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Wave chaos in quantum billiards with a small but finite-size scatterer
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We study the low-energy quantum spectra of two-dimensional rectangular billiards with a small but finite-
size scatterer inside. We start by examining the spectral properties of billiards with a single pointlike scatterer.
The problem is formulated in terms of the self-adjoint extension theory of functional analysis. The condition
for the appearance of so-called wave chaos is clarified. We then relate the pointlike scatterer to a finite-size
scatterer through an appropriate truncation of the basis. We show that the signature of wave chaos in low-
energy states is most prominent when the scatterer is weakly attractive. As an illustration, numerical results of
a rectangular billiard with a small rectangular scatterer inside are exhip§&063-651X96)08908-9

PACS numbsg(s): 05.45:+b, 03.65.Db

[. INTRODUCTION condition. The condition is consistent with a previous nu-
merical observation in Sinai’'s billiard, which indicates that
The two-dimensional billiard is an appropriate tool for there exists no signature of wave chaos when the scatterer is

examining generic features of dynamical systems because §¢Pulsive. ) o
the wide range of dynamical behaviors, going from the most_ The p?p?r IS org?mzeci as folldov_vst. We;ltaré.ﬁ_y edxaml'rsrl]ng
regular(integrable to the most irregulatchaotig depending € spectral properties ot pseudointegrable bifiiards with a

on the aeometry of its boundary. Althouah no mathematica ointlike scatterer in Secs. Il and Ill. In the former section,
ge iy ot it ary. g ) e give an accurate description of a pointlike scatterer, based
proof exists, it is widely believed that fingerprints of the

; . . on the self-adjoint extension theory in functional analysis. A
regular or irregular nature of the classical motion can b&pnecial emphasis is laid on the distinction between symmetry
found in statistical properties of the quantum spectrum both g self-adjointness. We give an intuitive explanation of the
in energy levels and wave functions. Integrable systems suchecessity of the self-adjointness for quantum mechanical
as circular, elliptic, and rectangular billiards obey Poissonyamiltonians. Applying a general prescription for extending
statistics[1,2], while the predictions of the Gaussian or- 3 symmetric operator to a self-adjoint one, we derive the
thogonal ensembles describe chaotic systems such as Sina@seen’s function for billiards with a single pointlike scat-
billiard and Bunimovich’s stadiurh3,4]. terer. A renormalized coupling constant of the scatterer is
Besides these extreme classes, there is an intermediadefined in a natural manner, although its physical meaning is
category called aseudointegrabl€5,6] or almost integrable  somewhat unclear at this stage. Based on the formulation in
[7] system. Typical examples are staircase billigiéls ra-  Sec. Il, we discuss the quantum spectra of billiards with a
tional polygong5,9—11], and billiards with pointlike scatter- pointlike scatterer in Sec. Ill. The general condition for the
ers inside an integrable ofi&2—17. The nature of classical appearance of wave chaos is clarified. In Sec. IV, we con-
motion in pseudointegrable systems can be considered &er a Dirac’'sé function potential with a truncated basis.
integrable in the sense that unstable trajectories are of me#lthough it is not well defined with a full basis in two-
sure zero. However, several numerical studies have revealémensional billiards, we can deduce certain physical con-
that, under a certain condition, quantization induces the chd€nts from the truncated system, which serve as the basis for
otic energy spectra, which can be regarded as a counterell€ ensuing discussions. The findings in Secs. Ill and IV are
ample for the correspondence between the energy spec pll_ed to the cases of a small but f_|n|te-5|_ze scatterer in Sec.
and the underlying classical motion. This phenomenon is’: Itis shown that the_ wave chao_s IS ma_mfest at I(.)W energy
calledwave chao®ecause its origin is the wavelike nature of W'th. attractive potentials. As an |IIu_sFrat|onz We give a nu-
guantum motion. For billiards with pointlike scatterers, thismencal example .Of a rectangular billiard with a small rect-
phenomenon has been understood in terms of the quantu gular sc'atter'er.m5|de. V\/'e.also' show a proper procgdure for
breaking of the classical scale invariarjdd]. However, the 1€ 2€r0-SIz€ limit of the finite-size scatterer, which is con-
notion of the pointlike scatterer is a mathematical abstractiorf St with the self-adjointness of the Hariltonian. This

whose relevance to the physical system is far from Straightglarifies the physical meaning of the renormalized coupling

forward. It is therefore highly desirable to show that the na-constant defined in Sec. Il. We give conclusions in Sec. V.

