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Canonical partition functions for parastatistical systems of any order
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A general formula for the canonical partition function for a parastatistical system of any order is derived.
The formula expresses the canonical partition functions for these in terms of sums of Schur functions.The only
hitherto known result due to SuranffPhys. Rev. Lett65, 2329 (1990] for parasystems of order two is
obtained as a special case. Our results apply not only to parastatistics but to all statistics that can be defined on
the basis of the permutation group, including those for which no simple definition in terms of the algebra of
creation and annihilation operators is possib&1063-651X96)04107-4
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Parastatistick1—3] was introduced by Gredr] as a gen-

{i4,82}=0; {ai,.al,}=6,

eralization of Bose and Fermi statistics. This generalization,
carried out at the level of the algebra of creation and annihi- [ai,,85]; [& a}rﬂ]=0 if a%p (6)
) ’ a .

lation operators, involves introducing trilinear relations in

place of the bilinear relations that characterize Bose and The definition of parasystems via the Green decomposi-
Fermi systems. The Fock space of a para-Bose system @bn is more amenable to physical interpretations and pos-
orderp, wherep is any positive integer, is characterized by sible applications than that based on the trilinear relations

the trilinear relations
[a.{a,an}]=0; [ax.{al,al}]=280ak+26ma ;
[ac.{a] \am}]=280anm, D
and the supplementary conditions
aa|0)=péyl0). 2
Similarly, the trilinear relations
[a.[a,am]]1=0; [ay,[a],af]]=26al— 26l ;
[ac.[a] \am]]=25qan, 3

together with the supplementary conditiof® define para-
Fermi systems of ordep. Bose and Fermi statistics arise
from these as a special case corresponding=td. A con-

given above. Indeed, by interpreting as a new quantum
number a model for quarks was proposed by Greenp&rg
as a possible way to overcome certain difficulties with the
symmetry properties of three quark wave functions.

Recent developments in interacting many-particle systems
have shown that the quasiparticles in such systems may ex-
hibit features far more exotic than those permitted to elemen-
tary particles and have led to the advent of fractional statis-
tics [6-7], which interpolate between Bose and Fermi
statistics. Of these the anyon statist[{&d, based on one-
dimensional representations of the braid group, arises in the
context of effectively two-dimensional condensed matter
systems. The anyon stastistics is peculiar to two-dimensional
systems and a possible generalization of the notion of frac-
tional statistics to any dimension has been proposed by the
Haldane[6]. In view of the rich variety of statistics that the
quasiparticles may exhibit, it appears quite possible that par-
astatistcs, though originally intended for elementary par-

venient representation of para systems is provided by thgcles, may be realized in condensed matter physics via the

Green decomposition. Here the annihilatigreatior) opera-
tors ai(aiT) for a para system of ordgy are expressed as
sums of annihilation(creation operatorsaia(ai’ra), which
carry an extra labed taking values 1. .. p,

p p
a=2 a. a=2 al; aJ0)=0. (@

The operators;, anda, obey commutation relations that

Green decomposition. However, in seeking such applications
of parastatistics, it is essential that one has a complete
knowledge of the thermodynamic properties of ideal para
systems. Often the nature of quasiparticles is deduced by
comparing the experimentally observed thermodynamic
properties with those of known model systems. It seems sur-
prising that, though parastatistics has been around for over
four decades, the first calculation of the canonical partition
function for a nontrivial parasystem, a parasystem of order

are partly bosonic and partly fermionic. For a para-Bose systWo, was reported only a few years aff). The aim of the.

[2.8,]=0; [a,.a],]=8,
{aic.2j5)={ai..afp} =0 if a#p. ®

For a para-Fermi system of ordpr the corresponding rela-
tions are
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system of any order. Our work encompasses not only par-
astatistics of any order but also all statistics that can be de-
fined on the basis of the permutation group including those
for which no simple definition in terms of the algebra of
creation and annihilation operators is possible. This is
achieved by following the approach to parastatistics pio-
neered by Messiah and Greenbé¢fj and further investi-
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gated by Hartle, Stolt, and Taylgt0]. In this approach par- Z0(Xq, o X)) = (X )N
astatistics arises in the quantum mechanical description of an
assembly oN-identical particles with the permutation group N!

