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We study the low-energy quantum spectra of two-dimensional rectangular billiards with a small but finite-
size scatterer inside. We start by examining the spectral properties of billiards with a single pointlike scatterer.
The problem is formulated in terms of the self-adjoint extension theory of functional analysis. The condition
for the appearance of so-called wave chaos is clarified. We then relate the pointlike scatterer to a finite-size
scatterer through an appropriate truncation of the basis. We show that the signature of wave chaos in low-
energy states is most prominent when the scatterer is weakly attractive. As an illustration, numerical results of
a rectangular billiard with a small rectangular scatterer inside are exhibited.@S1063-651X~96!08908-8#

PACS number~s!: 05.45.1b, 03.65.Db

I. INTRODUCTION

The two-dimensional billiard is an appropriate tool for
examining generic features of dynamical systems because of
the wide range of dynamical behaviors, going from the most
regular~integrable! to the most irregular~chaotic! depending
on the geometry of its boundary. Although no mathematical
proof exists, it is widely believed that fingerprints of the
regular or irregular nature of the classical motion can be
found in statistical properties of the quantum spectrum both
in energy levels and wave functions. Integrable systems such
as circular, elliptic, and rectangular billiards obey Poisson
statistics @1,2#, while the predictions of the Gaussian or-
thogonal ensembles describe chaotic systems such as Sinai’s
billiard and Bunimovich’s stadium@3,4#.

Besides these extreme classes, there is an intermediate
category called apseudointegrable@5,6# or almost integrable
@7# system. Typical examples are staircase billiards@8#, ra-
tional polygons@5,9–11#, and billiards with pointlike scatter-
ers inside an integrable one@12–17#. The nature of classical
motion in pseudointegrable systems can be considered as
integrable in the sense that unstable trajectories are of mea-
sure zero. However, several numerical studies have revealed
that, under a certain condition, quantization induces the cha-
otic energy spectra, which can be regarded as a counterex-
ample for the correspondence between the energy spectra
and the underlying classical motion. This phenomenon is
calledwave chaosbecause its origin is the wavelike nature of
quantum motion. For billiards with pointlike scatterers, this
phenomenon has been understood in terms of the quantum
breaking of the classical scale invariance@17#. However, the
notion of the pointlike scatterer is a mathematical abstraction
whose relevance to the physical system is far from straight-
forward. It is therefore highly desirable to show that the na-
ture of wave chaos remains intact for the case of a finite-size
scatterer. This is the prime motivation of the work we report
in this paper. We restrict ourselves to considering billiards
with a small but finite-size scatterer inside an integrable one.
It is shown that, even if the scatterer has a substantial size,
the signature of wave chaos is observable under a certain

condition. The condition is consistent with a previous nu-
merical observation in Sinai’s billiard, which indicates that
there exists no signature of wave chaos when the scatterer is
repulsive.

The paper is organized as follows. We start by examining
the spectral properties of pseudointegrable billiards with a
pointlike scatterer in Secs. II and III. In the former section,
we give an accurate description of a pointlike scatterer, based
on the self-adjoint extension theory in functional analysis. A
special emphasis is laid on the distinction between symmetry
and self-adjointness. We give an intuitive explanation of the
necessity of the self-adjointness for quantum mechanical
Hamiltonians. Applying a general prescription for extending
a symmetric operator to a self-adjoint one, we derive the
Green’s function for billiards with a single pointlike scat-
terer. A renormalized coupling constant of the scatterer is
defined in a natural manner, although its physical meaning is
somewhat unclear at this stage. Based on the formulation in
Sec. II, we discuss the quantum spectra of billiards with a
pointlike scatterer in Sec. III. The general condition for the
appearance of wave chaos is clarified. In Sec. IV, we con-
sider a Dirac’sd function potential with a truncated basis.
Although it is not well defined with a full basis in two-
dimensional billiards, we can deduce certain physical con-
tents from the truncated system, which serve as the basis for
the ensuing discussions. The findings in Secs. III and IV are
applied to the cases of a small but finite-size scatterer in Sec.
V. It is shown that the wave chaos is manifest at low energy
with attractive potentials. As an illustration, we give a nu-
merical example of a rectangular billiard with a small rect-
angular scatterer inside. We also show a proper procedure for
the zero-size limit of the finite-size scatterer, which is con-
sistent with the self-adjointness of the Hamiltonian. This
clarifies the physical meaning of the renormalized coupling
constant defined in Sec. II. We give conclusions in Sec. VI.

II. QUANTUM MECHANICAL FORMULATION
OF PSEUDOINTEGRABLE BILLIARDS
WITH A POINTLIKE SCATTERER

In spite of the apparent simplicity, careful treatments are
required for a definition of quantum billiards with a pointlike
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scatterer inside. Several methods are known for this purpose
@18#. Here we adopt one based on the self-adjoint extension
theory in functional analysis@19#. We briefly summarize the
formalism, stressing the necessary points for discussions in
following sections. We also mention the physical reasons
why quantum mechanics requires self-adjointness for Hamil-
tonians.

