the neighborhood of the
now unstable classical periodic orbit. Figures 1~e!–1~h!
show for comparison the trajectories in the neighborhood of
the classical orbit that does not become chaotic (2 branch!,
both semiclassical and quantum.

The impression that the quantum system is oblivious to
the classical chaos is reinforced by the spectra shown in Fig.
2 @Fourier transforms of the time series forz(t)#. The quan-
tum spectra for trajectories in the neighborhood of the un-

FIG. 1. Classical and quantum trajectories on the Bloch sphere
~axesx, y, andz). ~a!–~d! are for the chaotic~1! branch,~e!–~h!
for the nonchaotic (2) branch. ~a! Classical trajectory,n̄5100
~stable!; ~b! classical trajectory,n̄581 ~chaotic!; ~c! and ~d! the
corresponding quantum trajectories;~e! and~f! classical trajectories,
2 branch,n̄5100 and 81, respectively~both stable!; ~g! and ~h!
corresponding quantum trajectories. The total length of time shown
is vt5200.
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stable orbit look essentially the same as those in the neigh-
borhood of the stable one, both before and after the classical
transition to chaos.

Incidentally, Fig. 2 shows how the destabilization of the
classical orbit takes place. The spectrum in Fig. 2~a! is for a
quasiperiodic trajectory, since the initial condition is not ex-
actly on the periodic orbit; it is, however, close enough that
the additional frequencies seen in the spectrum can be iden-
tified with the Floquet exponents for the linearization of the
system~2! around the periodic trajectory. Two of these ex-
ponents, which are imaginary and complex conjugates of
each other~corresponding to real frequencies!, approach zero
and merge at some point between Figs. 2~a! and 2~b!; these
correspond to the peaks seen in Fig. 2~a! around the fre-
quencyv5v0. Presumably, after merging at zero the char-
acteristic exponents migrate along the real axis, one of them
becoming real and positive and resulting in the instability
observed.

Figure 2~e! shows also a double peak nearv5v0 for a
quasiperiodic trajectory in the neighborhood of the stable
periodic orbit in the2 branch, but here the two peaks remain
distinct asn̄ is decreased belown̄590 @Fig. 2~f!#. We have
been able to establish analytically@18#, using perturbation
theory around the Autler-Townes orbits, that in then̄→`,
e5const limit, the rate of separation of the two Floquet char-

acteristic exponents asn̄ is varied has opposite signs for the
two branches; that is, initially, asn̄ is decreased, the two
peaks move closer along one branch but move away along
the other branch. This asymmetry explains why one of the
branches always becomes unstable before the other one.

As we mentioned in Sec. II, some authors have suggested
that the quantum entropy of the two subsystems~spin and
field! might grow faster in a semiclassically chaotic region,
and similarly for the variances of some operators~notably
the field uncertainty productD[Da1Da2) @8#. Even in the
nonchaotic Jaynes-Cummings model, the evolution of these
quantities is very sensitive to the initial conditions chosen,
with growth being generally minimized when the initial con-
dition is the starting point for one of the6x0(t) trajectories,
as we have chosen here. With these initial conditions, Fig. 3
shows no correlation between entropy and/or uncertainty
growth and chaos. Both the entropy and the uncertainty
product do grow faster for the smaller values ofn̄ ~which
also imply largerg), but they do so for both the chaotic and
the nonchaotic branch and, in any event, they do so in the
nonchaotic JCM as well.@For the uncertainty product, in
particular, the general arguments sketched in@14# and @21#
suggest the scaling withn̄ that we have adopted in Fig. 3~b!.#
If anything, Fig. 3 shows the opposite of what Bonciet al.
@8# claimed: namely, that the entropy and uncertainty are, in

FIG. 2. Power spectra@absolute value squared of the Fourier
transform ofz(t)# for the classical and quantum trajectories, before
and after the transition to chaos, both branches. Curves are labeled
as in Fig. 1. The frequency resolution isDv50.008v0. The vertical
scale is logarithmic, the same for all plots, and spans six decades.

