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Dynamical features of a classically chaotic quantum system: Symmetry breaking
and the disappearance of the squeezing effect
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Dynamical symmetry and squeezing effect have been investigated in a classically chaotic quantum system
[M. Kus, Phys. Rev. Lett54, 1343(1985] when it is restricted to the following initial condition: the atom in
its SU(2) coherent state and the field in the vacuum state. In the regime of classically regular motion, dynami-
cal symmetry and squeezing effects have been exposed under proper choice of the atomic coherent state; but,
in that of classically chaotic motion, the symmetry is destroyed thoroughly and the squeezing effect disappears.
[S1063-651%96)07107-3

PACS numbg(s): 05.45+b, 42.50.Dv, 42.50.Lc, 32.86t

The recently gained increase of understanding of classicaloes not properly consider the quantum-classical correspon-
Hamiltonian systems, which are nonintegrable and therefordence. However, although some regularities of the statistical
display chaotic dynamical behavidi], has led to the natu- spectral of the energy levels have been found in this system,
ral question of what the quantum properties of such system&raham and HonerbacH9] have shown that for sufficiently
might be[2]. This field of study has been termed as “quan-Strong coupling, the occupation probabilities of the two lev-
tum chaos.” A physically interesting example, which be- €ls show irregular behaviors, more precisely, they are quasi-
longs to this field, is the most basic model of quantum opticgeriodically, involving a large number of incommensurate
[3], i.e., a two-level system consisting of a single two-levelfréquencies. For small coupling, the system behaves rather
atom interacting with a single quantized mode of the electrof®gularly and the occupation probabilities show periodic “re-

magnetic field. The Hamiltonian of this system reads vivals.” In addition, in order to study the dynamics of the
model(1) in the usual arena of classical dynamics, that is, in
H=0a'a+wS,+G(a'+a)(S, +S.), (1)  phase space, some authfit§] have done work on this topic

from the point of view of the Husimi distributions. In this

whereS, and S, are operators of the atomic inversion and Paper, we turn our attention to the dynamical symmetry in
transition, respectivelye is the atomic transition frequency; the model(1).

a" anda are the creation and annihilation operators of the The squeezed statgsl], which fulfill the uncertainty re-
field mode with frequency), respectively; andG is the  lation with a reduced quantum dispersion, have been an in-
atom-field coupling constant. Throughout we employ theteresting topic due to their potential applicatidr] in grav-

unit with #=c=1. The classical limit of this model is non- ity wave detection, high-resolution spectroscopy, gquantum
integrable and can exhibit chaotic dynamical behaviors for &ondemolition experiments, quantum communications, and
large coupling constarf#]. Kus et al. [5] have investigated low-light-level microscopy. It has been shown both_ theoreti-
several statistical properties of the energy levels of thigally [13] and experimentally14] that a squeezed field can
model, and they found that the nearest-level spacing wal€ generated by various physical processes. Meanwhile, in-
highly correlated and regular in contrast to the chaotic becreased attention has also been paid to the squeezing of
haviors presented in the corresponding classical version dfuantum fluctuations of the atomic dipole variables., the

this model. This result is inconsistent with the common be-2tomic squeezing 15]. Moreover, the relationship between
lief (tested for certain variety of model6]: a quantum sys- the field and atomic squeezing has even been discussed by
tem, whose classical counterpart is chaotic, should displayVodkiewiczet al. [16]. However, less work has been done
the spectral statistics consistent with the nearest neighbd this topic in the classically chaotic system. It forms an-
spacing distributior(basically close to the Wigner onéor other aim of this paper. _

the Gaussian orthogonal ensemb®OE) of random matri- [N the present paper, we have exposed the following ad-
ces. Graham and Herbach[7] have indicated that such ditional dynamical features in the mod@): (a) there exista
results were closely related to the single two-level atom beStriking dynamical symmetry and the field and atomic
ing considered: with a number of two-level atoms the statisSAueezing in the case of sufficiently weaker coupling.,

tical behaviors of the GOE can be given under appropriatén® regime of classically regular motip#l) when the system
conditions. Recently, we have given the reason why the GOES restricted to the following initial condition: the atom in its
statistics cannot appear in this syst¢8i: the dynamical SU(2) coherent state and the field in the vacuum state

condition for the GOE is not satisfied in the spectral statistics
: 1 0\ . 1
5|e7?? = 5,0) +cog 5|€9?15.0), (2

