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The study of phenomena such as capillary displacement in porous media, fracture propagation, and interface
dynamics in quenched random media has attracted a great deal of interest in the last few years. This class of
problems does not seem to be treatable with the standard theoretical methods, and the only analytical results
come from scaling theory or mapping, for some of their properties, to other solvable models. In this paper a
recently proposed approach to problems with extremal dynamics in quenched disordered media, named run
time statisticS RTS) or quenched-stochastic transformation, is described in detail. This method allows us to
map a quenched dynamics such as invasion percolation onto a stochastic annealed process with cognitive
memory. By combining RTS with the fixed scale transformation approach, we develop a general and system-
atic theoretical method to compute analytically the critical exponents of invasion percolation, with and without
trapping, and directed invasion percolation. In addition we can also understand and describe quantitatively the
self-organized nature of the procefS1063-651X96)07207-9

PACS numbdrs): 02.50~r, 05.40:+j, 05.90+m

INTRODUCTION ened and extended to a wider field of applications by Marsili
[8].

The study of extremal dynamical processes with This method is based on the idea that a deterministic ex-
guenched disorder has attracted great interest in the past féwemal dynamics such as IP can be mapped onto a stochastic
years. A wide range of phenomena, such as fluid displacedynamics with cognitive memory. When the IP dynamics
ment in porous medifl], fracture propagation or dielectric Starts, one does not know anything about the values of the
breakdown in disordered latticé&,3], models for punctu- quenched variables involved in the process, except that they
ated biological evolution[4], and interface dynamics in have been extracted from a flat distribution. As soon as the

quenched disorddb] can be described by dynamical models €xtremal dynamics finds the smallest perimeter variable, one
which select at each time step the extremal value of AQcquires additional information: all other perimeter variables

quenched random fiele(x) plus, eventually, additional con- &€ greater than the smallest one. This conditional informa-
ditions, for example, a critical slope in interface dynamicstlorl can be thought of as a cognitive memory, whlemgm—
[5]. The main characteristics of these models @egiven a bersthe past growth history. The quenched-stochastic trans-
o . o . formation assigns to each perimeter variable a time-
realization of the disorder, the dynamics is determinisgg; . ) . .
R o . . dependent probability density, whose evolution is
the dynamics is intrinsically critical, or self-organized, giv-

o o - determined by the extremal dynamics. The evolution of these
ing rise spontaneously to self-similar or self-affine structures g tive densitiedepends on how many times a given vari-

without any fine tuning of some parameter. ~  gp0i baricipated in the dynamics without being the smallest
The paradlgm of quenched extremal dynamlcs_|s invasion e that is to say on the ag¥ of the variable. Anold

percolation(IP), a model which describes the quasistatic capy,ariahle will have a density more and more concentrated on

illary displacement of a fluid in a porous medium. In IP, 10 great values, in that it lost many times in the competition

each point of a discretized lattice is assigned a random variyith the other perimeter variables. By using these effective

able, whose value is extracted from a flat probability density densities we are able to map the extremal IP dynamics onto

Then, one chooses a seed point from which the dynamicgn annealed stochastic process, where each variable is as-

starts. At the first time step the nearest neighbor of the seesigned a growth probabilitgthe probability to be the small-

with the smallest variable is chosen and added to the invadest one, which decays to zero as trage of the variable

ing cluster(extremal dynamigs New variables are added to tends to infinity.

the perimeter of the cluster, and so on. The RTS method allows us to develop a comprehensive
Irreversible dynamical models with quenched randomand systematic theoretical scheme for extremal dynamics

variables, such as IP, cannot be addressed by the fixed scdtee RTS-FST approaghwhose essential points follow.

transformation method6,7] or by any other microscopic (1) Quenched-stochastic transformation.

theory. Recently a general method to deal with quenched (2) Identification of the microscopic asymptotic dynam-

extremal dynamics has been proposed, called run time statigs. This point clarifies the self-organized critid®00 na-

tics (RTS) [8], or quenched-stochastic transformation, alongture of the problem.

with ideas introduced in Ref[9] by Pietronero and (3) Identification of the scale-invariant dynamics for

Schneider, in a preliminary attempt to apply the fixed scaléblock variables. This point elucidates the nature of scale in-

transformation(FST) approach to IF6,9], and then deep- variance in the problem.
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54 THEORY OF EXTREMAL DYNAMICS WITH QUENCHED . .. 1407

(4) Definition of the stochastic scale-invariant local Avalanche of size
growth rules corresponding to the mapping of the original o / s=At
problem. This clarifies the origin of avalanche dynamics. - N

(5) Use of the above elements in the FST scheme to com-
pute analytically the independent exponents.

This project has already been carried out successfully to
describe the self-organized critical state of the Bak and
Sneppen model4] via a real space renormalization-group
(RG) approach 10].

In this paper, after a detailed discussion of RTS theory,
the RTS-FST approach is developed to compute analytically
the fractal dimension of invasion percolation with and with-
out trapping and of directed invasion percolati@iP). The
avalanche size distribution of IP at the fixed point is also
investigated and the critical exponentis computed, using
the RTS approach. All the analytical results we derive are in
very good agreement with numerical simulations and scaling
argumentdg1,11,17.

In particular, in Sec. | we introduce the IP model and
describe the RTS theory, its essential concepts as well as its
detailed mathematical formulation. The derivation is illus-
trated by simple examples. We shall stress the relations be- ) ) ] ) )
tween a quenched process based on extreme statistics and F1G. 1. The dynamics of invasion percolation consists of local
stochastic process. This will enable us to understand properfy)2croevents, the avalanches, which are sequences of elementary
in which sense the stochastic process of the RTS correspon éents causally and spatially connected..ln the figure, an avalanche

at surrounded by a dotted linstarts at timey and evolves for a
to the quenched process.

In Sec. Il we first review the phenomenology of invasiontime s. Attimety+ s_+1 the aqtivity is_ transferred to another region
e of the cluster(the thick bond in the figupe
percolation and related models. We stress how the RTS cap-
tures the essential features which emerge from this picture. = o
These are mainly related to the memory effects which aris®f o With the smallest random variable,, is added to the
in its dynamics. Memory provides the main mechanism forclusterCi—, and its nearest neighbors are added to the pe-
both self-organization and the generation of fractal strucfimeterdCi—,. At the next step the bond with the smallest
tures. Then we develop the RTS-FST approach for IP, witfandom variable among the perimetgh_, of the cluster is
and without trapping and DIP. Special attention is devoted t$€lected and added to the cluster, and so on. At any time step
the identification of the scale-invariant dynamics of IP and tothe variabless; on the perimeter are tested to find the small-
the implementation of the infinite time limifreezing condi- €St one. The main characteristics of this model follow.
tion for fractal3, the fundamental ingredients of the FST (1) The dynamics, given a realization of the disorder and
approach, which needs a different implementation for exthe seed bondy, is deterministic
tremal dynamics with respect to other stochastic growth pro- (2) Self-organization The process spontaneously devel-
cesse$6]. ops a scale-invariant structure with critical properties. In the
In Sec. Il we compute analytically the exponent of thelimit t—o both long range space and time correlations ap-
size distribution of critical avalanches for IP. Our result is inPear.
very good agreement with numerical simulations. (3) Avalanchesthe asymptotic dynamical evolution con-
In the final section we summarize the main result ancsists of local macroevents, composed by elementary growth

discuss possible extensions of the methods developed in th#eps casually and spatially connected, called avalanches.
work. When an avalanche stops, the activity is transferred to an-

other region of the perimeter, leaving a structure with the
fractal properties of the infinite percolating clusteee Fig.
ANBIES);TORCEHMAA;TEYSQ('\)A(I;SSSES 1). Avalanches show scale-invariant size distribution, as a
consequence of long range temporal correlations in the dy-
A. Model and formalism namics.
. . . This model, which describes the dynamics of invasion
As a model for quenched dynamics with extremal statis- . : .
. . . . . . . percolation, can be easily generalized to other extremal mod-
tics, we will consider invasion percolation. The model is
: ) . -~ els [8], such as the Bak and Sneppen mofi] or the
defined as follows. To each bond of a discretized lattice IS5 heppen model for aquenched surfafsk
associated a random variakdgwith flat probability density PP q
p(x)=1. Without loss of generality one can define then
the range[0,1]. The dynamics evolves by occupying the
bonds of the lattice. The values of the random varialeles In the transformation of the quenched dynamics into a
are extracted from the(x) before the dynamics starts. At stochastic one, an essential requirement is that the statistical
time t=0 one seed bong, is chosen, from which the inva- weights of the realizations of the quenched process are cor-
sion process starts. Then, at tirre 1, the nearest neighbor rectly reproduced by the corresponding annealed stochastic

t=to +At +1

B. The quenched-stochastic transformation
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o 1 (1) At t=2 the sitels grows. The two allowed order

i relations are(a) €,<€.<€ where i=2,3,4,6,7; and(b)
([}4 ‘o _____ (f)z 0 6|5<e|1<6|j where j=2,3,4 and simultaneouslys|5<e|k
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O @ e o (2) At time t=2 the sitel, grows. This can occur if

€,<€,<e€, wherei = 3,4,5,6,7, leading to the following ex-
pression for the probability,:
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Qfg P,= fodqlf de|2(1—e,2)5=j—2~—~0.0238. 3

: o
fs i I L
* —— - O Let us now switch to a generic stochastic process. This is

v based on the following elements) a set of time-dependent

£ o h - dynamical variable$,; ;} for each bond of the lattice;(b)
ONNINY SU— o}

a growth probability distributioGPD) for the single growth
step{v;}, obtained from the ; ;} and their time evolution
rule; and(c) a rule for the evolution of the dynamical vari-
ables#; \— »; 1+1. For such a stochastic process, the statis-
dical weight of a realization of steps of the dynamics is just

b

O
O------

FIG. 2. Scheme for the calculation, with the exact method, o
the weight of paths of length 2. .
dynamics. It is therefore worthwhile to analyze in some de- WS(t):nHl Vitmn> “)
tail how one can evaluate the probability of a realization, or