Sy playing a central role in defining various kinds of statis- - EA: TS W M (X1, - - Xm)-
tics including the parastatistics of Green. IN[=N
We begin with the Maxwell-Boltzmann or the infinite sta- (11)

tistics and show how various permutation statistics arise . o
from it. Consider a Hilbert spack built by anN-fold tensor ~ Stated in words(11) tells us that the contribution of each
product of a Hilbert spacél of dimM. Let 1,2,3,...,M partition A to the partition function is given by

denote the basis vectors Hfande, , e, . . . ey the associ- M\(X1, ... Xy) times the number of states
ated energies. ThN basis vectors of{ correspond to each N!/A4!, ... . \y! in that partition. It may also be noted here
term in the product that the monomial symmetric functions play a special role in

the context of decompositions based on occupation numbers.
Given the canonical partition function, its expansion in terms
of the monomial symmetric functions yields all information
regarding the decomposition based on occupation numbers.
For instance, setting; =x,=Xy=1 in (11) we obtain

(1424 +M)(1+2+4 -+ M) (1+2+--- +M)

N factors.
(@) MN=S ——  m(1,....D, (12)
A )\1 P )\M'
One may consider two decompositions of this setMf  which tells us that each partition\(, ... Ay) corresponds
states. tom, (1, ...,1)sets of occupation numbers obtained by dis-

1. Decomposition based on occupation numb@&tss de-  tinct permutations ofA;’'s and each such set contains
composition is required for defining the canonical partitionN!/\;!...Ay! states. For a given\ the number
function for an ideal system. Here one groups together statg®, (1, - -,1) is given byM!/m;!m,! .- ., wherem; denotes
that have the same number of 1's, 2's, etc., regardless dhe number of times; occurs in the partitior.
their location in the product. Each such group is character- 2. Decomposition based on the permutation grduogthis
ized by a composition ofN, i.e., by a set of occupation decomposition we regard theN states as the carrier space
numbersn=(n;,n,, ...,ny), adding up toN, which give for an MN dimensional representation of the permutation
the number of times 1,2,.. ,M occur in the states in that groupSy. This reducible representation can be decomposed
group. Elementary combinatorial considerations tell us thainto the irreducible representations 8f which, as is well
each such group contaimé!/n;!n,!---n,,! states. The ca- known, are in one-to-one correspondence with the partitions

nonical partition function is therefore given by of N. All features of this decomposition can be deduced
from the partition functionZ',Gf(xl, ... Xy) as follows. Us-
me(Xl’ o x)= 2 - IN! . 'X,legz' . -x”MM, ing the Frobenius formuld11) may be written as
1. 2 A M .
SmeN ZN Xy, - X)) = Xy )N
€S)
. . = N(N)S\(Xq, - .- Xpm), (13
where x;=exp(—pBe);i=1,... M. Using the fact that % (M)si(x w, (13
N!/ngInyt---ny! is a symmetric function of =N
N1,Nz, ...,Ny We may rewrite the Sum over compositions wheren(\) denotes the dimension of the irreducible repre-
of N in (8) in terms of a sum over partitions &f sentation\ of Sy ands, (xy, . .. Xy) denote the Schur func-
N! tions[11,12.
inf _ . .
ZV ks X = 2 S M X ). detx ™M)
[A[=N S\(X1y oo X)) = —————  1<i,j=M. (14
0 (X1 M) de(XiM 3 J (14)
HereA=(A1,A2, ... Apm), AMqi=Ao=N5--- =\ is a parti-  Note that the Schur functions, like the monomial symmetric
tion of N (indicated by|A|=N), andm, (x4, ... Xy) de- functions, are symmetric functions and can be defined in
notes the monomial symmetric functighl] corresponding many different ways. The definition given above is the one
to the partitioni: that Schur originally used. We shall encounter other defini-
tions of these functions later. The relati@B) will play an
_ AAs A important role later and it may be interpreted as follows. The
My (X1, - ) = 2 X% X, (100 contribution of each irreducible representationf Sy to the
partition function is equal to the Schur function
The sum on the right-hand sidehs) of (10) is over all dis-  s,(Xq, . .. Xu) times the number of states in the irreducible
tinct permutations of Xy, ... A\y). representation, i.e., its dimensiom(\A). Thus we see that