turettof Wa\_i_(?].ch_acif1 remains mt;’:_tcttfor th(fatcr:]ase ofka flnlte—S|zte Il. QUANTUM MECHANICAL FORMULATION
§c?h¢rer. 'S\;\j e pt”.”;e mo "I’a 'Or: of the .‘g’or. Web.:ﬁp%r OF PSEUDOINTEGRABLE BILLIARDS
in this paper. We restrict ourselves to considering billiards WITH A POINTLIKE SCATTERER

with a small but finite-size scatterer inside an integrable one.
It is shown that, even if the scatterer has a substantial size, In spite of the apparent simplicity, careful treatments are
the signature of wave chaos is observable under a certaiequired for a definition of quantum billiards with a pointlike
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scatterer inside. Several methods are known for this purpose N(T* —N)= R(T-M)Y  (ImA#0), (6)
[18]. Here we adopt one based on the self-adjoint extension

theory in functional analysigL9]. We briefly summarize the .
formalism, stressing the necessary points for discussions i§"€reN(A) is the null spaceor keme) of the operator.

following sections. We also mention the physical reasong his means thal* has a complex eigenvaluewith eigen-
why quantum mechanics requires self-adjointness for Hamilspace R(T—A)*. If and only if T is self-adjoint,
tonians. R(T-N)*=d, ie., R(T—\) is the entire Hilbert space
Let us consider an integrable billiard of arSawith the ~ X=L*(S), the set of all square-integrable functions oger
Dirichlet boundary condition such that wave functions van-This is one of the reasons why quantum mechanics, which
ish on the boundary. The eigenvalues and corresponding0o€s not allow complex eigenvalues for observables, re-

equation related to the unitarity of time-evolution operators. The time-

evolution operatotJ(t) is constructed fronT as follows;

N 1 - -
Hopn(X)=— mA(Pn(X): Enen(x) (n=1,23...),

LTt iTe\ " it =" in\ ™"
(1 Um=e'=lim|{1+—] =limj|— T—— .
s n el N t
wherex is the coordinate vector in two-dimensional space, @)
andM is the mass of a particle moving in the billiard. We
adopt natural units throughout this papér=1 andc=1. It is easy to see that, for any symmetfilc an operator

This leaves a single independent unit among mass, energ¢T—\) ! with pure imaginary \+0 is defined from
and length. The domain ¢, is D(Hg)=H2(S)NHE(S) i R(T—\) to D(T) with [(T—X\)"tel|<|¢[/[Im\| for any
terms of the Sobolev spaceg¥Ve denote the domain of the ¢eR(T—N\). If R(T—\) is not all of X, then, in general,
billiard by the same symbol as the area unless there is dangéf —\) " can be defined on smaller and smaller spaces as
of confusion) In the following, we assume that the unper- n increases. This leads us to a natural condition
turbed billiard has no degeneracy. The Green's function oR(T—\)=X, implying that time-evolution operators which

this system is given by preserve probability can be constructed only from self-
_ R adjoint operators.
(O3 2 “ on(X) en(y) The above considerations indicate that we have to extend
GM(xy;2)= nzl T z-E, (20 D(T), or equivalently, restricd (T*), in order to construct a

self-adjoint operator fronT=Hg[D(T). This is indeed pos-
wherez is an energy variable. Suppose that a pointlike scatsible since difR(T—\)"=dimR(T—\)". Because both the
terer is placed ak=x, inside the billiard. Following the deficiency subspaces are one-dimensional, a one-parameter
self-adjoint extension theory in functional analysis, the ei-family of self-adjoint extensions of exist. According to a
genvalues and corresponding eigenfunctions of the perturbegdfneral prescription for extending a symmetric operator to
system are calculated as follows. self-adjoint one$23], all the self-adjoint extensions df are

The first step for this purpose is to remove the relevan@iven byH,=H, (0= 6<2m) with the domain

scattering pointzo by restrictingHq to T=Hg[D(T) with the
domain D(Hy)={¢(x)|#(x) = e(x) +cG (X, x0:\)

D(T)={e(X) € D(Ho)| ¢(Xo)=O}. 3) ~ce’GO(X,Xo;N);

By using integration by parts, it is easy to see thais -
symmetric (Hermitian)However, the domain of*, the ad- ¢(x) e D(T),
joint operator ofT, is not identical toD(T), and is indeed
larger thanD(T): GO(X,%g:\) e R(T—)\_)i,
D(T*)=D(T)®R(T- N @R(T—\)*, @)
©)(x,%0;\) € R(T—\)* .
whereR(T—X\)*, which is the orthogonal complement to the GT0O6XoiM eR(T=A)7,ceCh ®
range ofT— A\, corresponds to the deficiency subspacd of
given by[20] Equation(6) with Eq. (5) indicates that the operation éf,
o - on ¥(X) is given by
R(T-N)"={e(X)|e(x)=cG?(x,%;\),ceC}, (5

with an arbitrary complex numbex (Im\#0). It follows (Hoth) ()= (Hoe) (X) + eGP (X,Xg;N)