“path,” of the IP dynamics. A rigorous way to do this is to \yherej(n) is the site selected by the dynamics at time
impose all the order relations between the random variables Therefore in order to map IP onto a stochastic process we
of the bonds compatible with the growth history of the pathp5ye to(a) find the correct dynamical variabléthe 7, ;'s);
and then to average simultaneously over all the realization(:‘b) determine the GPB; .} in terms of these variablés; and
of the random variables. The probabillty, of the path will (¢ find the rule by which the dynamical variables are up-
be dated. This is exactly the program carried out by the RTS
theory.
Wq:f dej Pod€j,): - f de; poo € ) flej,, - .. &), We can get an insight into the essence of the question by
1 ’ 1 | ’ | 1 | . . . .
) gnalyzmg the simplest p(_355|ble process. We s_tar_t with two
independent random variablég ,X, uniformly distributed

in [0,1] and we eliminate the smallest, for examp}§,.
Clearly the probability thaX,;> X, is 1/2. Then, we compare
the surviving variableX; with a third, uniform, random vari-
able X3 and, again, we eliminate the smallest one. At first
sight one could say that, as before, since both variables are
uniform, the probability thatX; survives again is 1/2. A
more careful calculation reveals that this expectation is
wrong. In this case we indeed need to evaluate the probabil-
ity that X;> X3 given thatX;>X,. This, using the rules of
conditional probability, reads

where{j,, ... ,j;} are the bonds participating in the forma-
tion of the path,pgo(X) is the probability density of the
variablese;, and f() is a combination of step functions
0(€i—€;) which implement all the possible order relations
€;> €; between the variables. Let us compute, for example
the weight of the paths of length 2 shown in Fig. 2, for a
model with “site” growth rule, withC, being the siteO,
dCy being the four nearest neighbors@f {l,,l,,l5,l4}, and
with densitypg o(X) =1.
Attime t=1 we let the sitd; grow and after this the sites
{Is,lg,17} enter the perimete#C; (Fig. 2). _ P(X,>X3NX1>Xy)
At time t=2 there are 2 possibilitieg1) growth of one P(X1>X3)=P(X;>X3|X1>X,) =
new site betweefls,lg,l7}; and(2) growth of one old site P(X1>X,)
(frustrated one timebetweer{l,,l3,l,}. Now we compute
the probabilities of pathél) and (2). =

wIinN

: ®
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before selection of the smallest variable edC;. Bonds which are not in the clustéf or in JC; will

; maintain their original distributionp; {(x)=pgdx). The
evolution of the RTS; (x) will start at the timety when it
first enters the set of perimeter bonﬂso, and will stop only

when, if ever, at timé; the bond will be selected being the
one with the minimum variable among those in the perimeter
9Cy, - Indeed, fort>t; the bond will belong to the cluster

P (x)

1 2 C;, and the process will not gain any more information on
X the statistics of the variable, .
(a) Therefore the distribution og; at timete[tg,t;) will

depend only on the number of timks-t—t, it has not been
selected, or equivalently on the “ageK of the bondi,
which is the time it has spent in the perimeter. More pre-
cisely, bonds that have been in the perimeter for the same
numberk of temporal steps have the same dynamical history
and will have the same RTS, independently of their location
on the perimeter. This motivates the introduction of an alter-
native notation for the RTS and for the GPD in terms of the
indexk:

after selection of the smallest variable

P, ()

(b) (©) Pit(X)=Pyt(X) and  v; =gy
. t -
FIG. 3. Conditional evolution of the effective densities for the VieNmnet-kCnNIC—k-1, (6)

two-variable case(a) The density of variableX; and X,, before — . . .
the selection of the smallest one is uniforfb) Density ofX, after ~ WheredC, indicates the complement €, the entire lattice

one step of the extremal dynamiés) Density of X, after one step m.inus the interface, and th_e setin Eﬁ) contains_ the bonds
of extremal dynamics. with agek, those entered in the perimeter at tinek and
which still belong to the perimeter at tinte Furthermore, we

where we used the notatid*(A|B) for the probability of the shall defi'nenk,t as the number of perimeter bonds th.at have
eventA given thatB occurred and®(ANB) for the prob- been on it forkk temporal steps_. The sum of ; overk gives
ability of occurrence of botth andB. The problem with our the total number of perimeter bonds at time
“first sight” argument is that the variablX; is no longer Ek”k,t:_Nt:|(9,Ct|- . .
uniform when it is compared wittX;. The information Having defined the RT%; «(x) as our dynamical vari-
X,>X, changes in a conditional way the probability density 2P!€S, we are now in a position to evaluate the growth prob-
of X;. Indeed the probability,(x)dx that x<X;<x+dx ability dlstrlk_)utlon. Again this amounts to a generalization of
must now account for the fact thaX,<x. Since the_-above simple example, where it was shown t.hat the prob-
P(X,<x)=x for a uniform variable, a trivial calculation ability thatX1>_X3_ com_JId be evaluated correctl_y in terms of
yields p,(x) =2x (Fig. 3. Note that with this distribution of e updated distribution oK, . Indeed, assuming the RTS
X, one can correctly calculate the probability Pit(X) are known for alli  C, we can evaluate the prob-
P(X,>X3)=2/3 as given in Eq(5). On the same footing, f’ibl|lty that the dynam_ms of IP will select the §|meTh|§ is
one can verify that also the distribution & is no longer indeed, if the S'Fe' has bee_n testeck  times, Jus_t
uniform, but it isp,(x) =2(1—x) (Fig. 3. Qualitatively, the  #kt= Vit= P(€&=MiNn . €m), which reads(see Appendix
event X;>X, decreases the probability thxy has small A for detaily
values. On the contrary, the probability thé} is small is L
enhanced. _ _ gt~ dok

The IP process can be thought of as a generalization of Hict Jo dx pk’t(x)l_e[ [1=Pou()] ’ )
the above simple process, to the case where more than two
variables participate in the selection and elimination of thewhere P, (x)= [3py.(y)dy. The{uy,} is the GPD of the
smallest one. Loosely speaking, a variableexperiences a stochastic process corresponding to our quenched dynamics.
frustration each time another variabkg is found to be This is correctly normalized, as can be explicitly checked
smaller than it. The message of the above example is th&8], and Eq.(7) is an exact relation. The selection of one
this frustration is recorded in the distribution of the variablebondi with this GPD has the same effects, which were dis-
€. As a result of repeated comparisons, the distribution otussed for our simple example, on the distribution of the
the variables on the interface evolves in time. These distrivariable ; which has been selected and on those of the
butionsp; ((x), which we label with the bond indeéxand the  bondsj which remain on the perimeter set. The generaliza-
time t, can therefore be taken as the dynamical variables afion of our simple example is carried out in detail in Appen-
the stochastic process we are looking for, and will be redix A using the rules of conditional probability. In practice,
ferred to as the run time statistics. The Rp:§(x) changes however, this procedure may require some approximations,
from timet to timet+1 only for bonds which are id@C; . because, depending on the specific problem, certain space
Indeed the minimum potential is chosen among éhéor i correlations between variables may be neglected, in order to
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1 2
J dx
8|5

which therefore yields

3

define the stochastic process as sequefritil We are going J‘l
405

to discuss this point in more detail later on. The result is that’| t=2=
the densitym, ;(x) of the grown bond can be written as

jldxé[l—(l—x)s] 105

8|5

d8|
0 5

pk,t(x)]_;_[ [1- ngt(x)]”ﬁ,t* Og.k

Myi(X) = s , )

P]_: Vll,t:1v|5,t:2: ;_170 =(0.0580.

. ) . . ] An analogous calculation fdP,=v; _,v|_ -, gives
while the density of a perimeter bond with ageat timet ! 2

becomes P,= 1635 =0.0253.
Posiis1(X)=py t(X)J'X Mit(Y) dv. (9) Comparing these with the exact resul®;=0.0595 and
’ ' 01-Pyy) P,=0.0238, we find a small discrepancy. In spite of the care

. , " ) paid to account for all the statistical information stored by
Equations(7)—(9) give the conditional evolution of the ef- he process, using diligently the rules of conditional prob-
fective densities of the perimeter variables. _ ability, we cannot recover the exact result for a path of only

At this point, we can analyze the situation at time1,  two steps. The roots of this discrepancy can be traced back to
after the growth at time. The bond is added to the cluster; the very beginning of our discussion and lie in the very defi-
its RTS does not -e\./OIVe anymore. We have seen how thﬁ|t|0n of quenched and stochastic proce{g@ Note' how-
RTS of the “surviving” perimeter bonds evolves. Then, ever, that if one had more variables than just two the discrep-
No+1 bonds with density . 1(X) =Po o(X) enter in the pe-  ancy would be much smaller. The present example is a single
rimeterdC,, ;. The time evolution oh,, for 6+0 is given,  gne in which this effect is enhanced.
for IP, by Let us have a closer look at Ed4) and(4). When Eq(4)

n —n. 8 (10) is used with the RTS to evaluate the probability of a path, we
orit+1— ot ko discover two main differences.

In summary, given the dynamical variableg,(x) at time (1) First of all W in Eq. (1) does not have the form of a
t, we can compute the transition probabilities from a con-Product. The integrals in Ed1) cannot be factorized into a

figuration of IP at timet to all the accessible configurations Product of single step transition probabilities. This is clearly
attimet+1 by Eq.(7). Using Eqs(8) and(9) we can update eV|.dent in Eqs.(2) and (3) al(eady for a path of two steps.
the dynamical variables and fingl ;. ;(x). We can repeat This means thait is not p055|b_le, in general, to map exactly_
the same procedure for the next tme step, and so on for a quen_ched extremal dynamics into a sequential stochastic
subsequent step. So, Eq3)—(9) accomplish our goal of @YNamics

describing a quenched process, based on extremal dynamics, (2) Each disorder variable; is integrated only once in
as a stochastic process with cognitive memory. W, . On the contrary, Eq(7) implies that each variable is
The use of the interval0,1] or the choice of uniform integrated over at each time step of which it partakes. There-

initial probability densitypg«(x)=1 does not influence the Or€ the expression ol resulting from Eq(4), would con-

geometrical and dynamical properties of the growth procesd@in many integrals on the same disorder variagle This

This results from the invariance of the above equations undetY99€sts that in the RTS process the disorder variables are

the transformatiorf Xy py (y) — X that maps a general den- not fixed as in the quenched process. The variables involved

. : in the dynamics, those on perimeter bonds, are replaced at
SIt>|/tpig’oi(r)l(gtr(ijr:;ttci)vtehZtutrmgr?oiirt‘% use the RTS in order to each time step by new variables with different statistical
compute the weights of the ordered paths of Fig. 2. A COmproperties. This procedure captures the essential features of
parison with the exact results of Eq®) and (3) yiéldé in- f[he original c.iynamics. with quenched va_riables. Its prac;ical
deed a direct test of the validity of the RTS and of its ap_lmplementatlon requires certain technical approximations

proximation scheme. Using the RT®, and P, are the Wh?Ch’ howeyer,_ can be ql_Jantitativer_ controlle[d4].
product of the probabilities of the singlélstep events composst”c“.y speaking it IS not pqssmle to Obta'F‘ a sequential sto-
ing the path. For the first pattFig. 2, Py= v, v (. chastic process by integrating over all variables at each time
9 pati. _ PaltFg. 2, Fa=n, i=1¥i50=2 gen The RTS provides the sequential stochastic process
where v -, is evaluated Dby observing that \hich pest approximates the quenched dynamics. We have
i, o(X)=PooX)=1 withi=1,2,3,4, and applying Ed7): reasons to believe that tirinsic approximations contained
in the RTS improve when the system size becomes larger,
—fld 3 1 and vanishes in the thermodynamic linfit4,13. Even
Vip=1= ) ei,(1=&)°=3. though at the moment we have no definite proof of this, we
note that the successg8,10] reported by the RTS in cor-
In order to find the probability of the second step we need taectly describing the properties of extremal dynamics pro-

update the RTS offy,l5,l, using Eqs.(8) and (9): cesses, including those to be derived in the rest of this paper,
strongly support this belief.
p|i't:1(X)Ep1’1(X)= 4[1-(1-x)°], =234 We shall return later to the qualitative features which

emerge from the RTS dynamics; for the time being let us
while the new siteds,lg,l; have densitypgo(x). Using  summarize the dynamical rules of the RTS process for IP.
again Eq.(7) we find The lattice bonds can be grouped in three classes.
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(1) Bonds being in dC; they have density wheren(s;p) is the mean number of clusters of sigeer
pi «(X)=pg(x) and we call themactive bonds bond, 1<7<2, and ¢>0 is associated to a cutoff size