Let us consider an integrable billiard of areaS with the
Dirichlet boundary condition such that wave functions van-
ish on the boundary. The eigenvalues and corresponding
eigenfunctions are determined by the stationary Schro¨dinger
equation

H0wn~xW ![2
1

2M
Dwn~xW !5Enwn~xW ! ~n51,2,3, . . . !,

~1!

wherexW is the coordinate vector in two-dimensional space,
andM is the mass of a particle moving in the billiard. We
adopt natural units throughout this paper:\51 and c51.
This leaves a single independent unit among mass, energy,
and length. The domain ofH0 is D(H0)5H2(S)ùH0

1(S) in
terms of the Sobolev spaces.~We denote the domain of the
billiard by the same symbol as the area unless there is danger
of confusion.! In the following, we assume that the unper-
turbed billiard has no degeneracy. The Green’s function of
this system is given by

G~0!~xW ,yW ;z!5 (
n51

`
wn~xW !wn~yW !

z2En
, ~2!

wherez is an energy variable. Suppose that a pointlike scat-
terer is placed atxW5xW0 inside the billiard. Following the
self-adjoint extension theory in functional analysis, the ei-
genvalues and corresponding eigenfunctions of the perturbed
system are calculated as follows.

The first step for this purpose is to remove the relevant
scattering pointxW0 by restrictingH0 to T5H0dD(T) with the
domain

D~T!5$w~xW !PD~H0!uw~xW0!50%. ~3!

By using integration by parts, it is easy to see thatT is
symmetric (Hermitian). However, the domain ofT* , the ad-
joint operator ofT, is not identical toD(T), and is indeed
larger thanD(T):

D~T* !5D~T! %R~T2l̄!' %R~T2l!', ~4!

whereR(T2l)', which is the orthogonal complement to the
range ofT2l, corresponds to the deficiency subspace ofT
given by @20#

R~T2l!'5$w~xW !uw~xW !5cG~0!~xW ,xW0 ;l̄!,cPC%, ~5!

with an arbitrary complex numberl (ImlÞ0). It follows
from D(T* )ÞD(T) thatT is not self-adjoint. A symmetric
operator is self-adjoint if and only ifD(T* )5D(T).

The two following facts serve to understand the reason for
imposing self-adjointness on quantum mechanical Hamilto-
nians@21,22#. One of them is based on the assertion

N~T*2l̄!5R~T2l!' ~ ImlÞ0!, ~6!

whereN(A) is the null space~or kernel! of the operatorA.
This means thatT* has a complex eigenvaluel̄ with eigen-
space R(T2l)'. If and only if T is self-adjoint,
R(T2l)'5B, i.e., R(T2l) is the entire Hilbert space
X5L2(S), the set of all square-integrable functions overS.
This is one of the reasons why quantum mechanics, which
does not allow complex eigenvalues for observables, re-
quires self-adjoint Hamiltonians. The second fact is closely
related to the unitarity of time-evolution operators. The time-
evolution operatorU(t) is constructed fromT as follows;

U~ t ![e2 iTt5 lim
n→`

S 11
iTt

n D 2n

5 lim
n→`

H S i tn D 2nS T2
in

t D 2nJ .
~7!

It is easy to see that, for any symmetricT, an operator
(T2l)21 with pure imaginary lÞ0 is defined from
R(T2l) to D(T) with i(T2l)21wi<iwi /uImlu for any
wPR(T2l). If R(T2l) is not all of X, then, in general,
(T2l)2n can be defined on smaller and smaller spaces as
n increases. This leads us to a natural condition
R(T2l)5X, implying that time-evolution operators which
preserve probability can be constructed only from self-
adjoint operators.

The above considerations indicate that we have to extend
D(T), or equivalently, restrictD(T* ), in order to construct a
self-adjoint operator fromT5H0dD(T). This is indeed pos-
sible since dimR(T2l̄)'5dimR(T2l)'. Because both the
deficiency subspaces are one-dimensional, a one-parameter
family of self-adjoint extensions ofT exist. According to a
general prescription for extending a symmetric operator to
self-adjoint ones@23#, all the self-adjoint extensions ofT are
given byHu5H0 (0<u,2p) with the domain

D~Hu!5$c~xW !uc~xW !5w~xW !1cG~0!~xW ,xW0 ;l!

2ceiuG~0!~xW ,xW0 ;l̄!;

w~xW !PD~T!,

G~0!~xW ,xW0 ;l!PR~T2l̄!',

G~0!~xW ,xW0 ;l̄!PR~T2l!',cPC%. ~8!

Equation~6! with Eq. ~5! indicates that the operation ofHu

on c(xW ) is given by

~Huc!~xW !5~H0w!~xW !1lcG~0!~xW ,xW0 ;l!

2l̄ceiuG~0!~xW ,xW0 ;l̄!. ~9!

The operatorHu is regarded as the Hamiltonian of the per-
turbed system with a pointlike scatterer. Notice that, al-
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though we haveHu5H0 on D(T), D(Hu) is substantially
larger thanD(T): D(T),D(Hu),D(T* ). We recognize
from the second and third terms ofc(xW ) in Eq. ~8! that the
appropriate boundary condition around the scatterer is speci-
fied after the extension. It will be shown below that the value
of u is related to the strength of the pointlike scatterer.

With the aid of the resolvent equation, we can write an

equation for the Green’s function of the system with the
HamiltonianHu as

Gu~xW ,yW ;z!5G~0!~xW ,yW ;z!1G~0!~xW ,xW0 ;z!Tu~z!G~0!~xW0 ,yW ;z!,

~10!
where the transition matrix (T matrix! Tu(z) is calculated
through

Tu~z!5
12eiu

~z2l!E
S
G~0!~xW ,xW0 ;z!G~0!~xW ,xW0 ;l!dxW2eiu~z2l̄!E

S
G~0!~xW ,xW0 ;z!G~0!~xW ,xW0 ;l̄!dxW

. ~11!