The sum in(8) can be carried out using the multinomial in this decomposition the Schur functions play the same role
theorem and the result is as the monomial symmetric functions play in the decompo-
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sition based on the occupation humbers. For instance, settinghich, in view of an alternative definition of Schur functions

X1=X,=---=Xy=1 in (13) we get
MN= D n(\)sy(1,....D, (15)
IXIA:N
which tells us thas, (1, ...,1) is thenumber of times the

irreducible representation occurs in this decomposition.
The numbers, (1, . ..,1) isgiven by

M

sy(1,....0=]]

i<j

Ni—N+j—1)

0 (10

So far we have been dealing witH in which all the

MN states were considered as independent. Following Ref
[9] and [10] we now construct out of it a generalized ray

spaceHy,, by (a) admitting only those operators i that
are permutation symmetric arb) identifying those states in

‘H that have the same expectation values for all permutatio

symmetric operators.

These assumptions, by Schur's lemma, imply that al

states inH belonging to an irreducible representatipnof
Sy count as one state Gfy,,. This together with the inter-
pretation of(13) stated above implies that in writing down
the partition function appropriate %, we should take the
contribution of each irreducible representatioof Sy not as
N(\)S, (X1, ... Xym) but ass,(Xq, ... Xy). The partition
function appropriate tG4,, is thus given by

A G xw).  (17)

.,XM): ; S}\(Xl,

[\=N

This is the key result of this workHere we use the super-

scripts HST to denote Hartle, Stolt, and Taylor in honor of

their contributions to parastatistigs.

We may arrive at the above result from the decompositio

(11) as well. In this decomposition each corresponds to

NI/Nq!---Ny! states, which provide a reducible representa

tion of Sy of dimensionN!/\,!---\y!. Decomposing it
into the irreducible representations $§ and using a known
mathematical resultlZ] we obtain

N!

—1)\,\“:; Kn(x),

A (18)

whereK ,, denote the Kostka numbefis1,12. Using(18) in
(11) we can rewrite(11) as

Xm).

(19

Z0f(xq, ... ,xM)zg n(X)E;, Kam(Xq, - ..

Following the same logic as above, and settirjg) =1 we

obtain the following expression fa>" in terms of the mo-

nomial symmetric functions:

ZHST(Xl’ L ,xM):; (% KX)\)m)\(xl, oo X)),
(20)

[11,12 given by

S, (Xq, ... ,xM)=(; ka)mx(xl, ooXw) o (2D

is easily seen to be the same(43). The above expression
for Z{=Tin terms of the monomial symmetric functions gives
us a complete picture of the occupation number decomposi-
tion of H,n,. The number of states corresponding to a set of
occupation numbers\g, ... ,Ay) (or any distinct permuta-
tion thereof is given by €,K,,). As to the Kostka numbers
Ky, that appear in the above equations, there is a simple
combinatorial algoritham to compute them. For given parti-
gons AN=(N1,No, ... Aym) and x=(x1.x2, - - - xm) Of N
the Kostka numbekK, , is equal to the number of ways in
which the Young tableau corresponding to the partition
can be filled up withy; 1's, x» 2's, etc. in such a way that
Hwe numbers along the rows when read from left to right do
not decrease and the numbers along the columns when read
Ifrom top to bottom increase. Thus, for instance, for the par-
titions A =(4,2) andy=(3,2,1) of 6 we geK,,=2.

So far no restrictions have been put ®n— the sum on
the rhs of(17) is over all partitions ofN. We shall refer to
this statistics as HST statistics. The para-Bose case of order
p arises when we restrict the sum (ih7) to only those par-
titions of N whose length (\) (the number of the nonzero
\i's) is less than or equal tp. In terms of Young tableaux,
this amounts to retaining only those irreducible representa-
tions of Sy in which the number of boxes in the first column
is <p. The partition function for this case is

ZRB(Xq, ... Xy ip)= EA: Sy (X1, ... Xm). (22

[\=N
I(M)=p

r’Similarly, the para-Fermi case of order arises when we

restrict\ in (17) to those partitions for which;<p, or, in

the language of partitions, to those partitions whose conju-
gate partition\’ is of length<p . In terms of Young tab-
leaux this implies retaining only those irreducible represen-
tations ofSy in which the number of boxes in the first row is
<p. The partition function appropriate to this case is

ZR (X, - Xyip) = S\(X, ... Xy). (23

>
[A[=N
IN)<p

Likewise, for the f,q) statistics the corresponding symmet-
ric functionZ{P"'P(x,, ... xy) is obtained by restricting the
sum in (17) to those partitions for whicn(\)<p and
[(N")=<q. The partition functions in all these cases can be
expressed in terms of the monomial symmetric functions as

,XM):E

N

Zn(Xq, ...