(20 Bonds being in C; they have density s,=|p—p ’. This scaling relation becomes, g¢,
pi,t(x):mkto,to(x)' wheret, is the time at which they have

grown. We call thesadle bonds because after the growth P(s; pc)mi i

their density no longer evolves and it does not influence the s

evolution of the RTS of thactive bonds . .
(3) Bonds that are neither i, nor in ac;; they have For 2D bond percolation exact methodglS| give

density p: .(x) = X). because they have not participated 7=96/91. In Sec. III.an_ anglogoqs charact(_eristic guantity (_Jf
in the }(ljglht;rrzicspayg( t()J time. We callxzhemneutralpbondz IP, the avalanche distribution, will be studied both analyti-

During the dynamical evolution, the following transitions cally a”f’ numerically. . L I
will take place: The invasion percolation model with its variatioi®

with trapping and directed )Pis the main subject of this
paper. It was introduced in 198Q7], and it is really inter-

neutral—active, esting for the following reasons.
(1) It can be used, as in the original applicati¢hsl 6,17,
active—idle. to describe the active displacemétite dynamicsof a fluid

in disordered media by another unmixable fluid, under an
external or internal pressure.

(2) IP seems to reproduce, as we will explain further on,
in a self-organizedway, the geometrical properties of the

We now proceed to discuss a specific example.

Il. APPLICATION OF THE RTS TO THE STUDY percolating cluster. This is a particularly interesting situation
OF IP AND DIP because the same geometric entity arises from both an usual
critical behavior and a self-organized one.
A. Percolation and invasion percolation (3) IP can be considered as the paradigm of all quenched
We briefly introduce the characteristics of the “static” 9rowth dynamics with extremal statistics. .
percolation, as described, for example,[15]. Let us con- The main application of IP is to the phenomenon of fluid

sider ad-dimensional lattice, say a cubic one. We associatélisplacement of alefenderfluid in a porous medium by
to each bondor sit i of the lattice, independently from another fI_U|d,_ theinvader, un_rmxable W|t_h th_e defender,
each other, a random numbere[0,1] extracted with uni- when capillarity fo_rces prevail. The medium is often mod-
form probability densityp(x)=1. Then, we choose a thresh- eled as a _hydraullt_: network of thrc_Jats and pores. Here we
old value p and introduce this occupation rule: the bonds'epresent it as a bldlmenS|0naI lattice where the bonds rep-
with €,<p are occupied, and the others remain unoccupiedr.?se”t the throats_ and the sites represent th_e pores. To both
In this way, each bond will be occupied with probability sites and bonds is assouat_ed a random variable that repro-
and not occupied with probability (p). We say that the duces the pore and throat size. . o .
structure composed by the occupied bonds percolates if it A fundamental phenomenological quantity is the capillary
contains as a connected structure that spans the lattice in AHMPerc given by
directions. An important property of this model is that there
is a critical valuep.<1, for d>1, depending on the lattice C= L
coordination number and on the dimensidnsuch that for Y
p>p. one has a percolating cluster and B« p,. it does not . ] )
exist. One can show that the percolation model exhibits aghereu is the viscosityp the mean speed, andthe surface
p. a typical second order phase transition with one relevan§ension. It reproduces the ratio between viscous and capillary
parametep and a repulsive fixed point @i, . Near this fixed forces. The_,- regime we are mterest_ed in is reallzeq when
point the relevant quantities of the model show power lawC<1. In this limit the invader occupies the bonds with the
behavior with critical scaling exponenfi5]. The existence smallest size, that_ is to say, _the greatest surface tension. If
of an upper critical dimensiord.,=6 allows us to use gI30v§1_, we are in the quasistatic regime, an_d the dynam-
renormalization-group methods together with thexpan- €S coincides with '.[hat ofi the IP model prewouslly intro-
sion to calculate these exponents. QUced. From the_ point of view of fluid dlsplaceme];m_s the

Let us concentrate on the geometrical properties of th&V ader andﬁCt. is the interface between the two fluids. The
percolating cluster for two-dimension&D) bond percola- ~ Sites of the lattice that are extremes of a bond;ibelong to
tion. For p<p.=1/2 there is no percolating cluster, as we the cluster, as usually happens for fluid displacement in po-
said before. Fop>p.=1/2 the percolating cluster is com- fous media. The dynamics stops after the invader sfyers
pact withD;=2 and there are other finite clusters up to acolates the lattice. _
given size. Fop=p,= 1/2 there is an intermediate behavior: N order to avoid finite size effecf46] we are interested
the percolating cluster is fractal with;=%=1.8956 and N th(_e case of a very large lattice; _thls allows us _to co_n5|der
there are many other finite clusters of all dimensions, withouth€ limits r—ce and t—o, for which the scale-invariant

a characteristic size. The probability distribution of the clus-Properties of the model are well defined. An interesting phe-
ter size follows the scaling relation: nomenon occurring during fluid displacement is thatrap-

ping. Trapping occurs when the defender is totally incom-
P(s;p)=sn(s;p)=s""f[|p—pc|s’], (1)  pressible and a bubble of defender is completely surrounded



1412 CAFIERO, GABRIELLI, MARSILI, AND PIETRONERO

54

TABLE I. Fractal dimension vs order for IP without trapping
(D), with site trapping P}), with bond trapping P}), and for
directed IP DP'P). In the last two lines we compare the FST results
with known analytical and simulation values.

Ordern D¢(n Di(n D!(n DP®(n
- bobe - b b e (n) () f(n) P°(n)
. - y L7ea  Lrwe L7 Leozs
¢ ¢ ¢ ¢ ¢ ¢ 5 1.8228 1.7506 1.8066 1.6924
(a) (b) 6 1.8473 1.7599 1.8245 1.7081
7 1.8565 1.7642 1.8317 1.7189
FIG. 4. (a) Trapping | or trapping per site(o) trapping Il or 8 1.8645 1.7678 1.8372 1.7250
trapping per bondO and the dotted segments indicate the defende9 — —

1.8677

1.7697

(oil), while @ and filled segments are the invadgvatep. (b) is

more rare tharia), because a configuration verifyirig) will verify o 1.8.879 1.'7812 1:8544 1'.7444
(@) also, but the converse is not true. Analytical  $=1.898 =~1.748

Simulation ~1.891] ~1.8711] ~1.8411]
by the invader: the invader will no longer invade the sur
rounded region. This effect creates extra holes in the invadefonformal mapping applied to 2D Percolatigib)].
cluster, lowering its fractal dimension. There are two pos-’Series expansiof27].
sible definitions of trappinfl1]. In order to understand them ) ) )
we need to introduce the concept of edge connectedness of a Another rigorous result for IP is that the ratio between
defender cluster to the lattice edgéise defender cluster is Nt and the cluster madstends to a constant different from
connected if there is a path of defender bonds (and sitegjero[18:
connecting the cluster to the lattice eddéne two definitions N 1
of trapping follow. im ~t_ 2 Pe #0, (13)

(1) Trapping I (site trapping; a cluster of defender bonds oo L Pc
is trapped if it does not satisfy the edge connectedness con-
dition [Fig. 4(@)]. which depends on the critical threshold. The limit in ELR)

(2) Trapping Il (bond trapping a cluster of defender would vanish for any compact structure. Therefore @@)
bonds is trapped if it does not satisfy the edge connectedne#®plies that the clusters generated by IP are fractal. Indeed,
condition and it is surrounded by a closed path of invadetarge scale simulations of IRL1] give D'fpzl.89, which co-
bonds[Fig. 4(b)]. incides, within numerical accuracy, with the fractal dimen-

Trapping | corresponds to usual trapping in fluid displace-sion of percolating clusters g@t=p .
ment. Moreover, trapping Il is rare with respect to trapping I.  Finally it is seen that the dynamics of IP occursequen-

Most of the results obtained until now on IP with and tial bursts of activity which can be thought of as macro-
without trapping, except some8], derive from numerical events callecavalanches An avalanche is a temporal con-
analysis of large simulations of the procdd44,12. These secutive set of growth events causally and spatially con-
results concern mainly IP without trapping because trappingected to a first growth event. The distribution of avalanche
is a nonlocal, very difficult to handle, effect. duration is therefore the same as the distribution of the total

Let us start from IP without trapping. It has been demon-number of bonds involved:
strated that, in the limit of infinite lattice, the asymptotic
properties of the percolating cluster do not dependCgn
provided that it is finitgd 18]. In [17,1€ one defines a useful ] . ,
quantity, the acceptance profiéég(x), given by the ratio be- which reflects the critical chgracter of the dynarmcs. These
tween the number of bonds @@ with variable ranging be- results support the hypothe$6] that IP asymptotically re-
tweenx andx+ dx and the total number of bonds with vari- Produces the geometrical properties of the infinite cluster of
able betweem andx+ dx in C,UdC, . The functiona,(x) has  critical percolation. _ _ _
in the limit t—o the following behavior, obtained both by 1N Same picture applies to IP with trapping: the accep-

simulations and by rigorous demonstratidig]: tance profile, though more slovyly and asymmetrically with
respect tq, [1], tends asymptotically to Eq. 12. The surface

to volume ratio, also, does not vanish, and the geometry of
the clusters turns out to be described by a well defined value
of the fractal dimension. Simulation resul{dl] give
D¢=1.82 for site trapping, an®;=1.86 for bond trapping
wherep, is the critical threshold of static percolation. Equa- (see Table). Note that trapping effect, in both cases, adds
tion (12) means that, asymptotically, almost all the bonds inempty zones to the growing structures leading to a fractal
the perimeter with variable less thag will eventually grow,  dimension lower than that of IP without trapping.

and almost all the bonds with variable larger thmrwill not This general picture also emerges from an analysis of the
grow. This is a proof of the correspondence between IP an®TS equations. The statistical properties of the active vari-
static percolation at the critical point. ables on the perimeter are described by the histogram

D(s)~s™7, (14

lim a;(x) = 6(pc—x), (12

t—ow
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®@(x) =(h(x))/(Ny), wherehy(x) is the histogram for a time and length scales are related by a power faw ).
given realization of the disordeN; is the number of active However, the nature of screening here is quite different from
variables at time, and( ) is the mean over all realizations that in the DBM model, where it was directly related to the
of disorder. Theb(x) function, apart from normalization, is geometry of the cluster. Here screening occurs in time, irre-
the complement of the acceptance protil¢x). Using the spective of space, as a consequence of the accumulation of
RTS equations one can write the following histogram equafrustration events in the RTS of the random variables in the
tion for the time evolution ofb(x) [8]: perimeter of the cluster.