After substituting Eq.~2! into Eq.~11!, and with a somewhat
lengthy but straightforward calculation, we have

Tu~z!5@vu
212G~z!#21, ~12!

where

vu
215ulu

sinS u

2
1argl D
sin

u

2

(
n51

`
wn~xW0!

2

uEn2lu2
, ~13!

G~z!5 (
n51

`

wn~xW0!
2S 1

z2En
1

En

uEn2lu2D . ~14!

It follows from Eq. ~12! that the perturbed eigenvalues are
determined by

G~z!5vu
21 . ~15!

The solutions of this equationzn (n51,2,3,. . . ) correspond
to the poles of theT matrix. The corresponding eigenfunc-
tion is the residue of the Green’s function of Eq.~10! at the
pole,

cn~xW !5NnG
~0!~xW ,xW0 ;zn!, ~16!

where the normalization factor is determined by

Nn
225 (

k51

`
wk~xW0!

2

~zn2Ek!
2 . ~17!

Although theT matrix seemingly has two independent
parametersl andu, this is not the case. This follows from
the fact thatulu is regarded as a scale of mass in case ofl
being pure imaginary. Indeed, takingulu as a unit of energy,
we can fix l51 i , which makes all the relevant physical
quantities dimensionless. Such a treatment is justified by the

assertion that a symmetric operatorT is self-adjoint if the
conditionR(T2l)5R(T2l̄)5X is valid for some fixedl
(ImlÞ0). This means that if and only ifR(T6 i )5X, a
symmetric operatorT is self-adjoint. Thus, without any loss
of generality, we can make the replacement ofulu→1,
z→uluz, En→uluEn andwn→uluwn in Eqs. ~13!, ~14!, and
~15!. We then have

Ḡ~z!5 v̄ u
21 , ~18!

where

v̄ u
215

sinu

12cosu (
n51

`
wn~xW0!

2

En
211

, ~19!

Ḡ~z!5 (
n51

`

wn~xW0!
2S 1

z2En
1

En

En
211D . ~20!

We can regardv̄u as a coupling constant of a pointlike scat-
terer. It ranges over all real numbers as 0<u,2p.

In a previous publication@16#, we referred to the coupling
constantv̄u as the bare coupling constant, denoted byvB .
However, this is somewhat confusing, becausev̄u should be
considered to arise in a renormalization process for treating
short-range singularities in a proper manner, which we often
encounter in field theory. It might be more appropriate to call
v̄ u the renormalized coupling constant.
Because the average level density of two-dimensional bil-

liards is independent of energyz, each term in the parenthe-
ses of Eq.~20! diverges when summed separately. The di-
vergence disappears when summed together. This means that
the second term of Eq.~20! plays an essential role to make
theT matrix well defined. It is also noteworthy that the en-
ergy dependence appears only in the first term of Eq.~20!.
This ensures the orthogonality of the perturbed eigenfunc-
tions $cn(xW )% (n51,2,3,. . . ). That is, formÞn, we have

E
S
cm~xW !cn~xW !dxW5NmNn

Ḡ~zn!2Ḡ~zm!

zm2zn
50. ~21!
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The orthonormal relations of the unperturbed eigenfunctions

$wn(xW )% (n51,2,3,. . . ) areused in the first equality, and
the second equality results from Eq.~18!. The authors of Ref.
@24# have discussed a rectangular billiard with a single point-
like scatterer, and deduced an eigenvalue equation, Eq.~23!
in Ref. @24#, which is seemingly analogous to Eq.~18! with
Eqs.~19! and ~20! in this paper. However, there is one cru-
cial difference between them. The authors of Ref.@24#
started with the assumption that the transition matrix is en-
ergy independent, which does not agree with Eq.~12! in
this paper, and, as a result, the divergence appeared in

G(0)(xW ,xW0 ;z) in the vicinity of the scatterer,xW.xW0, is regu-
larized by a logarithmically energy-dependent term, while
the coupling strength remains constant in Eq.~23! in Ref.
@24#. This is nothing but the coupling strengthv̄u changing
according to the energy in Eq.~18! in this paper, leading to a
violation of the orthogonality of the perturbed eigenfunctions
as well as the unitarity of the time-evolution operator.

III. QUANTUM SPECTRUM
OF PSEUDOINTEGRABLE BILLIARDS
WITH A POINTLIKE SCATTERER

Equipped with the formulation in Sec. II, we examine the
spectral properties of pseudointegrable billiards with a point-
like scatterer. A special emphasis is placed on the condition
for the appearance of wave chaos.

An important fact is that each perturbed eigenvalue is
isolated between two unperturbed ones. This follows from
the fact thatḠ(z) of Eq. ~20! is a monotonically decreasing
function of z on the interval between any two successive
unperturbed eigenvalues, (En ,En11), covering the entire
value between (2`,`). It is also clear thatḠ(z) has a
single inflection point on (En ,En11). We have shown in
Ref. @16# that the disturbance by the pointlike scatterer is
restricted to eigenstates with an eigenvalue around which
Ḡ(z) has an inflection point~see Figs. 2 and 3 in Ref.@16#!.
This is understood also from the eigenfunction Eq.~16! with
Eq. ~2!; if a perturbed eigenvalue is close to an unperturbed
one, the corresponding perturbed eigenfunction is not sub-
stantially different from the corresponding unperturbed one.