. . ; 0
for this system, and the classical counterpart of this systerfy,(0))=sin 5
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where O< §< = denotes the initial distribution of the atom,

and 0= §<2 is the relative phase between the ground and 00
excited states(b) for sufficiently stronger couplingi.e., in 0.00
the regime of classically chaotic motigd]), the symmetry
is destroyed thoroughly and the squeezing effect disappears. —0.03
In order to investigate the squeezing properties of the ra-
diation field and the atom, we define the slowly varying Her- -0.06
mitian  quadrature  operators a; = 3(a€®'+a'e '), 0.03
a,=1/2(aé—a’e '), 5 =3S,e'*'+S €Y, and '
S,=1/2i(S,e '“'—S_g'“")  whereS; andS,, in fact, cor- o 0.00
respond to the dispersive and absorptive components of the c
slowly varying atomic dipold17], respectively. The above - —0.03
operators obey the commutation relatiofig;,a,]=i3 P
and [S;,S,]=iS,. Correspondingly, the Heisenberg -0.06
uncertainty  relations are A@;)*(Aa,)’=% and 0.24 5 — '(c)-
(AS))?(AS,)?=3%(S,)%. It is convenient to define the 0.18 |- .
following functions h;=(Aa))?’—3 and F,=(AS)? 012 1
—3(Sy)| (i=1,2. Then,the field squeezing is defined if 0.06 i
h;<0 (i=1 or 2)[13], so is the atomic squeezing ;<0 ' 1
(i=1 or 2)[15]. 0.00 [ .
Near resonance and for sufficiently weaker atom-field -0.06 . . LS
coupling, the rotating-wave approximatigRWA) applies, 0 T 2n 3 4
then, the Hamiltoniaril) can be written as Gt
H=0a'a+wS,+G(a'S_+as,). )

FIG. 1. Time evolution of, (the line marked “1") andh, ( the
This is the well-known Jaynes-Cummings mof9], which  line marked “27) in the nor51-RWA-Hami|ltoniar(1) for 9=2m/3,
can be solved exactly. Restricting to the initial conditi@giy =~ =0, 2=w=1.(a) G=10"7 (b) G=10""7 (c) G=1.

we have obtained the time evolutiénn andh, as follows: o ) o ) .
Hamiltonian(1) by truncating an infinite matrix to finite or-

1 1. der[5,7-9. Given the initial staté(0)) of the system, the
F1(t)= 7 — zsir(6)cos(Gt)cos(5) expectable value of an observable variahlat timet can be
calculated as follows:
1 (6 1 ’ _
—‘ 50052(5) cos(Gt)— z" @ (=] 7l p(0) =((0)| e me M| y(0))

=3 3 (0N 48] UO) bl rlge G
© ©

Then we have verified that a dynamical symmetry between (1) =2#/3 and = 0. For a sufficiently weaker coupling
F1 andh, is exposed under the parameter condition: arbi+ig. 1(a) shows the time evolution behaviors Bf andh,
trary phases and —1<cos(@)<0. Furthermore, we have for §=2/3, =0, andG=10 °. We find that there exists
found that under the following parameter condition:a SFAS, whereGTs=GTp=m, and Ay,=0.062 for the
—1<tan(s)<1l and —1<cos@)<—tarf(5), the fluctua- field and atomic squeezing, respectively, appears at the time
tions in S, anda, can be squeezed almost at all times, withGt=(k+ 3) 7 andk. This result can be understood as ad-
identical squeeze duration G(Ts=7) and squeeze dressed above: in this case, the RWA applies, hence the
period GTp=w) and maximum height of squeeze SFAS is observed in Fig.(8).
peak Anma= | F1<0] max=|N2< 0| max= COS(8I2)[ siré(6/ For a strong couplingwhen the coupling consta is
2)cog(8)— 3] [Amaxappearing aGt=ka and k+1/2)7 for  increased up to the order 18 we notice from Fig. (b) that
atomic squeezing and field squeezing, respectively, througtGTg andGTp are smaller than the constamt A, iS less
out the paperk=0, integet, but out of phaséi.e., #/2). Itis  than 0.062, and the squeezed atom cannot radiate a squeezed
clear that there exists a striking dynamical symmetry befield any more at the time regions ne@t=k. It is clear
tween the field and atomic squeezif®FAS, and here the that the SFAS begins to be destroyed for the coupling con-
squeezed atom can radiate a squeezed field almost at afantG up to the order 10. Furthermore, for sufficiently
times. stronger couplingi.e., in the regime of classically chaotic
Now we examine the quantum dynamical properties ofmotion[4]), as shown in Fig. (t), the squeezing disappears
the non-RWA-Hamiltonian(1). Taking |[m,n) as a basis, almost entirely(only atomic squeezing appears at the early
where S|m,n)=m/m,n), m==3 and a’almn) time regiony and the SFAS is destroyed thoroughly. In the
=n|m,n) (n=0, integeJ, we can obtain the eigenstate;) RWA Hamiltonian (3), the counter-rotating wave terms are
and the energy eigenvalls (i=1,2, ...) of thenon-RWA-  neglected, but it is switched on in the non-RWA-