It is also worthwhile to comment on the specific value of

B 2 (on a. One can do this by defining an oversimplified RTS gen-
HPi(X) =B P(x)| 1~ wt+1<bt(x) ' (15) eralized dynamics in which Eq7) is replaced with
where Q,=(N,), o;=(Ni;1—N,), and 8 is a function of M= Mog(k+1)~¢ (16)

Q);. The solutiond(x) of this equation becomes asymptoti- _ _ o N _
cally lim,_...®(x)=[1/(1-p)]6(X—p.), where p, is the and uo, is defined through the normalization condition. It is
critical threshold of the original extremal dynamics. This ot difficult to realize that for<<1, the process results in a
clarifies the SOC nature of the problem. A similar equationcompact cluster. Indeed, the probability that a bond does not
describing the SOC behavior of extremal dynamical modelsgrow after k events, TIX*1(1— uoj ), goes to zero as
the gap equation, has been obtained by Bdl. [4], based k—, which means that all bonds will, sooner or later,
on phenomenological assumptions. Our histogram equatiogrow.
is instead derived directly from the microscopic dynamics. ~ The memory screening is effective and generates a fractal
The mechanism responsible for the formation of a fractacluster only fora>1. For 1<« <2 the screening is “weak”
structure can also be readily appreciated. It is indeed knowwhereas fora>2 it is “strong.” The difference can be ap-
[17] that the feature of a growth dynamics which can pro-preciated by observing that far>2 there is a finite prob-
duce a fractal structure is the presencesofeeningat all  ability that an infinite avalanche occurs. We skip the deriva-
length scales. Let us borrow the dielectric breakdown modeiion of this result, which totally parallels the arguments used
(DBM) [19] in order to illustrate this point. Here the Laplace for a closely related modé¢R2], and stress that, if an infinite
equation conspires with the growing cluster in such a wayavalanche starts at timg on the bond,, none of the bonds
that the probability of growth on a site drops exponentially towhich are indC; \{io} (\ means exceptwill ever grow in the

zero with its distance from the tips of the structure. Thisfyture. This means that they can be considered as frozen. For
means that whole regions of the perimeter of the cluster cat< o <2 infinite avalanches occur with zero probability, the
be considered, to a good approximation, as “frozen,” whenscreening effect is weak because one can never exclude the
the probability of the growth events in this region becomespossibility that a bond which has waited for an arbitrarily
very small. Furthermore, the screening effects[a@] at all  |ong time k on the perimeter set will be selected at some
length scales, as suggested by the scale invariance of thgture time. This will reflect in the peculiar implementation
Laplace equation. Therefore the process leaves similar frozefiat the freezing conditiofi7] will have in the application of
structures at all length scales, i.e., it produces a fractal.  the FTS to IP and related models.

A crucial point in the practical translation of these obser-  Finally we note that this feature of the dynamics allows us
vations is that a growth process produces a scale-invariaifiso to appreciate the difference in the fractal dimension of
structure if and only if its dynamics can be described at allp with trapping in versions | and II. This difference is some-
(large enoughlength scales in the same way, i.e., if the what at odds with the general expectation that “universal”
process is characterized by scale-invariant dynamics properties, such aB;, should not depend on the micro-
Therefore, in order to understand a process which producegopic details of the dynamics. A trapped region in the first
fractal structures, it is essential to find its scale-invariant dyversion of IP with trapping would not be trapped, because of
namics [20,21,7. We shall examine in detail the scale- only one bond. To understand how this difference is “scale
invariant dynamiCS of IP in the forthcoming section. For theinvariant” one can imagine a process that' Starting from a
time being, we make some comments on the main qualitativgoim A att=0, encloses a region of si&® and reaches at
feature which is responsible for the emergence of screeningme t the site B, neighbor ofA. This region would be
effects in the dynamics of IP and therefore of its fractal proprapped in the first version, but still open in the second. The
erties. probability that trapping will occur also in the second version

The effective screening arises in IP from the memory efyg the probability that the bond—B grows. This will, how-
fects intrinsic in the dynamics. Qualitatively, we have Seenever, be of ordet™* because the age of the boAd—B is of
that a bond on the perimeter which has not been selected ffgert. The ratio of the probabilities of trapping of a region
a long time(i.e., a bond with a RTS index, or age-1) will ¢ sizeR in the two versions will also depend dhthrough
have very little chance of being selected. In other words, thg, power law. This represents a real “scale-invariant” differ-

probability u, « decreases as the agef the bond increases. ence petween the two processes which is expected to affect
This observation can be quantified by a crude approximatioR|sq the value of the fractal dimension.

which reveals thatu,~(k+1)" ¢, the exponent being
a=2 within the approximatio8]. A numerical test of this
relation confirms its behavior but results in a value of
a=1.35+0.05[22]. The lack of a characteristic time in this It has been showh20] that if a growth process has a
relation is at the very heart of scale invariance inlilRleed, scale-invariant growth rule and an attractive fixed point in a

B. The scale-invariant “global” dynamics for IP
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FIG. 5. Coarse graining of the lattice geometry. The eight-bond {gi}b B € B

configuration at left is rescaled into the two-bond configuration at o VOX, :.<B )
right. i%x
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given space of dynamical rules, this scale-invariant growth 1 T 1
rule will be of bond type even if the rule at the microscopic (a) (b)
scale is of a different natur@.g., a site rule, or a rule with
diagonal bonds Here we will address, starting from the FIG_. 6. Renormalization scheme for the extremal_ dynani@s:
above considerations, the problem of the individuation of thelynamics at the smaller scalé) the rescaled dynamics. The two
scale-invariant dynamics for IP. paths leading to ceB (respectlvely, to pointg, ,x,) are cpmposed
Let us start from a microscopic bond rule. We consider?Y @ Set of quenched variablési}, ({«}y/). Each path is charac-
how the dynamics changes under a scale transformatioft/ 264 by the largest variable in the ssaddle point The path
First of all we define a coarse-graining procedure, shown ir\%NI'[h the smallest s_addle point is the best one and will compete with
Fig. 5: the eight bonds in the left part of the figure are he best path leading to cel.
mapped into the two coarse-grained bonds at the right. Wehe competition between quenched variables is actually inde-
consider the renormalized dynamics described in terms gbendent of the initial distribution. This means that, at any
effective quenched variables that refer to the coarse-grainestale, we can always consider for this distribution the flat
bonds. We call the random variables for the bonds at thene. So, we conclude that the coarse-grained dynamics is

starting scales;, i=1,...,8 and theeffective variables of intrinsically scale invariant.
the rescaled bonds(”, j=1,2. Thee!" are functions of The only assumption made in our RG scheme is that of
the ¢, neglecting certain correlations between block variables. A

. . _ full RSRG treatment of the dynamics of IP would allow us to
¢V=Fj(e.i=1,....8 with j=12, (17 go beyond this approximation and to assess whether the
which would be the outcome of a real space renormalizatiogventual correlations vanish in the asymptotic scale-invariant
group (RSRG treatment of the dynamics of IP without pro- dynamics{13].
liferation. It is enough in this case to identify the scale- ) )
invariant dynamics from general considerations, similar to C. Fixed scale transformation for IP:
those used in Ref10]. The “scale-invariant local dynamics
In passing from one scale to the other, we require that the We have seen that IP can be described in a way similar to
coarse-grained variables and their dynamics keep the rek stochastic growth with annealed disorder. Once we have
evant aspects of the process at the smaller scale. In this wawapped IP onto a stochastic dynamics using the quenched-
the scale transformation eliminates only the irrelevant asstochastic transformation we can compute its fractal dimen-
pects of the dynamics. sion D¢ using the fixed scale transformation approach. This
In the particular case of IP, the dynamics is determined bynethod is based on the possibility of dealing separately with
the extremal statistics: the bond with the smallest variablehe two limits in which the fractal properties of such a struc-
grows. It is natural to require that this extremal property ofture are well definedr —e« andt—~ [7]. The former is
the dynamics will be retained at all scales. In other wordsjntroduced using a scale-invariant growth rule, the latter usu-
we shall determine thg;( ) in such a way that the dynamics ally (as for DBM) is introduced considering the growth in a
at the smallest scale can be described, at the larger scale, frgzen region of the structure.
the growth of the coarse-grained bond with the smallest vari- While RG approaches are based on the scale invariance of
ableefl). In Fig. 6 we show a coarse-graining procedure forthe process under rescaling of the relevant parameters, FST
extremal dynamicklQ]. In the left side of the figure there are is based on the invariance of the statistical properties of the
two paths leading to ceB (respectively, to pointx;,x,),  fractal structure under translation, at a fixed scale, in the
composed by a set of quenched varialjlg;, ({€;},). Each  growth direction of the process. The FST approach is devel-
path is characterized by the largest variable in théssmddle oped in two steps.
point). The path with the smallest saddle point is the best one (1) One takes an intersection of the structure with a line
and will compete with the best path leading to @ellAt this  orthogonal to the growth direction. This intersection is
point, we identify the block variable, (eg) with the saddle treated as a random Cantor set with fractal dimension

point of the best path leading to the corresponding cell:  D{=D;—1, because of the theorem of the additivity of the
) codimensiorf23]. The generators of the Cantor gsée Fig.
en=Fal{eifa]=min[maxei},]. (18 13) have weight<C; andC,, with C,+C,=1. They are the
a I

basic configurations for the intersection set and define its
This should be compared with the corresponding block varistatistical properties. In fact, the fractal dimensiDgr can
able eg for B. Of course the distribution of, and eg will be written ag24] D¢ =In(C,+2C,)/In2.

now become rather complex. However, it will be the same (2) One computes the conditional probabilities to have a
for all the coarse-grained bonds. We have seen before thabnfiguration of typé on a given intersection set followed at
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extended region surrounding that point with low values of
the field, too. This characteristic allows us to consider only
the bonds in the growth column to deduce the fractal prop-
erties of the structure. In fact, this column is thought to be on
the surface of such a region of the structure. In IP, freezing is
a probabilistic phenomenon, referred only to single bonds.
O O So, it is possible to have a frozen bond on the perimg&ter
bond with a great frustration inde® near to an active bond

V1 0| AY (small §). This is also the reason the perimeter has the same
’ 2,0 fractal dimension of the structure itself.
#7_ How can we deduce the fractal properties of the structure
l generated by IP, in the limit—o, considering explicitly

question we need to find the scale-invariant “local” dynam-
ics. The scale-invariant growth rule we have found for IP is
the rule of the “global” dynamics. Using this rule together
o _ o with the RTS approach, we can evaluate the statistical
FIG. 7. An example of initial con_flguratlon in the growth col- weight of any path generated by the IP process, at a generic
umn for the FST scheme of calculation. scale. However, in order to use the global growth rule it is
necessary to know the whole history of the process from the
initial instantt= 0. In fact, the probability of one growth step
of the path depends on the RTS of every bond in the perim-