from D(T*)#D(T) thatT is not self-adjoint A symmetric T 00,3 3 Y

operator is self-adjoint if and only B(T*)=D(T). ~ACETGTX X0 M). ©)
The two following facts serve to understand the reason for

imposing self-adjointness on quantum mechanical HamiltoThe operatoH 4 is regarded as the Hamiltonian of the per-

nians[21,22. One of them is based on the assertion turbed system with a pointlike scatterer. Notice that, al-
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though we haveH ,=H, on D(T), D(H,) is substantially equation for the Green’'s function of the system with the

larger thanD(T): D(T)CD(H,)CD(T*). We recognize HamiltonianH, as

from the second and third terms ¢{x) in Eq. (8) that the S0 YNV YN

appropriate boundary condition around the scatterer is spec?"(x’y’z)_e( ((xY;2)+ G (x,%0: D) To(2) G (X0,¥32),

fied after the extension. It will be shown below that the value (10

of @ is related to the strength of the pointlike scatterer. where the transition matrixT( matrix) T,(z) is calculated
With the aid of the resolvent equation, we can write anthrough

1—¢l?
Ty(2)=

— — (11
(z-\) f GO, % 2) GO(X, RN AR € z— V) f GO(X,%0:2) GO(X, o ;NI
S S

After substituting Eq(2) into Eq.(11), and with a somewhat assertion that a symmetric operafbris self-adjoint if the

lengthy but straightforward calculation, we have conditionR(T—X\)=R(T—\)=X is valid for some fixech
(ImN#0). This means that if and only R(T=xi)=X, a
To2)=[v, - G(2)]" % (12)  symmetric operator is self-adjoint. Thus, without any loss

of generality, we can make the replacement |pf—1,
z—|\|z, E;—|\|E, and ¢,—|\| ¢, in Egs.(13), (14), and

where (15). We then have
(0 o1
sinl = +arg | = - G(z)=v,y", (18)
-1 (Pn(XO)
vy =|\| > — 7, (13
.0 n=1 |En 7\| wh
sing ere
2
., sing & en(Xo)?
o0 1 n
L1 E v, = > (19
= 2 n 1-co¥p=1 Ep+1
G(Z) nzl (Pn(XO) (Z_ En+ |En_)\|2) (14) n
, — < 1 E
It follows from Eq. (12) that the perturbed eigenvalues are G(z)= X 2(_+ " | 20
determined by (2) nzl en(Xo) Z—E, Et1 (20
G(z):vgl. (15  We can regard , as a coupling constant of a pointlike scat-

terer. It ranges over all real numbers as @<2.

In a previous publicatiofl6], we referred to the coupling
constantv, as the bare coupling constant, denoteduly
However, this is somewhat confusing, becaugeshould be
considered to arise in a renormalization process for treating

The solutions of this equatiary, (n=1,2,3,...) correspond
to the poles of thél matrix. The corresponding eigenfunc-
tion is the residue of the Green'’s function of Ef0) at the

pole, . e X
short-range singularities in a proper manner, which we often
. . encounter in field theory. It might be more appropriate to call
P (X)=N,GO(X,X0:Zn), (16) v, therenormalized coupling constant
Because the average level density of two-dimensional bil-
where the normalization factor is determined by liards is independent of energy each term in the parenthe-

ses of EQ.(20) diverges when summed separately. The di-
. vergence disappears when summed together. This means that
N-2= ei(X0)? 17 the second term of Eq20) plays an essential role to make
n &L (z—Ep? the T matrix well defined. It is also noteworthy that the en-
ergy dependence appears only in the first term of (26).
Although the T matrix seemingly has two independent This ensures the orthogonality of the perturbed eigenfunc-
parameters. and 6, this is not the case. This follows from tions{y,(x)} (n=1,2,3,...). That is, form#n, we have
the fact that\| is regarded as a scale of mass in casa of
being pure imaginary. Indeed, takihg| as a unit of energy,
we can fixA=+i, which makes all the relevant physical f l//m()z)(//n()z)d;:NmNn
guantities dimensionless. Such a treatment is justified by the s

G_(Zn) - G_(Zm) B

P 0. (21
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The orthonormal relations of the unperturbed eigenfunctions___ 2m R E,
{ea(X)} (n=1,2,3,...) areused in the first equality, and G(Em)znzl ¢n(Xo)2E2+1
the second equality results from E@8). The authors of Ref. n

[24] have discussed a rectangular billiard with a single point- * . E,

like scatterer, and deduced an eigenvalue equation(Z3y. + 2 QDn(Xo)2(~—+ E2r1

in Ref. [24], which is seemingly analogous to E{.8) with n-amrl Zm—En En

Egs.(19) and(20) in this paper. However, there is one cru- Esm E - 1 E

cial difference between them. The authors of Ri#4] za{ md&rf (~ + m) dE]
started with the assumption that the transition matrix is en- Eom| Zm— E

ergy independent, which does not agree with E) in

this paper, and, as a result, the divergence appeared in
GO(x,X,;2) in the vicinity of the scattererx=x,, is regu- _
larized by a logarithmically energy-dependent term, whilewhere we define

the coupling strength remains constant in E2p) in Ref.