In Ref. @16#, the condition for the inflection points has
been deduced in a somewhat complicated manner, by mak-
ing a truncation of the unperturbed basis according to the
energy under consideration. Here we refine the argument
without introducing any truncation of the basis.

Each inflection point ofḠ(z), sayz̃m (m51,2,3,. . . ), is
expected to appear, on average, around the midpoint on
(Em ,Em11), z̃m.(Em1Em11)/2. Since the average level
density of the unperturbed system israv5MS/(2p) accord-
ing to the Weyl’s theorem, the unperturbed energies are dis-
tributed, on average, at regular intervalsrav

21 . Furthermore,

the average ofwn(xW0)
2 among variousn is indepenent of the

energy,̂ wn(xW0)
2&.1/S for a generic choice ofxW0. Thus the

contributions from 0,En, z̃m and z̃m,En,2z̃m.E2m on
the summation of the first term in Eq.~20! are canceled with
a high degree of accuracy. This allows us to estimateḠ(z) at
the inflection pointz̃m as follows:

Ḡ~ z̃m!. (
n51

2m

wn~xW0!
2

En

En
211

1 (
n52m11

`

wn~xW0!
2S 1

z̃m2En

1
En

En
211D

.aH E
0

E2m E

E211
dE1E

E2m

` S 1

z̃m2E
1

E

E211D dEJ
.a ln z̃m , ~22!

where we define

a5rav̂ wn~xW0!
2&.

M

2p
. ~23!

It follows from Eqs. ~18! and ~22! that the effects of the
pointlike scatterer on the quantum spectrum are observed in
the eigenstates with an eigenvaluez such that

a lnz. v̄ u
21 . ~24!

The condition of Eq.~24! corresponds to Eq.~60! in Ref.
@16#. It is also noteworthy that ans-wave phase shift of the
two-dimensional scattering problem with a single pointlike
scatterer shows a similar logarithmic dependence on energy
z @18,25#. The origin of such an energy dependence is
closely related to the energy scaleulu introduced by the self-
adjoint extension of a symmetric operator; any function
which depends onulu has an energy dependence, so as to
guarantee the argument to be dimensionless. Although the
nature of a particle motion in billiards is independent of the
energy in classical physics, the singularity of the interaction
induces an energy dependence of the observables after quan-
tization. This can be considered as a typical example of
quantum mechanical breaking of scale invariance, orscale
anomaly@17,25#.

Let us proceed to make an estimate of the width of a strip
along the logarithmic curve of Eq.~24! on which the distur-
bance of the scatterer is observable. Using the derivative of
Ḡ(z) at an inflection pointz̃m , we can estimate the width,
sayD, as follows:

D!uḠ8~ z̃m!urav
21.^wn~xW0!

2& (
n51

`
2

$~n2 1
2 !rav

21%2
rav

21.

~25!

We have implicitly assumed in Eq.~25! that the unperturbed
eigenvalues are distributed within a mean intervalrav

21 in the
whole energy region including negative energies. This as-
sumption is quite satisfactory in this case, because the de-
nominator ofḠ8(z) is of the order of (z2En)

2, indicating
that the summation in Eq.~25! converges rapidly. With the
aid of a relation
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(
n51

`
1

~2n21!2
5

p2

8
, ~26!

we arrive at

uḠ8~ z̃m!urav
21.p2a, ~27!

which means

D.a. ~28!

The estimate of Eq.~28! is justified from another perspective
later in this paper.

The above considerations lead us to the condition for the
appearance of wave chaos. The effect of a pointlike scatterer
with strengthv̄u appears mainly in the eigenstates with an
eigenvaluez, satisfying

u v̄ u
212a lnzu&D. ~29!

In other words, wave chaos occurs in the energy region
which satisfies

expH 1

a v̄u

21J &z&expH 1

a v̄u

11J . ~30!

These conditions are corroborated by the numerical experi-
ments of the spectral statistics of rectangular billiards with a
pointlike scatterer~see Figs. 5 and 6 in Ref.@16#!. The con-
dition of Eq. ~29! contains all the essential physics of wave
chaos. From this, we can draw the following conclusions.

~1! For any positivev̄u , wave chaos appears at the energy
which satisfies Eq.~29!, while it is hardly seen in other en-
ergies. If v̄u is larger thanD21, wave chaos appears only
around the ground state region. As the energy increases, it
tends to disappear. On the other hand, ifv̄u is substantially
smaller thanD21, wave chaos appears in the higher-energy
region specified by Eq.~30!. In the limit of v̄u→10, the
system restores the integrability by pushing up the chaotic
region to the infinite energy.~In this limit, the eigenvalue of
the single eigenstate with an eigenvalue smaller thanE1 di-
verges to2`.!

~2! Wave chaos does not appear at any energy ifv̄u is
negative. In particular, the system converges to the unper-
turbed one asv̄u→20.

~3! For any v̄u , the system behaves as integrable in the
high-energy limit, which agrees with our intuition that a
pointlike scatterer has no effect on a particle motion in the
classical limit. In other words, quantum billiards with a
pointlike scatterer have the nature ofasymptotic freedom,
which has been first discovered in the non-Abelian gauge
field theories.

IV. FORMAL DESCRIPTION
OF A POINTLIKE SCATTERER IN TERMS

OF A DIRAC’S DELTA FUNCTION

We have revealed various features of two-dimensional
billiards with a single pointlike scatterer from a general per-
spective in Sec. III. From a practical point of view, however,
we still need to identify the physical meaning of the coupling
strengthv̄u , which does not have a direct relation to physical

observables. As a first step for this purpose, we show in this
section thatv̄u can be related to the physical strength of a
pointlike scatterer through a truncation of the unperturbed
basis.