2X2 matrix, called FST transfer matrikl. The relation  oter of the structure, and the form of the RTS is determined
between the weight€,,C, of the basic configurations, on by the past growth history.

which the FST matrix acts, at the intersectignand those at On the other hand, the FST approach is based on the

the intersectiork+1, is given by evaluation of the statistical weight of paths inside the growth
{C_(k+1)}: M{C_(k)} (19 column, considering explicitly only the bonds inside this col-

! v umn and the others in the perimeter just in a mean way. So,
to apply the FST approach to IP, we have to modify the RTS
equations in such a way as to be able to evaluate the “tran-

M, 7t sition probabilities”M; ; related to the FST method, consid-
1+ M_) : (200 eringexplicitly only the bonds inside or near the column and
21 implicitly the others. In doing so we shall recognize the

Equation (20) gives the asymptotic statistical properties of Scale-invariant local dynamicghrough the definition of

the intersection set. In fact, thel; ; can be expressed as Scale-invariant asymptotic avalanches .

lattice path integrals over all the growth histories of the pro- We consider a growth column on the perimeter of the

cess leading to a configuratiorfollowed in the growth di-  already infinite structuret{-o). We are going to show that

rection by a configuratiof. FST performs the calculation of the RTS dynamics which corresponds to tioeal scale-

the M, ; with the simplifying assumption that growth occurs Invariant dynamics, as in Ref10], is obtained by(i) con-

only in a “growth column” of indefinite height, with a two- Sidering only bonds inside the growth coluniii) imposing

site basis, and with a “frozen” starting configuratiorfFig. ~ that any “active” bondi in the column can grow only if the

7). The scheme of calculation can be refined with the introvalue of its variablee; is less tharp.=1/2; the idea is that if

duction of fluctuating boundary conditions and of the empty€i>Pc for all the bonds in the growth column, growth will

configurations[25] that extend the growth process outside OCCUr at some other place in the structure outside the growth

the growth column. The FST has been applied to a variety ofolumn; and(iii) requiring that the largest of the variables

models, giving very good estimations of their fractal dimen-Which participate in the growth process, which is the variable

sion [7]. However, in order to obtain scale-invariant resultsOn the initial bond, has exactkt=p.. This local dynamics

one has to use the scale-invariant dynamics of the process fierives directly from the global dynamics. To see this it is

the calculation of thev; ; [20,21]. sufficient to observe that in E@7) we can separate, in the
Now we try to define a FST approach for IP based on thoroduct inside the integral, the contribution from the part of

use of RTS. In the peceding subsection we have seen how the interfacei(;” inside the column, and that over the bonds

deal with the limitr—, i.e., how bonds can represent ke aCc™" outside the column:

“coarse-grained” lattice elements, using the *“scale-

invariant growth rule.” Since the nature of “freezing phe- [T pi(x)dx

nomena” in IP is quite different from that of DBM, we have e fo f)l(.pi,t(z)dz

to introduce the limitt—o in a peculiar way defining a

“local dynamics.” While in DBM the nature of freezing is where

referred to regions of the lattice, in IP it is referred only to

single bonds. In fact in DBM freezing is an electrostatic 1

phenomenon, so if a point has a very low value of the elec- =11 f pjly)dy (22)

trostatic field it is reasonable to think that it exists in an jeactt Ix

‘ "V30 only the bonds inside the growth column? To answer this

the next intersection set by a configuration of type
(i,j=1,2). These conditional probabilitie#;; form a

The fixed point solution of19) is

C =

Z"(x)Z2"(x), (22)
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andZi”(x) is analogously defined. Now, if the bome &Ci” temporal sequencef growth events which begins & and
actually grows and its value is;=p., we can interpret ends when a bond that was on the perimdtefore t, will
Zfﬂl(x) as the probability that the minimum variable outside grow.

the column is larger thar. It follows straightforwardly that ~ From this definition one deduces that every growing bond
7% (x)=1 for x<p.. Indeed the minimum variable in Can be considered the initiator of an avalanche. In particular,

&C;)ut will surely (i.e., with probability 1) be larger than the whole structure can be seen as the avalanche related to

€,=p, in view of our assumption for the event at tirheOn f[he first grown bond at=0. This means .that any avalanche
the other hand, if the cluster is very large{=), we can S made by other subavalanches in a hierarchical order. The

appeal to the properties of the histogram distribufigpand ~ Numbper of subavalanches in which we can decompose an
conclude that there will be variables ™ whose value ~2valanche is obviously equal to its size _

will be arbitrarily close top.. In fact, the histogram distri- Let us analyze the properties of an avalanche taklng place
bution for the perimeter variables of an asymptotically large?" € perimeter of the infinite structure—{oc). In this
structure is a step function. This can be proven rigorously ad™Mit If the initiator has a variable; =p, we can extract the

a property of the asymptotic structyre8]. The RTS method statlst|cs_ of this avalanche process from E@@3)- (25_)

[8] allows us to follow the evolution of the histogram and to WNereéPc is replaced byp. Itis obvious from these equations
show that the step function corresponds to the attractor fo trhat the size of the avalanche and its statistical properties

the dynamics of the system. Therefore, in the litnitec, we Set;:)endsltonli on thel;’atl;'et tﬁ 0:; trt'eb\’?”abli ':)hf the |n|—f
can conclude thaizX"(x)=0 for x>p.. In summary iator i. It is known[12] that the distribution of the size o

. avalanche has scale-invariant properties only=fp.. Ava-
Z%" (x), ast—o, tends to a step function gi.. When . S ¢
: ' ! : . . lanches withp>p,.., in view of the acceptance profile, can be
inserted in Eq(21) the integration variabl& runsonly up to o '
p., and the cqo(ntr)ibution fr%m the bonds outside t)rlme F2:olum neglected as really rare everiindeed these would have an
(o3}

Nnfinite duration, and on the grounds of our previous discus-
disappears. Therefore, going back to the RTS varidble _. ' :
Egs. (7)—(9) for the local dynamics read sion can be neglectedOn the contrary, avalanches starting

with p<p, will have a finite lifetimesy~|p—p.| ~ . These

P cannot be thought of as scale-invariant events. Only for
'“k't:j dx W’I(X)H [1—P0,t(x)]”9vt"50vk, (23 p=p. will the process defined by Eq&23)—(25) be scale

0 0 invariant. If the initiator hag;=p., the process will sample
its duration out of a scale invariant distribution, and therefore

PO [1— Py (x)]er %ok it will be, itself, scale invariant. This justifies the use of Egs.
' 0 ' (23)—(25) in the application of the FST to IP. This local
My ((X) = Loex for x<pc dynamics has the following properties.
(@) The dynamics is defined only in terms of the local
0 for x>pg, variables inside the growth column. The presence of the in-

(24)  finite perimeter enters only via the variabég=p. of the
initiator. In this way we do not need to know the RTS of the

and other perimeter bonds.

(b) The growth probabilitiesy; ; s, calculated at each

Pg,(X f dy Y1z P for x=p, time stepty+s, are not normalized to 1, that is to say,

0, t( ) 3 each, Vit +s<1. This implies the existence of a probabil-

Po+1t+1(X)= ) ore
( )fpcd M) for x= v
p(i,t pC 0 yl_Pe,t(Y) /p01
(25 W’[0+s(8i) J dxp;, t0+s(X) =0 (26)

i E(?C
wheren,; is now the number of the bonds, inside the col- o
umn, which have agé. that the process stops. In this case the activity moves to
We need still to motivate the choice ef=p. for the  another region of the perimeter. This is a relevant feature of
initiator of the local process. Note that, up to now, we havethe local avalanche dynamics, and it reflects the dynamical
only imposed on the local dynamics the-«~ condition, evolution of IP.
which implies that the local event is occurring in the pres- Inthe FST calculation scheme for problems such as DBM
ence of an “infinite” cluster. The requirement that=p.  the growth probability distribution is usually normalized in
results from imposing scale invariance on the local dynamthe growth column in order to allow the growth interface to
ics, i.e., from the limitr —oo [7]. reach regions far from the starting one. This allows us to
In order to see this, let us recall the definition of ava-reach more easily the geometrical “freezing” lintit>o in
lanches in IP: an avalanche is defined as a temporally corthe growth column. This is an important assumption, because
secutive set of growth events causally and spatially conin models like DBM, the fractal properties of the frozen re-
nected to a first growth event. The bond related to this firsgions are different from these of the growing perimeter.
growth event is called thénitiator of the avalanche. To In IP these problems do not exist, becauseen an ava-
make this definition clear we focus our attention on an activdanche with initiator at p stops it leaves a local structure
bond! on the perimeter of the structure which grows at thewith the same statistical properties of the bulk of the whole
instantty; the avalanche with initiatot is defined as the cluster In fact, after an avalanche has stopped, all the local
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FIG. 8. (a) Graphical scheme for the calculationl\o:h‘{‘p2 (at the second ordgr(b) graphical expansion for the calculationlkzlﬁ'y2 (second
ordep. The black dots are the occupied sites and the labglsf the u; ; (the w; ; are the growth probability of the stochastic progess
indicate, respectively, the active boffdom left to right and from top to bottojrand the order of the process.

perimeter bonds will have potentials greater tipan and we The calculation of the FST matrix elemenmio"j’ and
know from the acceptance profile that bonds with such valiy ic"j for open and closed boundary conditions, respectively,
ues of the potential will not grow. is performed by using the graphical expansion shown in Fig.

Therefore the lack of normalization of the GPD for the g (for more details se6,7]), where thew, , are given by Eq.
local dynamics is totally consistent with the FST scheme(23). we call ordern of the process the number of bonds
This is an interesting and relevant aspect of the local scalegrown starting from the initial configuratidisee Fig. 7. The
invariant dynamics for IP. In fact, we have verified that if hond connecting the frozen cell to the occupied site is the
one substitutep, with 1 in Egs.(23)—(25), using the global nitiator of the avalanche with variable,. Let us call
scale-invariant dynamics instead of t_he local one, one_forceﬁq io?(n) andMiC'j(n) the matrix elements at orderfor open
the process to occupy all the bonds in the column. This progng closed boundary conditions, respectively. Usually, for
duces a compact structure with=2. In this respect it may poth poundary conditions, at a given orderone directly

be useful to comment about how the present approach conyauates thévl; ,(n), getting theM, ,(n) elements from the
pares with the preliminary one developed in 1990 by Pietrony,ormalization cbnditiorﬁj M, ;(n) =1 .

ero and Schneidd9]. In that paper the basic idea of the
guenched-stochastic transformation is introduced. Howeve(Ne have two “active” bonds in the columfsee Fig. 8 that

its implementation in the FST scheme was highly simplified, o idicate as 1.1 and 2,1, where the first number is the bond

and hetUI(’:IiS]EIC. In sorrle fensetthe FST :patrle fr!er?_entts]c ASbel and the second number is the orderEveryone has
computed from a sort of exact enumeration of the first few, ~ "\ 1 with i=1,2. From Eq.(23) with p,=1

steps and, for example, the questions of the self-organizatioﬁi,’]e gets
and the scale-invariant dynamics could not be addressed. The
approach discussed here represents instead a rather complete 112

and systematic theoretical method for these extremal prob- Mi 1= fo dx(1-x)= 3. (27)
lems.