hy(t)= %cos?(%) SirP(Gt)— %sinz( 0)sir’(Gt)cos(d).
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FIG. 2. For0=2/3 andé= w/4, the others are the same as for
Fig. 1. 0.16
Hamiltonian(1). Therefore it is the interference between the 0.08
real-photon processes and the virtual-photon processes that
destroys the SFAS. 0.00

(I 6=2m/3 and 6= /4. In Fig. 2, we show the time
evolution behaviors of; andh, for 6=2#/3 and 6= w/4
and with the same coupling constant as for Fig. 1. Also, we
find for a sufficiently weaker coupling, as shown in Figa)2
there exists a dynamical symmetry betwdenand h,; the ' FIG. 3. Time eyolution of, (the line mark(_ed “1") andh, (the
symmetry begins to be destroyed for the coupling constarif® marked “2") in the non-RWA-Hamiltonian1) for 6=/2,
up to the order 10! [see Fig. )]; and the symmetry is 9-0 Q=wo=1. (@ G=5x10"% (b) during the time
destroyed thoroughly for sufficiently stronger couplifsge 2.35<Gt<2.45 in casda); () G=1.

Fig. 2(c)].

(I 6= =/2 and5§=0. According to Eqs(4) and(5), itis initial condition (2) can be realized in the laboratof{6].
obvious that in the RWA HamiltoniafB), both F; and h, This means that our above results for sufficiently weaker
equal zero for §==/2 and 6=0. In the non-RWA- couplings are significant in the micromaser experiment.
Hamiltonian (1), however, we find that for a sufficiently For a strong coupling constant, the two-level approxima-
weaker coupling, as shown in Fig(a3, there appear quan- tion breaks down far sooner than the RWA, and other atomic
tum collapse revivals, and the squeezing effect is observed @vels, which are coupled by the field to the two levels with
the collapse regions. In detail, during the time gy comparable strength, will cause an impact on the dynamics
2.35<Gt<2.45 in case(a), we notice from Fig. &) that  \yhich is at least comparable to the corrections of the
there also exists a dynamical symmetry betwégnand  cqunter-rotating wave terms to the RWA. In the light of this
h,. For a sufficiently stronger coupling, as shown in Fig. ygint the studies for strong coupling are not realistic in
3(c), we find that the quantum revivals and the squeezing,,anwm optics and micromaser experiments. We feel, how-
effect disappear and the dynamical symmetry is destroyed.ever that the non-RWA-Hamiltoniafl), as addressed ’be—

(IV) Conclusions and discussiang/e draw conclusions fore ’may be of its own academic inte,régts 7-1Q in the
as follows: (a) under the proper choice of an initial atomic . Id, f ch In Ref[9], Graham and I—Itm tbach hav
coherent state, dynamical symmetry and squeezing effecpse. of chaos. In el 9, Lraham a ranerbach have
are exposed in the regime of classically regular motioh; |nd|cate_d that the appearance of chaos in the full _classmal
however, in the regime of classically chaotic motion, theSystem s signaled, in the quantum system, by_the d|sa_pp_ear-

gnce of the quantum revivals. Here we obtained a similar

squeezing effect disappears and the symmetry is destroyed. . = X
thoroughly. conclusion and even found some additional dynamical fea-