Let us consider aformal Hamiltonian with a Dirac’sd
function potential

H5H01vd~xW2xW0! ~31!

with a truncated unperturbed basis $wn(xW )%
(n51,2,3,. . . ,N). We can regardv as the physical coupling
constant of the pointlike scatterer. Notice that a Hamiltonian
like Eq. ~31! cannot be defined in billiard problems with
higher dimension than 1, because one cannot take the limit of
N→`. For a moment, however, we will go further along
with fixed N, and return to this point later in this section.

The characteristic equation ofH is given by

det~zI2H02V!50, ~32!

where I is an N-dimensional unit matrix. The matrix ele-
ments ofH0 andV are given by

~H0!mn5Endmn ~33!

and

~V!mn5vwm~xW0!wn~xW0!, ~34!

with m,n51,2,3,. . . ,N, respectively. Using the linearity of
a determinant and noticing that any two column vectors of
V are linearly dependent, we obtain

det~zI2H02V!5 )
n51

N

~z2En!

2v(
n51

N H wn
2~xW0! ) 8

m51

N

~z2Em!J ,
~35!

where)8 signifies that the term ofm5n is removed from
the product. By inserting Eq.~35! into Eq. ~32!, the charac-
teristic equation can be rewritten as

G̃~z!5v21, ~36!

where

G̃~z!5 (
n51

N
wn~xW0!

2

z2En
. ~37!

For any v, Eq. ~36! has N nondegenerate solutionszn
(n51,2,3,. . . ,N), giving a complete set of eigenvalues of
the Hamiltonian Eq.~31! with the truncated basis. The cor-
responding eigenfunction is given by

cn~xW !5Nn(
k51

N
wk~xW !wk~xW0!

zn2Ek
, ~38!

with the normalization factor determined by
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Nn
225 (

k51

N
wk~xW0!

2

~zn2Ek!
2 . ~39!

The eigenfunction Eq.~38! has a form analogous to Eq.~16!.
For largeN, the appropriate boundary condition around the
scatterer is taken into account in a matrix diagonalization
with a Dirac’sd function potential.

In an analysis similar to that in Sec. III, we recognize that
the inflection points ofG̃(z) are located aroundG̃(z).0 at
energyz.EN/2, implying the appearance of wave chaos un-
der the condition ofv21.0. We also expect that it disap-
pears ifuv21u*D. In the case ofuv21u.D, the average ratio
between the diagonal matrix element of thed function po-
tential and the mean level spacing is estimated as

U ^~V!nn&
rav

21 U5 a

D
.1. ~40!

This explains why the logarithmic curve of Eq.~24! has a
strip with width D; in the case ofuv21u*D, the physical
strengthv is too weak to cause mixing among a large num-
ber of unperturbed eigenstates. In this sense, we can regard
uv21u as a measure of distance to the wave-chaotic curve.
We stress thatuv21u.0 corresponds to the condition for the
appearance of wave chaos in the energy region around
z.EN/2. Both at lower and higher energies, the value of
G̃(z) at the inflection points is substantially different from
zero, since contributions toG̃(z) from terms withEn,z and
En.z do not cancel. This fact gives rise to an interesting
physical result in Sec. V.

Equation~37! allows us to relate the physical strengthv
to the formal strengthv̄u introduced in Sec. II. In a similar
manner as in Eq.~22!, for z,EN we obtain

Ḡ~z!5G̃~z!1 (
n51

N

wn~xW0!
2

En

En
211

1 (
n5N11

`

wn~xW0!
2S 1

z2En
1

En

En
211D

.G̃~z!1aH E
0

EN E

E211
dE

1E
EN

` S 1

z2E
1

E

E211D dEJ
.G̃~z!1a ln~EN2z!. ~41!

From Eqs.~18!, ~36!, and ~41!, we obtain the relation be-
tween both the coupling constants,

v̄ u
21.v211a ln~EN2z!. ~42!

We note that the summation in Eq.~37! diverges asN
increases for anyzÞEn . This follows from the fact thata
defined in Eq.~23! is independent of energyz. This under-
scores the fact that Dirac’sd function potential with a full
unperturbed basis cannot be defined in two-dimensional bil-
liard problems, contrary to the case in one dimension. In the

latter case, sincea}rav(z)}z
21/2, the right-hand side of Eq.

~37! converges. In this case, one can relatev with v̄u through

v215 v̄ u
212 (

n51

`

wn~xW0!
2

En

En
211

, ~43!

to make the matrix diagonalization with strengthv identical
to the formulation withv̄u discussed in Sec. II. Thus it is
possible to construct quantum mechanics of one-dimensional
billiards with a pointlike scatterer directly in terms of a
Dirac’s d function without relying on a somewhat compli-
cated mathematical framework based on functional analysis.
We finally emphasize that although the Hamiltonian with a
Dirac’s d function potential, Eq.~31!, loses its meaning in
the limit of N→` in two-dimensional billiards, Eq.~42! is
still valid for any v, v̄u if z,EN with an arbitrarily fixed
N.