For example, let us evaluaM{’(n=2). At the first step

_ ) _ Fori=2 we have the first path contributing M{",
D. Calculation of the fractal dimension of IP '

Now we proceed to the calculation of the fractal dimen- Mj’f’z(n=1)= 3. (28
sion of IP in the FST scheme. This scheme is based
[6,7]) on two main approximations. We can also calculate the probabili® that the avalanche
(1) Only periodic boundary conditions with variable pe- ends already at the first order. From E@{6) with
riod A are allowed for the growth column. gi=p.=1/2 we have
(2) In practice we consider only two values of the period L )
A: A=0 (closed boundary conditiopsand A=« (open P1:< f dx) -1 (29)
boundary conditions To each case we assign a weight in a 172 N

self-consistent way, as discussed M.
Note that for IP and for percolation problems in generalTo compute the second order contributionMg®, we let the
this “open-closed” approximation is particularly accurate. bond 1,1 grow at timé=1. Two new bonds enter the pe-
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rimeter with uniform density(Fig. 5. The density of the So, at the second order we obtain
bond 1,1 becomes, after it grows,
MIAN=2)= o1+ py iz =3+3 7. (33
My 1(X)=3(1-X)0(5—X). (30

. Such calculations can be pursued to any higher order, con-
At order 2 the bond 2,1 is labeled 3,2, and has updatedigering at any order all the paths contributingvg®, In the
density same way we calculati!3”
_ 8. 1 Then we calculate, using the same method, the matrix
p3AX)=3MiNX,2). D elements for closed boundary conditiokk', For a given

Now we can computgs ,, which is the only second order order n it is possible to express the weigh@(n) and

contribution toM %, applying Eq.(23) again: C,(n) of the two-cell configurlations i_n the intersection set in
: terms of theM(n) and M{,(n) using the formula(see
M32= 75 - (32 [6,7)

MSo+ MEs— § MEI-[(E MB- M3~ 2M gy 2= amgaT ™

Ci(n)= >A ,
Cy(n)=1-Cy(n),
A=M{ 4+ MS— 2 (MP+MOP), (34)

where we omitted for simplicity the dependence of the the case of IP with trapping for both site and bond trapping.

matrix elements. Before treating these two cases, we want to address briefly
The fractal dimension at the orderis given by the problem of the scale-invariant dynamics. If we assume
the coarse-grained random variables on the lattice to be sta-
IN[1+C,(n)] tistically independent, the scale-invariant local dynamics is
Di(n)=1+———5— (35 completely specified by the value pf, like for IP without

trapping. The scale-invariant dynamics for IP with trapping
is the same as for IP. This can be verified, for example, in
[1], where one sees that the acceptance profile of IP with
Otrapping tends asymptotically, although with lower speed
and asymmetrically, to the same step function found for IP.
Another way to verify our argument is the following: if we
consider a trapped region of the lattice, the growth events on
Ehe perimeter are statistically independent from the bonds

Unfortunately, while for DBM we have an exponential con-
vergencd 6,7] with respect to the order of the matrix ele-
ments, for IP the convergence is power-law-like. This shoul
be expected, in view of the power law behavior of
i~ (k+1)"* (memory effeck discussed previously. It is
therefore necessary to extrapolate the result®4oo. In
order to perform the calculations needed in practice we hav
developed a computer algorithm which executes the calcula-
tion of the growth probabilities, the updating of the RTS, and 1.92
stores all the growth histories. The integrals are performed 1.90
with the method of Gaussian integration over 100 points in 188t
[0,1/2], because the RTS, in th&cale-invariant local dy- 186 L
namics is constant if 1/2,1]. 184 |
In Table | we report the RTS-FST values of the IP fractal
dimension for the various orders, compared with known ana- &
lytical and simulation results. Our result is in very good &
agreement both with numerical simulations and with known
analytical values. The same scheme can be easily applied to 176 |

1.82
1.80
1.78

174 |
172 |
f 1.70
. 168 il I I I L
* = |e = 7000 002 004 00§ 008 010 0.2

FIG. 9. Left side of the figure: an example of the introduction of ~ FIG. 10. Values of the fractal dimensid(n) for IP (A), IP
trapping | in the FST scheme. Right side of the figure: an analogousiith site trapping (J), and IP with bond trapping ¢ ) via FST
example for the implementation of trapping Il. One can see in botfcalculations versus af for n=3, . . ., 9. The extrapolation gives the
cases how the path generating trapping contributed fﬂp asymptotic valueD¢() (filled symbols.
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ply to DIP the quenched-stochastic transformation, using the

t=0 t=1 RTS py¢(x) and the GPDu, ; for the active bonds and the
o o o updating rule for the RTS afte_r a growth step, in the same
LL Lo 0r way as for IP. The difference with respect to IP is that DIP is
i_ [ —_— Lrz i 3& an anisotropic model, because it has a mean growth direc-
) -0 &—&-:0 tion. In the same way as IP is the dynamical, invasive, ver-
(@ 0 w sion of critical percolation, DIP can be viewed as the dy-

namical version of directed percolatidDP).

FIG. 11. Starting situation for DIR(@) the black dot indicates Let us recall briefly the main properties of [JR6]. We
Co and the dotted segments indicate the active bofilshe situa-  |apel the four directions on the lattice with the cardinal
tion after the growth of the horizontal active bond. points: east and west are the horizontal directions and north

and south the vertical ones. The positive directions are north

inside the trapped zone. This means that trapping does nand east. We orient the bonds, assigning to each one an ar-
have, asymptotically, any influence on growth in the externatow, in the positive direction and, as for percolation, we
perimeter. So, the scale-invariant dynamics is the same. assign to each bond a random number. A threshadklfixed

In the FTS scheme trapping appears only for closedand one introduces the probabil(A— B;p) to find a path
boundary conditions. In factsee Fig. 9, a region in the connecting two pointsA and B, composed by bonds with
growth column can be trapped only if it has occupied sites orandom variables less tham and following the arrows as-
bonds from both sides and this requires at least three verticgigned to the bonds. For percolationpi p.=1/2 one has a
lines of sites. In the open boundary condition case we willcorrelation lengthéx|p—p¢| %, with critical exponentw.
get the same numerical results found for IP without trappingFor DIP we have an analogous situation with a different
Now, for IP with trapping one can s&€ig. 9) that all paths  critical thresholdp!{"”=0.644 071> p, and, because of the
generating trapping contribute directly k", . anisotropy of DIP, two correlation lengthg;, parallel to the

In Table | we report the values of the fractal dimension VSgrowth direction, and, , perpendicular, with the following
n for both types of trapping, and we compare them withscaling behavior fop< pgdir);
known simulation values. No previous analytical results are
available for IP with trapping. Also in this case our analytical §(pM—p) "I and £ «(pi—p) L,
results fit very well with known values. In Fig. 10 we show
the behavior oD(n) versus 1?, for IP, IP with site trap-  with V>, .
ping (trapping ), and IP with bond trappindtrapping I, The DP clusters have the following properti€g) for
with the extrapolation tm=c. The fact that theD¢(n) fits  p<p{®@=0.644 071 there is no percolating clusté&?) for
well with a power law 1#* can be understoofB] by the  p>p(@n there is a percolating, infinite and compact, cluster
large timZe limit of the,, which goes to zero withk as  yith fractal dimensiorD;=2; and(3) for p=p" there is
1/(k+1)" In fact, the “older” bond in the growth column 5 infinite percolating cluster with fractal dimension
has an age which coincides with the oradeof FST calcula- D;=1.748...[27]. We claim that, as for IP, the DIP model

tions. produces spontaneously an asymptotic structure with the

The main reason for the relatively poor approximation ofg,me geometrical properties of the infinite percolating cluster
our results for IP with site trappingsee Table )l is that, of DP at the critical thresholg(@"
{dn,

while the FST scheme is based on a bond dynamical rule,
suggested by Ref20], in the site trapping model, we use a

site rule to identify trapped configurations. This trapping ruleWhich is the histogran®,(x) of the values of the variables

Irfa?l?r;?)t(r?;ciﬁ?s ticr’1 :deesfjaalg '?Xﬁ&'g?;’sat?g I;Ls;rltgﬁcr:ijorr;ulon the perimeter bonds, and write down a histogram equation
quacy Ihke Eq. 15. The asymptotic behavior &f,(x) will be

Yet, the value we find might be considered as a nontrivial
lower bound toD}

35 |ndeed the RTS calculations of R¢&] can be applied to
the case of DIP as well. One can define a histogram function,

im ®,(x)= O(x— ), (36)

t|—> 1-m,
E. The directed invasion percolation
In this part of the paper we study a directed version of IPWhere the parametefr. coincides with the DP threshold

the directed invasion percolation. The model is the same ag{"”=0.644 071[27]. This supports the hypothesis that be-
for IP, but with the following growth rule: at=0 the active tween DIP and DP there is the same link existing between IP
bonds are the vertical upper bond and the horizontal righ@nd critical percolation.
bond leaving the sit® [Fig. 11(a)]. At t=1 the active bond Now we apply the FST approach to DIP to compute its
with the smallest variable growshe horizontal one in Fig. fractal dimension. The scale-invariant local dynamics can be
11(a)]. After the growth, we add to the perimeter the upperdetermined by the same arguments used for IP. What we find
vertical bond and the right horizontal bond connected withis that the local dynamics to use in the FST growth column is

the just grown bondFig. 11(b)]. And so on. the same used for IP, Eq&23)—(25), where we have to
From the dynamics we have defined it appears clear thaubstitutep= 1/2 with p{®" =0.644 071.
the DIP cluster, if one starts from si@, will develop itself In applying FST to DIP one has to face a technical prob-

entirely in a lattice quadrant with vertex i and will have lem. In fact, the FST analyzes the intersection between the
as mean growth direction the quadrant bisector. We can agsymptotic structure and a lirj6,7]. This intersection is a
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random Cantor sefFig. 13 in which the weights of the ll. ANALYSIS OF THE CRITICAL
generators are determined from the dynamics of the model, AVALANCHES FOR IP

expressed by the FST mat”‘wivi}' IP s an isotropic In this section we will address the problem of the analysis
growth model. So, the orientation of the line we intersect

with the structure is not relevant. For anisotropic systems?i:)rt_]he\/\?elsgg\)/ue“:geﬂ |(r:1 ”E'ﬁ:l Te/ileaorl}ﬁhesseltgig]r:/?ﬁ;na\eglrgr?ﬁ-es
like DBM which has a definite growth direction, the inter- ) P 9

section is usually taken in the direction perpendicular to th%ﬁ\r/aetiﬁnh(frrirégcfé sérr?é:;ugilan:nt?;é 'Caﬁﬂz Ic')t?'t{hoé trgilcrjom
direction of growth[7]. The resulting random Cantor set b y

(fragmentation procegss therefore isotropic. In DIP, one variable of the initiator.