(2)(: KXA)mA(xl, o X)),
(24)

with y appropriately restricted.
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It may be noted that ip,q=N, all these cases reduce to hy hy. 41
HST. In other words, the HST statistics is the» limit of ZRB(x,, ... xm:2)=hy+ > de ! Y
para-Bose and para-Fermi statistics of orger M+iz:N hxz—l hxz
As an illustration, let us consider five para particles of M=he (33
order p=3. Using (24) and the table for Kostka numbers
given in Ref.[11], we find that the canonical partition func-
tion for the para-Bose case is which on simplification leads to
ZEB: m(s) + 2m(41) + 3m(32) + 5m(312)
ZRB(Xq, ... Xy 2
+7m(221)+ 12m(213)+21m(15) y (25) N ( 1 M )
and _ h3(Xy, ... Xy) if N=2P
hp+1(xl, ...,XM)hp(Xl, ...,XM) |f N:2P+1
ZEF: m(32) + 2m(312) + 4m(221) + 9m(213) + 16”](15) (26) (34)
for the para-Fermi casgHere, for brevity, we have omitted
the argumentsxg,, .. . Xy) and have used a compressed butrg resyit for para-Fermi of order 2 is obtained by replacing

obvious notation for the partitions.

h's by e's. Thus we obtain the results due to Suraf#j,

The expressions for the partition functions given above,nich arise as a special case(@®) and (23).

are in terms of the Schur and the monomial symmetric func-

Finally, for the HST statistics, which, as noted above, is

tions._ One can EXPress them in terms of _other symmetrig, p—oe limit of para-Bose and para-Fermi statistics, the
functions as well using some formulas that involve what argy 4 canonical partition function can be calculated exactly

known as Jacobi-Trudi determinants. They prove to be ex

tremely useful in carrying out the sums({@2) and(23) with

restrictions on the lengths of the partitions and are given b

[11,12,
S)\(X]J "-1XM):de(h)\i7i+j)1 1$|1]$|()\)1 (27)
S\(Xq, ... ,xM)=de(ekir,i+j), 1<i,j<I(\'). (29
Here the complete symmetric functiohg(x,, ... Xy) and
the elementary symmetric functiomes(x,, . .. Xy) are de-
fined as follows:
h (Xq, ... Xw)= 27\: My (X1, -« Xm)s (29
IN[=r
e (X1, ... Xm)= > Xi Xi o X (30

i1<ip<---<i;

using a known resulf11] for the Schur functions and is

>9iven by

1 1
H (1_Xi)i1;[j (1=xix)’

ZHST(X]_, e ,XM): (35)

where x;=ex —(Be€+u)]. This grand canonical partition
function has an interesting structure. It is the product of the
grand canonical partition functions of two bosonic systems,
one with single-particle energies and the other with single-
particle energieg; + €;,i<j.

To conclude, by adopting the approach propounded in
Refs.[9] and[10], and essentially using just the Frobenius
formula (13) we have been able to obtain canonical partition
functions for all statistics based on the permutation group
including those for which no simple second quantized nota-
tion is available. In all these statistics the Schur functions
play a unifying role. The canonical partitions for all these
systems can be expressed as sums of Schur functions with

Using these formulas one can express the partition functionsoefficient one. While we have also been able to find an

above in terms of eithen’s or e’s, which, as we shall see, exact expression for the grand canonical partition function
are simply the canonical partition functions for bosons andor a para-Fermi system of any order, the work on para-Bose
fermions. As an illustration, let us consider the Bose casesystems is still in progress and detailed analyses of the ther-
Here, sincel (A\)=<1, we have only one term on the rhs of modynamic properties derivable from these results would be
(22) corresponding ta.=(N,0,0,...,0). Using(24) we ob-  presented elsewhere.

tain
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tain
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