V. QUANTUM SPECTRUM OF BILLIARDS
WITH A SMALL BUT FINITE-SIZE SCATTERER

In this section, we discuss the quantum spectra of billiards
with a small but finite-size scatterer. We are after the wave-
chaotic spectra in systems with a realistic finite-size scatterer
inside. For this purpose, we attempt to describe the finite-size
scatterer in terms of a Dirac’sd function potential with a
suitably truncated basis. This also enables us to recognize the
physical meaning of the formal coupling constantv̄u . Rely-
ing on the arguments in Secs. III and IV, we clarify the
condition for the appearance of wave-chaotic spectra for bil-
liards with a small scatterer.

Suppose that a finite-size scatterer of areaV is placed at
xW5xW0 inside an integrable billiard of areaS. We describe the
interaction in terms of a potential with a constant strength on
the domain of the scatterer,

V~xW !5H V, xWPV

0, xWPS2V,
~44!

where we denote the domains of the scatterer and the outer
billiard by the same symbols as the areas. The matrix ele-
ments ofV(xW ) are given by

~V!mn5VE
V

wm~xW !wn~xW !dxW ~m,n51,2,3, . . .!. ~45!

If the area of the scatterer is far smaller than that of the
outer billiard, the scatterer is expected to behave as pointlike
at low energy because waves with long wavelength cannot
‘‘see’’ the shape of the scatterer. More precisely, the matrix
element (V)mn with Em ,En&(2MV)21 is suitably approxi-
mated byVVwm(xW0)wn(xW0). Furthermore, the off-diagonal
matrix elements withEm!(2MV)21!En are small, be-
cause of the mismatch in the wave numbers. These indicate
that the energy spectrum of the billiards with a finite-size
scatterer of areaV can be reproduced by the Hamiltonian
Eq. ~31! in terms of a Dirac’sd function potential with
strength

v~V!5VV, ~46!
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along with a restricted basis up to

EN~V!.~2MV!21. ~47!

It is crucial that the zero-range approximation is justified as
long asz!EN(V) , even if uVu is sufficiently large. The mix-
ing among unperturbed eigenstates is limited to a small num-
ber of states even ifv ~or V) is sufficiently large. Note also
that the matrixV has a bandlike structure, the width of which
is independent ofV, but is essentially determined byV.

We can now describe the low-energy spectra of the bil-
liards with a finite-size scatterer inside within the framework
in Sec. II. It is realized from Eq.~42! that, as long as
z!EN(V) , the eigenvalues in case of finite-size scatterer can
be calculated by Eq.~18! with

v̄ u
21.v~V!211a ln~EN~V!2z!.v~V!211a lnEN~V! .

~48!

The meaning of the renormalized coupling constantv̄u be-
comes clear; A quantum billiard with a pointlike scatterer
with strengthv̄u can be obtained by taking the limitV→0
along with the limit

v~V!5
1

v̄ u
211a ln~2MV!

→20, ~49!

or equivalently, with the limit

V5
1

v̄ u
21V1aV ln~2MV!

→2`. ~50!

Any two sets of (V,V), say (V1 ,V1) and (V2 ,V2), which
satisfy Eq.~50! with fixed v̄u describe the same low-energy
dynamics as long asz!EN(V) , whereV5max$V1,V2%. The
logarithmic term in the denominator of Eq.~50! expresses
the reason why we cannot define a pointlike scatterer in
terms of a Dirac’sd function in two dimension; the limit of
V→0, along with keepingVV constant, induces a potential
which is too strong to define a quantum mechanical Hamil-
tonian for a pointlike scatterer. It is noteworthy that in the
small-size limit, the strength of the scatterer is always nega-
tive in the sense thatV→2` asV→0. This is consistent
with the fact that a single eigenstate with an eigenvalue
smaller thanE1 exists for anyv̄u . We emphasize that this is
not due to a specific formulation discussed here, but is re-
quired from the self-adjointness of the Hamiltonian. It should
be noted, however, that as long as the obstacle has a substan-
tial size, we can deduce all the low-energy physics from the
present formulation by identifyingv(V) with v̄u through Eq.
~48!, even in the case of positiveV.

Inserting Eq.~48! into Eq. ~29!, we obtain the condition
for the appearance of the wave-chaotic energy spectrum,

Uv~V!212a ln
z

EN~V!2zU&D.a. ~51!

Keeping Eq.~23! in mind, we can rewrite Eq.~51! as

US ^~V!nn&
rav

21 D 21

2 ln
z

EN~V!2zU&1. ~52!

Because the logarithmic function in Eq.~51! is negative for
z,EN(V)/2, we obtain an interesting spectral property for
lowest eigenstates: the wave chaos is most visible when the
potential is attractive. As the energy increases up to
z.EN(V)/2, the wave-chaotic region is expected to shift to
uv(V)21u→0 according to Eq.~51!. However, the zero-
range approximation tends to lose its validity at high energy,
particularly in attractive cases, as shown later in numerical
calculations.