; . . Until now the analysis of the size distribution of ava-
would have to tilt the lattice byr/4 in order to perform the lanches has been based mainlv on the combination of com-
FST “along” the growth direction. This would pose prob- y

lems of renormalization of a dynamics with diagonal bondsputer simu_lation of.the. process and scali_ng ansatz obtain(_ad in
which is known to be problematig20]. For this reason we analogy with the distribution of clusters in usual percolation
choose to tilt the direction in whicﬁ the FST evolves by[ll’la' Based on this analogy, the following functional form

/4, with respect to the growth directidthe FST evolves in for the size distribution is assumed:

the north direction, whereas the growth direction is D(s:p)=s""f(|p—pes?), (39)

northeast This choice has the price that the intersection

with a horizontal line will result now in an anisotropic Can- where p=¢; and p,=1/2 is the critical threshold for 2D

tor set. This can be described by three gener&@gr<,, and  bond percolation on a square lattice. The functf¢r) has

Co (Fig. 13 satisfying the conditior€,+C;+C,=1. the following properties: lim of(x)=a#0 and for large

So, we have three fundamental configurations on the invalues ofx f(x)~e *. In [11,12, by an analysis of the

tersection set and the FST mat{id; ;} will be a 3X3 one:  temporal signaks(t) (the value of the smallest variable at

time t) together with scaling relations the following values

M 0 M of 7 have been obtained, respectively, by numerical simula-
0.0 2,0 tions: 7=1.50 andr=1.60. This last value seems to be the
0 Mi; My, |, (377  most recent and accurate.

Moo My, My, The sizes of the avalanche also includes the initiator.

’ e Thus the normalization condition for E(39) will be

where M =M ;=0 in that there cannot be a transition )
between the 0 and 1 configurations, and with the following 521 D(sip)=1Vpe[0.1]. (40)
normalization condition for the probabilities:
EleMiyl:l for i=1,2,3. In open boundary conditions one We now propose a theoretical scheme for the analytical cal-
hasMgh=1. culation of the avalanche exponentbased on the RTS and
The fractal dimension is again given by the FST ideas.
Usually Eqg. (39 holds true fors>1. However, if we
consider the dynamics at a certain scdlewe can use Eq.

" In(1+C5) (39) (39) to describe the statistics of avalanches at that scale. In
f In2 ~° this case, the normalized form of E@9), for p=p. is
S—T
whereC, is the fixed point solution of Eq37). D(s;pc)= = : (41)
The probabilities for open and closed boundary conditions 2 s T
s=1

in the open-closed approximation have to be obtained from
the void distribution P@"S\\) of an anisotropic random

Cantor set, while for IP we used the usual void distribution
of an isotropic Cantor s¢29]. In Appendix B we compute &

Note that the denominator is the function Riemann zeta,
7). From Eq.(41), valid if the initiator is atp;, one has

the P@"S(\) and report also the equation for the weights 1 1

C; from which one gets the fixed point values. The results D(s=1;pc)= = =——. (42)
are shown in Table I, and compared with known results. 2 57 ()

Note that in passing from the dimension of the intersection &

set to that of the cluster, one generally assumes that the frac-

tal is isotropic. This point might be nontrivial in DP. It is, We will obtain a value ofr by (a) evaluating the left-hand
however, clear that in any case our result refers to an interside using the scale-invariant local dynamics of IP and by
section of the cluster with a line at an anglem® with the  taking into account the boundary conditions near the ava-
growth direction. Within this assumption of isotropy, this lanche, andb) inverting Eq.(42).

value results in excellent agreement with that found for DP  Let us evaluatdd(s=1;p.). The events=1 means that
(DPP=1.748...[27)). This result, together with the asymp- after the growth of the initiator with variablp, the ava-
totic behavior of the DIP histograrn,(x), supports the hy- lanche stops. Thus we consider the initiaioas grown at
pothesis that DIP is the self-organized dynamical version ofime t, and calculate the probability that the avalanche stops
critical DP. at timety+ 1. This will happen if all the descendant bonds of



54 THEORY OF EXTREMAL DYNAMICS WITH QUENCHED . .. 1421

v

-—-0
---0

o) -
|
|
|

O-——9-——0 ° -——0 ° °
init. init. init.
atpc at pc atpe

2 2
W@=[1-P(O=0)] wWO=2P(=0)[1-P=0)] W(=[P(h=0)]

(a) (b) © | o | e | e | o |

FIG. 12. Boundary conditions for the initiator of an avalanche
when the initiator bond grows® indicates the cluster sites and
O the perimeter ones: the filled segments represent grown bonds III
and the dotted ones the descendant of the initiator. One has three ‘/C2 lcl N{i
possibilities:(a) there is no occupied site near to the initiasoone
(three descendant bonggb) there is one occupied site near the

initiator (two descendants(c) both sites near the initiator are oc- | L | 0| | o | o |

cupied(one descendant

FIG. 13. Fragmentation procedure for the anisotropic random
the initiator have variables larger thag. In fact, if at least ~ Cantor set. One starts from the system at the biggest scale, appear-
one descendant df had variable lower thap., the ava- ing as an occupied unitary cell of length(we setL=1) and one
lanche would continue because this variable would be th@roceeds by successive fragmentations governed by the weights
minimum one on the whole perimeter. In order to evaluateCi of the three generators. For the isotropic case the only difference
this probability accurately we need to take into account thdS that we have only two generators, in that one 6gs-C;.
environment of the initiator. In Fig. 12 we schematize all the ] ) ) )
possible boundary conditions for the initiator bond. We con-The fixed point value ofC, obtained from FST calculation
sider only the nearest neighbor of the initiator because wédr IP in the preceding section 8,=0.861. If we introduce
know that asymptotically the avalanches on the perimeter ardis value in Eqs(43) and(44) we getP(A=0)=0.865, and
influenced only by the environment near the zone where the

a)
avalanche evolves, that is to say, by other branches of the W®=0.018,
aggregate which have some perimeter bonds involved in the WP =0.233,
avalanche. W©=0.749. (45)

For all three cases we can evaluate the probability that the
avalanche stops immediately after the initidsogrowth,  Now we compute the probabilitieB(k)(s:l;pC), k=a,b,c
conditioned by the assigned boundary conditions. The exaghat the avalanche stops immediately after the growth of the
value of this probability, by the rule of composed probabili-injtiator, for the three different boundary conditions, using
ties, is given by the mean of the three cases. In order tghe RTS method. The descendants of the initiator have RTS

compute the statistical weights of configuratidias—(c) of Poo(X)=1, because they have just entered in the perimeter.
Fig. 12 we use the void distributioR(\) of the random g4 one has

(isotropig Cantor set whose generators have probabilities

Ci, i=1,2 given by the FST calculations performed in the @ _ 1 3 N
preceding section. We are allowed to uBé\) with the P¥(s=1;pc)= f dx poX) | =3,
weights obtained by FST because for IP the perimeter has Pe

the same statistical properties as the bulk of the structure. 1 2
We remember the expression B{\ =0) [7] in terms of P<b)(s=1;pc)=( f dx m,dx)) =%,
CZ: Pc
(o) ! 1
C P (s=1, =f dx X)=53. 46
P(r=0)— 2 | @3 (s=Lipo)= | dx pog0)=3 (46)
Cat 7(1-C2)(3+Cy) From Eqs.(46) one obtains
The weights of configuration®), (b), and(c) are D(s=1;pa)= I W®pP®(s=1;p.)=0.435. (47)
k=a,b,c

) — =I1— — 2
W&=P(\=1)/P(\=1)=[1-P(\=0)]%, At this point, in order to findr we should solve the equation

WP =2P(\=0)/[1- P(A=0)], oazs + 1
' = {(n)

e
s=1

(48)

WO=[P(\=0)]% (44)
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The numerical solution of Eq48) gives research directions. From one side a deeper understanding of
the mathematical properties of the RTS would be most wel-
7=1.5832... come. As we have shown, the RTS provides only an approxi-

) ) o ) mation on the statistical weight of quenched processes. The
Thls_ anal_ytlcal _result is in .good. agreement with recent NUynain guestion concerns whether or not the error in s
merical simulation$12], which give 7=1.60. trinsic approximation becomes negligible as the length of the

In order to test independently the validity of our method, hrocess increases. In the affirmative case, one would also
we have performed numerical simulations of IP to get anjye to have a control on the magnitude of this error. We are
estimation ofr. From the RTS scheme and the discussion Ofactively investigating this problerf8,13). Another interest-
the scale-invariant local dynamics and critical avalancheqng problem is to see if it is possible to define the RTS for
we observe that the counté(t,+s) (the age of the bonds  quenched dynamics different from the extremal dynamics. A
growing during the avalanche must satisfy the followingstep forward for “equilibrium” disordered systems has been
condition: recently madg29].

On the other hand, one can extend the RTS approach to
0(to+s)<s, (49) other models such as surface dynamics with quenched disor-
wherety i the time at which the avalanche sufes]. L BTGSeI TR CAAILE 2 o e ciorder

So, if we are in the asympiotic limivery large timg, we is coupled to a spatial field. The prototype of the latter situ-

can analyze the signd(t), instead ofe(t), in order to re- e
construct the avalanche size distribution and to obtain nu‘:’ltlon is quenched DBMQDBM) [2,3], where the extremal

merical estimation of the exponent This is an alternative dynamics applies to a combination of the disorder field

method that allows us to count only the critical avalanches(WhICh acts as a random threshpithd the electric field. The

-~ ! S main interest in such a model lies in the fact that phenomena
avoiding problems of numerical approximations that one

faces when one analyzes the sigag). In fact, e(t) is a real like fracture propagation in crysta}ls are conditioned .both by
random variable, whiled(t) is an integer,one. We get quenched factorgdefects and microcracksand by time-

) i .~ dependent factors(electric fields, strain Significant
=1.60+0.03, in very good agreement with our theoretical : e
rTesuIt From the knozvlgd e 0? the exponebts and 7 one progress, which we plan to present in the future, has also
) . ge >XP p been made in this direction.
can recover, using the scaling relations reportefilz], all
the other critical exponents of IP.