FIG. 3. ~a! Entropy for the spin system and~b! uncertainty prod-
uct Da1Da2 for the boson field~casej5 1

2!. Solid line,1 branch,

n̄581 ~classically chaotic trajectory!; dashed line,1 branch,

n̄5100; dotted line,2 branch,n̄581; dash-dotted line,2 branch,
n 5̄100. The maximum possible entropy~ln2! corresponds to the
upper edge of~a!. The time axis in~b! has been scaled byn̄ to
account for the fact that the field uncertainty generally grows faster
for smallern̄.
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this particular example, actuallyhigher for the nonchaotic
branch @the dotted line, corresponding to the trajectory in
Fig. 1~h!#.

For the case we have chosen here, which is characterized
by e51, the2 branch remains orbitally stable asn̄ is de-
creased down ton̄532, whereas the chaos in the neighbor-
hood of the1 branch grows stronger with decreasingn̄, as
indicated by more complicated spectra and larger Lyapunov
exponents. Throughout this range (90>n̄>32), however, the
corresponding two quantum trajectories do not exhibit any
significant differences that correlate with the classical chaos
in any particular way. By the timen̄532, the factorization
assumption does not hold, except for very short times, and
the quantum trajectories, for both branches, only bear a pass-
ing resemblance to the classical periodic orbits.

While our results contradict the expectations of Bonciet
al. and also, to some extent, bring into question some of the
claims of Graham and Ho¨hnerbach, they are consistent with
the conclusions of other authors who, in the study of other
dynamical properties~such as, e.g., Husimi functions@6#!,
have concluded that the quantum phase space of thej5 1

2

system is considerably more robust than the classical one and
that the signatures of the classical chaos are rather hard to
find, if not, as we believe, entirely suppressed.

A remark may be added here regarding the size ofn̄, the
number of oscillator quanta. We believe that conclusions
based on the study of systems with very low values ofn̄ are
suspect in general because of the lack of a good quantum-
classical correspondence in that limit even in the absence of
classical chaos. We have therefore tried to use values ofn̄ of
large as we could and found that even for largen̄ it is pos-
sible to find chaos in the classical system, provided thatg is
large enough. In this way we have identified a chaotic regime
for this model that does not appear to have been studied
before. We have not, however, seen any evidence that in-
creasingn̄ might eventually lead to quantum trajectories dis-
playing some of the characteristics of the classical chaos
@22#. Increasingn̄ with fixed couplingg does yield better and
better agreement between the classical and quantum trajec-
tories for longer and longer times, but it also makes the
chaos disappear. In a sense, the chaos takes advantage of the
existence of a region of parameter space where the agree-
ment between the quantum and the classical dynamics is still
close ~as Fig. 1 indicates!, yet sufficiently relaxed for the
classical system to become chaotic without anything note-
worthy happening to the quantum system.

B. Some results for larger j

While there appears to be no identifiable limit, for the
j5 1

2 case, where the classical chaos might be relevant to the
quantum dynamics, it has been established~see, e.g.,@23#!
that the factorization assumption, and hence the classical
equations~2!, must hold for the general system~3! for suf-
ficiently large values ofn̄ and j, the total angular momentum
of the rotor.

Studies on a hybrid quantum-semiclassical version of this
model~quantized rotor, classical field!, which has the factor-
ization assumption built in, have indeed shown a fast growth
of the variances to be correlated to chaos@13#, so we may
expect this to be a feature of the full quantum model~3! for

values of j large enough for factorization to hold. Whether
the subsystem entropy will behave similarly in this limit re-
mains an open question. We have carried out@18# a prelimi-
nary numerical investigation of the quantum model~3! with
j51 and 3

2 and for the latter case we have indeed found
marginal evidence of an asymmetry, in the transition to
chaos, between the1 and2 branches, which does point in
the expected direction, i.e., to higher uncertainty and higher
subsystem entropy in the chaotic region. While we do not
regard our results as conclusive~since, after all, the evidence
presented above for thej5 1

2 model could equally well be
said to point about as strongly in the opposite direction!, they
are suggestive and we shall briefly present some of them
here.