FIG. 1. Several lowest eigenvalues of a quantum particle of
massM52p moving in the rectangular billiard of side lengths
@ l x ,l y#5@1.047 19,0.954 929# with a small rectangular scatterer in-
side. Side lengths and the location of the center of the inner scat-
terer are @d l x ,d l y#5@3.538 3031022,3.140 2331022# and

xW05(0.622 482,0.275 835), respectively. In this choice, the area of
the inner scattererV is 1/900. The potential strengthV is taken as
constant on the inner scatterer. A circle located at (z,v21) repre-
sents an eigenstate with eigenvaluez in case of potential strength
V5v/V5900/v21. The value ofv21 ranges from210 to 10 at
intervals of 1 in~a!, while it ranges from21 to 20.3 and from
0 to 1 at intervals of 0.1 in~b!. The case ofv2150 is calculated by
taking v51000 (V5900 000). The solid curves are the approxi-
mated eigenvalues obtained by using the zero-range potential

V(xW )5vd(xW2xW0). These curves correspond toG̃(z) in Eq. ~37!.
The unperturbed basis is truncated at
EN(d l x ,d l y)

5$(p/2d l x)
21(p/2d l y)

2%/(2M )5355.949 in Eq.~37!,
irrespective to the value ofv. Unperturbed energies are indicated by
vertical lines on thez axis. The strip between two broken lines in
~a! is a prediction of Eq.~51! with a51, on which the signature of
wave chaos appears.
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The previous numerical observations of Sinai’s billiard
give supplementary evidence of the above finding. In Ref.
@26#, Berry exhibited the energy-level diagram of Sinai’s bil-
liard as a function of the radius of a circular obstacle in the
billiard. This reveals that the integrability is restored in the
low-energy region as the radius decreases. This can be easily
understood in the present scope. When the potential is repul-
sive, the wave chaos never appears even at low energy even
if the repulsion is sufficiently strong. In spite of the infinite
height of the potential in Sinai’s billiard, the limit of the
radius being zero can be taken without any difficulty because
only ‘‘desymmetrized states’’ are considered in Ref.@26#.

In order to confirm the validity of Eq.~51!, we examine
the quantum spectra of a rectangular billiard with a small

rectangular scatterer inside, which is analogous to the system
discussed in Ref.@8#. The unperturbed eigenvalues and the
corresponding normalized eigenfunctions of the empty bil-
liard are given by

Emn5
1

2M H Smp

l x
D 21S np

l y
D 2J ~53!

and

wmn~x,y!5S 4

l xl y
D 1/2sinmpx

l x
sin
npy

l y
, ~54!

FIG. 2. The contour plot of the wave function for the eigenstates indicated by~a!–~e! in Fig. 1 is shown in~a!–~e!, respectively. The
value of (z,v21) for the circles~a!–~e! is (4.54,5.0), (4.93,0.1), (4.43,20.3), (5.63,24.0), and (6.13,210.0), respectively. The location of
the scatterer is indicated by a rectangle in the billiard.
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with m andn51,2,3,. . . , respectively. The side lengths of
the ~outer! rectangle are denoted byl x and l y . Suppose that
a rectangular scatterer is placed inside the outer rectangle
such that the sides of the inner and outer rectangles are par-
allel to each other. We denote the side lengths and the posi-
tion of the center of the scatterer byd l x , d l y and (x0 ,y0),

respectively. The matrix elements of the potential of Eq.~44!
are given by

~V!m1 ,n1 ;m2 ,n2
5Vum1 ,m2

~ l x ,d l x ,x0!un1 ,n2~ l y ,d l y ,y0!,
~55!

where

um,n~ l ,d l ,x0!55
2

p H 1

m2n
cos

~m2n!px0
l

sin
~m2n!pd l

2l

2
1

m1n
cos

~m1n!px0
l

sin
~m1n!pd l

2l J , mÞn

d l

l
2

1

np
cos

2npx0
l

sin
npd l

l
, m5n.

~56!

In the actual numerical calculations, we setM52p,
l x5p/351.047 19, andl y53/p50.954 929, which leads to
rav51 and a.1. We also assumed l x53.538 30
31022, d l y53.140 2331022, and xW05(x0 ,y0)
5(0.622 482,0.275 835). In this choice, the area of the scat-
terer,V, is 1/900 of the outer rectangle.

Figure 1~a! shows the several lowest eigenvalues of this
system for various values of the inverse physical strength

v21. The circles indicate the exact eigenvalues obtained by
diagonalizing the Hamiltonian matrix along with Eq.~55!.
The strength of the scattererV is determined by Eq.~46!:
V5v/V. That is, a circle at (z,v21) in Fig. 1~a! represents
an eigenstate with eigenvaluez in case of potential height
~depth! V5v/V5900/v21 on the inner rectangular scatterer.
The value ofv21 ranges from210 to 10 at intervals of 1.
We takev51000 (V5900 000) in the numerical calculation

FIG. 3. The eigenvalues aroundz.0.10EN(d l x ,d l y)
. The indica-

tions are the same as in Fig. 1.
FIG. 4. The eigenvalues aroundz.0.30EN(d l x ,d l y)

. The indica-
tions are the same as in Fig. 1.
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for v2150. The solid curves are the eigenvalues obtained by
the approximation in terms of a Dirac’sd function potential:
V(xW )5vd(xW2xW0). As seen from Eq.~36!, these curves are
nothing butG̃(z) in Eq. ~37!. Following Eq.~47!, we trun-
cate the unperturbed basis atEN(d l x ,d l y)

5$(p/2d l x)
2

1(p/2d l y)
2%/(2M )5355.949 in Eq.~37!, irrespective of the

value of v. This corresponds to making a truncation at the
momentakx.p/(2d l x) and ky.p/(2d l y). From Fig. 1~a!,
we observe that the approximation of a zero-range potential
with a suitably truncated basis is quite satisfactory, even if
the potential is strong repulsion. Since we have
v.^(V)m,n;m,n&/rav

21 with a.1, the case ofv51000
(V5900 000) indeed corresponds to a strong repulsion in
the sense that the diagonal matrix elements ofV are far
larger than the mean level spacingrav