APPENDIX A: DERIVATION OF THE RTS EQUATIONS

CONCLUSIONS . . - .
In this appendix we compute explicitly the expressions

In this paper we have exploited a theoretical method, thé¢7)—(9). Let us recall some properties of a set of continuous
run time statistics, to study analytically quenched growthindependent random variables. Given a set of variables
models. Those models are characterized by quenched noi$¥;,X,,... Xy} and  their  probability  densities
and extremal statistics. {P1(X1).P2(X2), - . . ,.pn(Xn)}, We fix an order relation such

The application of this method, together with other toolsas, for example X;<X,<...<Xy. The probabilities to
such as the FST20] or the real space REL0], allows us to  have such an ordering between the variables are
get very good estimations for the scaling exponents. Here we
have considered explicitly the cases of invasion percolatio
and directed invasion percolation, to which we applied therbmt[(xlgxlelerle(X1<X2<' =X
FST techniqué7] to obtain the fractal dimensioD; of the
clusters of IP, IP with trapping, and DIP. In particular, 1 1
nonlocal effects like that of trapping, which poses insur- =dX1p1(X1)f dxopa(Xa) - J dxnpn(Xyn) (A1)
mountable difficulties to other approaches, can be dealt with “ N-1
in a remarkably accurate way. The results of the FST calcu-
lation, apart from the case of site trappitand for reasons for X; e[x,x+dx] and
which are easily understopdhll display a remarkable accu-
racy: the deviation from the accepted result being at mo
0.5%. The present approach therefore provides a first priﬁ%mt(xﬁx2< =Xy
ciple analytical framework to understand self-organization
and to compute the various critical exponents for the ex- 1
tremal problems. :j

In addition, we have shown that the scale-invariant dy-
namics allows us to evaluate also the avalanche size distri-
bution exponent- that we computed in detail for the case of
IP. This method could in principle be applied also to thefor X; €[0,1]. Equation(Al) expresses the effective density
computation of the avalanche exponent of DIP, but at thdor the variableX; conditional to the given order relation,
moment we have to solve some problems related to the pavhile Eq. (A2) is the total probability to have the order re-
culiar, asymmetric distribution of boundary conditions of lation X;<X,<<---<Xj.

DIP. Using Egs.(Al) and(A2) we can compute the following

The theoretical methods presented in this paper open twprobability:

Prol (x;<X;=<x;+dx;)N(X;<X,<--- <Xy ]
(A2)

0
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Prol (x;=X;=<x;+dxy)N(X;= min  Xq)] Prol(t; (x==x+dx)N(&= min €))
m=Il,...N me dCy
1
=dxips(x) 2 U dXp,Pp,(Xp,) - - - =dx p (O ]] [1-Py(x) ]t %k, (A9)
P2, .-, Pt | X 6

whereP,(x) = [5dypy(y) and the Kronecker delta means
, (A3) " that the product is over all the variables but the growing one.
Integrating Eqg.(A9) one can finally write the growth

where the sum is over all permutations of the ordered sefrobability u for the bondi at timet [8]:
{2,... N} and

1
X fx dxprpN(xpN)

Pn-1

i =Prol(t;e;= min ep)

. aC,
Probx;= min X, meo

1
:fo prK,t(X)l;[ [1_P0,t(x)]nf’"7ﬁf"k- (A10)

x1=0 For the computation of the density of the smallest random
N(X;= min X)) (A4)  Vvariablem, (x) afterit has grown we use the rule of condi-
m=1,...N tional probability, which we recall here:
Equation (A3) represents the probability that the variable ProANB)

Prol(A|B)= (Al1)

X1, with value ranging betweex andx+ dx, is the smallest

in the set, independently of the ordering of the others. Equa-
tion (A4) is instead the probability that; will be the mini- ~ where A=(x<¢e<x+dx) and B=(€=mMiNy ., €m). One
mum one irrespective of its value. At this point one canhas

demonstrate by induction that

Pro4B)

My ((X)dx=Prok(t; (X< ;<x+dx)|(e;= min €y,))
me dCy

1 1

{p2. .. Pn_1

Prol(t;(x<e=<x+dx)N (€= min €y,))
me dCy

N
1 . :
=H jdxmpm(xm)- (A5) Prol(t; ;= min €,
m=2 Jx;

me dCy

The result of Eq(A5) may appear trivial. However, in more
complex cases it is important to keep the formalism general.

dXQ(’t(X)];[ [1_ P‘g't(x)]nﬁytiﬁﬁ,k 2Mk’t

Introducing Eq.(A5) into Egs.(A3) and(A4) one gets (A12)
Prof (x;<X;=<x;+dx)N(X3= min  Xy)] and finally
m=1,...] N
N
L Pt OO LT [1= P (x)]"04 %0
=dxypa(x) [1 f AXnPrm(Xem) (A6) T "
=2 Jx My (X) = . (A13)
Mkt
and . .
In the same way we can calculate the effective densities of
ProkX;= min X the “surviving” perimeter bondsp; i+ 1(X)=Pgs1e+1(X),
m=1,...N where the events A and B are, respectively,

A=(Xs¢€=x+dx) andB=(¢= minmeﬁctem):

1 N 1
:jo Xmpl(Xl)nHZ ledepm(Xm)- (A7) Prof(t+ 1;x< €;<x+dxX) = dXpy 14+ 1(X) =dXp; 11 1(X).

(A14)
In invasion percolation a bond grows at tirhé its variable But
is the minimum one at that time. So, using E46) we can '
write Prol(t+ 1;x< ¢;<x+dx)
Prol(t; (x< ¢<x+dx)(€j= min €y)) :Prol:(t;(xsejsx+dx)|(ei: min €y,))
me dCy me dCy
1 Prol(t;(x<e;<x+dx)N(e= min €y,))
—axp0 T [Comndy  (a8) Ht(x<ej=x+d)Ne= min )
me aC—{i} Jx = . (A15)

Prol(t; = min ¢,)
or, in terms of thepy ;(x), me aCy
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The numerator of64) can be written as We are interested only iR(A=0), that is, the probability
that given an occupied unitary cell it is followed by another
Prol(t; (x<;<x+dx)N (&= min €y)) occupied cell. One can show tH&09]
me dC;
y . > (I-1)N{™ > N
| |
=dx Pj,t(x)f dypiy) 1l U dupm,t(u)) P(A=0)= lm ————=1—lm ———.
0 me dC;—{i,j} y n—o E INI(n) n—o z |N|(n)
|

[
=dxpy,(X) fOXdY[ pk,t(Y)lZ[ [1_Pg,t(y)]n5’t§5’k5§'”} (B3)

Until now our discussion is valid for both the isotropic and
(Al16)  the anisotropic case. Now we proceed to compute the limit in

. . . Eq. (B3).
while the denominator ig. ;. So we have The denominator of the fraction in E6B3) can be writ-
ten as
1 X
Por1+1(X)= _[ pH,t(X)f dY( Pr,(Y)
et 0 Z |N|<“+1>=(c0+cl)2I INf”)+2C22| IN{™
xI1 11— P (y)]Met 2ak™ 5;9) }
¢ =(1+cz)2 IN(™, (B4)
(A7)
) _ where the last member of E(B4) is due to the first relation
Or, using(8): in (B1). This expression is clearly invariant under the ex-
change ofC, with C; and vice versa.
b (X)=p (x)fx Myt (Y) dy. (A19) So, we get the same expression for left and right voids.
o+1t+l PO Jo[1=Pyu(y)] The numerator of the fraction in the last member is instead,

for right-hand voids,

APPENDIX B: VOID DISTRIBUTION 1) o
FOR AN ANISOTROPIC RANDOM CANTOR SET Z N :Z NP1+ (1=1)Ci+(1-1)Co(Cp+Cy) 1.

In this appendix we derive the expression for the void (BS)
distribution P(A =0) of an anisotropic random Cantor set in
terms of theC; .

As for the isotropic casg29] we start from the system at
the biggest scale, coinciding with a single occupied unitary >, N("* V=2 NM[1+(I1—1)Co+(I1—1)C1(C;+C))].
cell of lengthL, and proceed to a fragmentation into two !

The corresponding expression for left-hand voids is

consecutive cells with probability distribution given by the (B6)
weightsCo,Cy,C> (Fig. 13, with the conditions Because of the conditio€,+C;+C,=1 Egs. (B5) and
(B6) coincide.
CotCytCo=1, IntroducingCy=1-C;—C, in Eq. (B5),

Ci>0 for i=1,2,3. (B1)
(n+1) _ (n) _ _C.—
After n steps of fragmentation the unitary cell will have a Z Ni E| NI+ (= D=6 Cor GGy
length (1/2)'< L. For the sake of simplicity we fix.=1.
Now we measure the voids after iterations in units of
(1/2)". Let us caIIN,(”) the number of clusters of points of So. we have
length| after n iterations andv(™ the number of voids of
lengthl. The quantity we have to compute is the conditional N
probability P(\) that, given an occupied unitary cell, it has | N 1—C;—C,+C,Cp+C2
at its left (or right) side a void of length. Even if we have = !
asymmetric generators, we will see tht\) is the same for 2 IN,(”+ 1) 1+C,
left-hand and right-hand voids. [
Because of the self-similarity of the Cantor set one has
29 (n
2 +cl+cz—clcz—c§ EI N
(n) :
P(\)= lim wL (B2) 1+C. >IN
n—e (n) !

& N (B8)

+ChH]. (B7)
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Taking the limitn—oo for both sides of Eq(B8) we obtain

C,

P(A=0)= :
1-C,+C,C,+C?

(B9)

Equation(B9) can be used in the FST calculations for DIP.

We have to solve the following systeid9,6,7:

Co Moo Mio Myo\ [ Co
Ci|=| Mg1 M1 Myi|| Cif, (B1O)
Cs Moo Mis Myo/ \Cy

with the conditionsB1) andS?>_,M; ;=1 fori=1,2,3. The
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dently from the boundary conditions, one has
M;0=Mg;=0 and in open conditions one has also
Mg%=1 (this is a manifestation of the asymmetry of the
modeb

The expression for the FST matrix elements in the open-
closed approximation ig5,7]:

M ;=P\=0)M{+[1-P(A=0)]M®, (B1D

i1

whereP (A =0) is given by(B9). If we introduce Eqs(B11),
(B9) into the linear systeniB10) we obtain a nonlinear sys-
tem inC;. Such a system admits the trivial soluti@y=1

three equations ifB10) are not independent. We can drop andC,=C,=0. This solution cannot be accepted in view of
one of them and use the normalization condition for thethe conditiongB1) for C;. The other solutions are given by

C; . From the dynamical DI rules one infers that, indepen-

_nOpP __ppcl cl op
M3lo— Mg ot (Mg ot M3,

~1)C;—M%

the system

1
—MP(C,—CI+CH+ ,
1+M3Zo—M3%

OP_
+(M§, =M+ MIPC 1~ M:
( 2,1 2,1 2,1) 1

~M§ g+ MSRCy
Mo+ (MG o+ MSR—1)Cy—

2
2,0C1 + Mop_ M 2P op _ NORY 2
( 21C1+(M35—M75)CY

MSRCE
2071 ) = (B12)

1+ M~ M3

1-MP-M

—M 0’o+ MRCy

g+ (M O+|\/|°F’—1)c1—

op~2
M 2,0C1

C2= 1+|v| S M

The first equation cannot be solved analytically. We solved it using the Newton’s contractions method and accepting only the

cl 0
—Mg ot M ZPOC 1

solutions satisfying the constraif,>0. The solution of the systeiiB12) leads to the results of Tablg31,32.
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