The sufficiently weaker coupling constants taken abovdUres, i-e., symmetry breaking and disappearance of squeez-
are accessible in the micromaser experimds, and the ing effect.
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The model() is, in fact, a very popular model in physics, larger than that in quantum optics. So, our findings may have
with a large variety of applications in condensed matterphysical impact on these contexts.
physics[20], macroscopic quantum tunnelifg@1], atomic
and molecular physicE22], as well as quantum optid4.8] ACKNOWLEDGMENTS
and quantum chad$,7-1( (note: in its different fields of This work was supported by the National Basic Research
applications, the Hamiltoniafl) bears different names, such Project, “Nonlinear Sciences,” China. One of (R.-H.X.)
as, “molecular polaron model,” “Rabi Hamiltonian,” etc. ~ was given financial support by the Tianma Microelectronics
In these contexts, the coupling constant is intrinsically muchCo. Ltd in Shenzhen, China.

[1] Z. Qu, G. Hu, G. Yang, and G. Qin, Phys. Rev. L&, 1736 [12] Appl. Phys. B,55, 189 (1992, Special Issues on its applica-

(1995, and references therein. tions, edited by E. Giacobino and C. Fabre.
[2] M.C. Gutzwiller,Chaos in Classical and Quantum Mechanics [13] J. Mod. Opt.34, 709 (1987, Special Issues on the squeezed
(Springer-Verlag, New York, 1990F. Haake,Quantum Sig- field, edited by P. L. Knight.
natures of Chao$Springer-Verlag, New York, 1991 [14] A.M. Fox et al, Phys. Rev. Lett74, 1728(1995, and refer-
[3] L. Allen and J.H. EberlyOptical Resonance and Two-Level ences therein.
Atoms(Wiley, New York, 1975. [15] T. Nasreen and M.S.K. Razmi, Phys. Rev.48, 4161(1992,
[4] P.l. Belobrov, G.M. Zaslavski, and G.Kh. Tartakowski, Zh. and references therein.
Eksp. Teor. Fiz.71, 1799 (1976 [Sov. Phys. JETR4, 945  [16] K. Wodkiewiczet al., Phys. Rev. A35, 2567(198%), and ref-
(1976]; P.W. Milonni, J.R. Ackerhalt, and H.W. Galbraith, erences therein.
Phys. Rev. Lett50, 966(1983; R.P. Frueholz, and J.C. Cam- [17] N.B. Narozhny, J.J. Sanchez-Mondragon, and J.H. Eberly,
paro, Phys. Rev. A7, 4404(1993, and references therein. Phys. Rev. A23, 236(1981).
[5] M. Kus, Phys. Rev. Lett54, 1343(1985; W.-H. Steeb, C.M.  [18] E.T. Jaynes and F.W. Cummings, Proc. IEEE 126 (1963.
Villet, and A. Kunick, Phys. Rev. /82, 1232(1985. [19] G. Rempe, H. Walther, and N. Klein, Phys. Rev. L&®, 353
[6] F. Leyvraz and T.H. Seligman, Phys. Lett.188 348(1986. (1987; G. Rempe, F. Schmidt-Kaler, and H. Walthiid. 64,
[71 R. Graham and M. Huanerbach, Phys. Rev. Letg7, 1378 2783(1990; O. Benson, G. Raithel, H. Walthehijd. 72, 3506
(1986. (1994.
[8] R.H. Xie, D.H. Liu, and G.O. Xu, Z. Phys. B9, 605(1996. [20] G. Yuval and P.W. Anderson, Phys. Rev1B1522(1970; R.
[9] R. Graham and M. Hmnerbach, Z. Phys. B7, 233(1984. Beck, W. Gdz and P. Prelovsek, Phys. Rev. 20, 1140
[10] M. Cibils et al, Phys. Rev. A46, 4560 (1992; L. Muller (1979.
et al, ibid. 44, 1022(1991); M. Aguiar et al, Europhys. Lett. [21] A.O. Caldeira and A.J. Leggett, Phys. Rev. Letb, 211
15, 125(1992. (1981); H. Spohn and R. Dumcke, J. Stat. Phyd, 389
[11] J. Opt. Soc. Am. B4, 1453 (1987, Special Issues on the (1985.

squeezed state, edited by H. J. Kimble and D. F. Walls. [22] D. Feinberg and J. Ranninger, Physicalf) 29 (1984.