To obtain~2! from ~3! one must definex5^Jx&/\ j , etc.,
a15(a1a†)/A2 j , etc., and replaceg in ~2! by g85gA2 j
@where g is the actual coupling constant in the quantum
Hamiltonian~3!#. This means that a classical trajectory that
starts off with given values fora1

2, a2
2, andx on the Bloch

sphere and a giveng8, actually corresponds, in the quantum
model with a given value ofj , to a Hamiltonian with a cou-
pling constantA2 j times smaller and to an initial condition
with 2 j times more bosons than for thej5 1

2 case.
Choosing an initial condition for the spin that corresponds

to a classical periodic~Autler-Townes! trajectory is slightly
nontrivial for jÞ 1

2. Basically, the idea is as follows. The
classical starting points for the AT trajectories on the Bloch
sphere are, of course, unchanged and given by the unit vec-
tors6x0(0). Taking x0(0)[n to denote a particular direc-
tion in space, we can then look at the eigenstates ofJ•n with
eigenvaluesm5 j , j21, . . . ,2 j . For j5 1

2, these eigenstates
are precisely the initial statesuc6(0)&, which we introduced
earlier; for j5 3

2, there are four such eigenstates, correspond-
ing to two positive and two negative branches of quantum
trajectories. We have focused on the ones with maximal an-
gular momentum (m56 3

2), as they seem to follow more
closely, and for a longer time, the classical trajectories. For
e51, this yields a starting initial condition

uc1~0!&50.015u1 3
2 &10.105u1 1

2 &10.406u2 1
2 &

10.908u2 3
2 &, ~9a!

uc2~0!&50.908u1 3
2 &20.406u1 1

2 &10.105u2 1
2 &

20.015u2 3
2 &, ~9b!

where the statesumz& are labeled by the corresponding eigen-
values ofJz .

For the casee51, a classical trajectory witha1
2(0)581,

a2
2(0)50 requireŝ a†a&5243 in the j5 3

2 model and a tra-
jectory with a1

25100 requires^a†a&5300. Moreover, the
rotor’s space is two times larger than for thej5 1

2 case. Be-
cause of this large increase in computing requirements, we
have not been able to follow the quantum trajectories for
times as long as those shown in Figs. 1–3. The Bloch sphere
trajectories themselves do not appear substantially different
from the ones shown in Fig. 1 for thej5 1

2 case and so we do
not reproduce them here. The evolution of the rotor’s en-
tropy, on the other hand, has the suggestive form shown in
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Fig. 4. Here, contrary to what was seen in thej5 1
2 case@Fig.

3~a!#, the branch corresponding to the classically chaotic tra-
jectory clearly exhibits the largest increase in entropy and
this is especially true after the classical transition to chaos
~solid line, 1 branch,^a†a&5243). This is precisely what
one would expect from the arguments of Bonciet al. @8#.
Whether it is a real effect or just a coincidence is not entirely
clear to us and more work would be required to establish a
positive correlation between classical chaos and growth of
subsystem entropy in this model; in any event, seeing this
particular effect in thej5 3

2 model only makes more striking
its total absence from thej5 1

2 case~where the effect even
appears to be reversed!, which is the main point of the
present paper.

We should mention also that the uncertainty product for
the boson field in thej5 3

2 case also displays a behavior
similar to the one seen in Fig. 4 for the entropy, that is, the
classically chaotic branch does grow faster, especially after
the transition to chaos. However, because of the scaling with
n̄ indicated in Fig. 3~b!, we have not been able to cover a
very large range of times, and for those short scaled times the
differences between the uncertainty products for the various
branches would, in fact, be barely visible on the scale of Fig.
3~b!.

V. CONCLUSION

In conclusion, we believe that in thej5 1
2 subspace of the

system~3! there is no correlation between any particular dy-
namical variable and the presence or absence of semiclassi-
cal chaos. The quantum dynamics is essentially unaffected
by the classical transition to chaos, and the quantum expec-
tation values follow the semiclassical periodic orbits more
closely than the semiclassical system itself after the latter
becomes chaotic, showing that these orbits remain about as
stable, or as unstable, as they were before the transition, as
far as the quantum system is concerned. We may therefore
speak of a total quantum suppression of chaos for this
system—‘‘quantum’’ because it is clearly the highly non-
classical nature of the two-level system~as compared to a
classical rotor! that is responsible for this result.
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