21 as well as the maxi-
mal unperturbed energyEN(d l x ,d l y)

in the zero-range approxi-
mation. In case of a strong attractive potential, there is a
considerable discrepancy between the exact and approxi-
mated eigenvalues. Figure 1~b! shows the eigenvalues for
largeuvu. When the scatterer is attractive, there exist, in gen-
eral, several eigenstates with negative eigenvalues in case of
finite-size scatterer; for example, three eigenstates with ei-
genvalues 21098, 2261, and 2151 for v21520.5
(V521800), and four eigenstates with eigenvalues
22182, 21131, 2944, and 212 for v21520.3
(V523000).~These values, particularly for shallow eigen-
states, are not fully convergent despite a huge matrix diago-

nalization with 12 000 unperturbed states.! The eigenvalue of
negative eigenstates is sensitive to the value ofV. This
causes a rapid change of the lowest positive eigenvalues as
the potential strength varies. On the other hand, there is at
most one negative eigenstate in the zero-range approxima-
tion, as seen from Eq.~36!. Accordingly, the lowest positive
eigenstates gradually change along the solid curves in Fig.
1~b!. In particular, they are continuous even atv2150.

We emphasize that, since the summation in Eq.~37! di-
verges asN→`, the appropriate truncation by Eq.~47! of
the unperturbed basis is crucial for the success~except for
the strong attraction! of the zero-range approximation.

As shown in Fig. 1~a!, the inflection points of the solid
curves in the low-energy region appear in a weakly attractive
region. The prediction of Eq.~51!, shown by a strip between
two broken lines in Fig. 1~a!, reproduces the position of the
inflection points. Notice that, since the strip crosses thez
axis aroundz.EN(d l x ,d l y)

/2 @see Eq.~51!#, the inflection

points appear on the attractive side at low energy,
z&EN(d l x ,d l y)

/2. In Fig. 2, we show the contour plot of the

exact eigenfunction for several eigenstates obtained by di-
agonalizing the Hamiltonian matrix with the potential, Eq.
~55!. It can be seen that the mixture of the unperturbed eigen-
functions indeed occurs around the inflections points, while
the wave function does not differ substantially from one of
the unperturbed eigenfunctions in the region far from the
inflection points. This indicates that, contrary to our naive
intuition, the effects of the small scatterer in lowest eigen-
states are most prominent in the weakly attractive case. We
stress that, even ifuvu is sufficiently large, the effects of high
momentum components are visible mainly in the vicinity of
the scatterer. The global behavior of eigenfunctions gradu-
ally changes as the potential strength varies.

Figures 3–5 show the eigenvalues in three cases:
z.0.10EN(d l x ,d l y)

in Fig. 3,z.0.30EN(d l x ,d l y)
in Fig. 4, and

z.0.55EN(d l x ,d l y)
in Fig. 5, respectively. It is observed that

the accuracy of the zero-range approximation depends on the
sign of the potential. For attractive cases, the zero-range ap-
proximation fails at somewhat low energy, as pointed out
above. There is a considerable discrepancy even for
v.21 (V52900) at z.0.10EN(d l x ,d l y)

. On the other

hand, for repulsive cases, the approximated eigenvalues are
in fairly good agreement with the exact eigenvalues up to
z.0.30EN(d l x ,d l y)

. As the energy increases further, the zero-

range approximation starts to fail except for in case of a very
weak potential. It is easily recognized that the spectral prop-
erties of the exact eigenstates at high energy are subject to
the geometry of the scatterer, since a quantum particle mov-
ing in the billiard tends to ‘‘see’’ the shape of the scatterer as
the energy increases.

Finally, we make a comment on the size dependence of
the scatterer. It is obvious that, as the size of scatterer
shrinks, the zero-range approximation goes well even at
higher energy. For a fixed energy inz!EN(V) , the effective
strengthv(V)21, which satisfies the condition Eq.~51!, ap-
proaches minus infinity asEN(V) becomes large. Thus we
can expect that the wave-chaotic spectrum is observed with
smaller value foruvu as the scatterer shrinks.

FIG. 5. The eigenvalues aroundz.0.55EN(d l x ,d l y)
. The indica-

tions are the same as in Fig. 1.
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VI. CONCLUSION

We have examined quantum spectra in two-dimensional
billiards with a small-size scatterer inside. First, we clarified
the spectral properties of pseudointegrable billiards with a
pointlike scatterer from a general point of view. The strength
of a pointlike scatterer is specified by a renormalized cou-
pling constantv̄u , formally defined within the formulation
based on functional analysis. Although the coupling constant
does not have a direct relation to physical observables, it can
be related to the physical coupling constantv defined as a
strength of a Dirac’sd function potential together with a
truncated basis. In two-dimensional billiard problems, the
zero-range interaction cannot be rigorously described in
terms of a Dirac’sd function. Nevertheless,v can be related
to v̄u as long as the unperturbed basis is truncated at a finite
number. From a physical perspective, the truncation of the

basis is a consequence of finiteness of the size of the scat-
terer, as the uncertainty principle implies. Applying the find-
ings in pseudointegrable billiards to the cases of a small but
finite-size scatterer, we have shown that the signature of
wave chaos in lowest eigenstates are observed most promi-
nently when the scatterer is weakly attractive. The numerical
experiments of a rectangular billiard with a small rectangular
scatterer inside corroborate these arguments.
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