[24]. This is nothing but the coupling strength changing M

according to the energy in E¢L8) in this paper, leading to a a=pa\,<(pn()zo)2 =5 (23
violation of the orthogonality of the perturbed eigenfunctions ™

as well as the unitarity of the time-evolution operator.

=alnz,, (22

It follows from Egs.(18) and (22) that the effects of the
pointlike scatterer on the quantum spectrum are observed in
. QUANTUM SPECTRUM the eigenstates with an eigenvalusuch that
OF PSEUDOINTEGRABLE BILLIARDS

WITH A POINTLIKE SCATTERER —
alnz=v,". (29

Equipped with the formulation in Sec. Il, we examine the
spectral properties of pseudointegrable billiards with a point- N ]
like scatterer. A special emphasis is placed on the conditiod he condition of Eq.(24) corresponds to Eq60) in Ref.
for the appearance of wave chaos. [16]. It is also noteworthy that as-wave phase shift of the

An important fact is that each perturbed eigenvalue idWO-dimensional scattering problem with a single pointlike
isolated between two unperturbed ones. This follows fronpCatterer shows a similar logarithmic dependence on energy
the fact thatG(z) of Eq. (20) is a monotonically decreasing z [18,25. The origin of such an energy dependence is
function of z on the interval between any two successivecIosely related to the energy scale introduced by the self-

; : : adjoint extension of a symmetric operator; any function
nperturb igenval E vering th ntir ) '
\Ljalrijz Ltj)et\?vieigeoo oouelstEi'é’ a?gg),clggr ?hat%;_zehils ae which depends om\| has an energy dependence, so as to
. ; ; { ’ )- &) . guarantee the argument to be dimensionless. Although the
single inflection point on E,,E,, ). We have shown in

X oo . _nature of a particle motion in billiards is independent of the
Ref[. '[lte]d t?at t_he d[{sttjrban_(;re: by the pomltllke scattgrerh_ls nergy in classical physics, the singularity of the interaction
restricted o eigenstates with an €igenvaiue around WhIC, g, ces an energy dependence of the observables after quan-
G(2) has an inflection pointsee Figs. 2 and 3 in Rdf16]).

o ) ; ) tization. This can be considered as a typical example of
This is understood also from the eigenfunction Edp) with quantum mechanical breaking of scale invariancesaale

Eq. (2); if a perturbed eigenvalue is close to an unperturbedanomaw[ﬂ 25.
one, the corresponding perturbed eigenfunction is not sub- | ot s proceed to make an estimate of the width of a strip
stantially different from the corresponding unperturbed ON€3long the logarithmic curve of EG24) on which the distur-

o In Ee;' [16(]{ the conditiohn for thel.inflegtion pointsb has pance of the scatterer is observable. Using the derivative of
een deduced in a somewhat complicated manner, by ma 5(2) at an inflection poink,,, we can estimate the width,

ing a truncation of _the u_nperturbed baS|s'accord|ng to th ay A, as follows:
energy under consideration. Here we refine the argumen
without introducing any truncation of the basis.

Each inflection point of5(2), sayz,, (m=1,2,3,...), is _ R *
expected to_appear, on average, around the midpoint on A<|G' (Zw) | pat={@n(X0)?) > 1—Mp;Vl.
(Em:Em+1)s Zm=(Em+Ens1)/2. Since the average level n=1{(N=3)pa }
density of the unperturbed systempig=M S/(27) accord- (25
ing to the Weyl's theorem, the unperturbed energies are dis-

tributed, on average, at regular intervalg’ . Furthermore, \ye haye implicitly assumed in E(R5) that the unperturbed
the average»oq‘on(xo)z among various: is indepenent of the  eigenvalues are distributed within a mean intepif in the
energy,{ ¢n(Xo)?)=1/S for a generic choice of,. Thus the whole energy region including negative energies. This as-
contributions from 6&<E,<Z,, andz,<E,<2Zz,~E,, on  sumption is quite satisfactory in this case, because the de-
the summation of the first term in E0) are canceled with nominator ofG’(z) is of the order of ¢—E,)?, indicating

a high degree of accuracy. This allows us to estin@(tg) at  that the summation in EJ25) converges rapidly. With the
the inflection poinz,, as follows: aid of a relation
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> 1 w2 observables. As a first step for this purpose, we show in this
E —= o, (26) section thatv , can be related to the physical strength of a
i=1(2n—=1) 8 pointlike scatterer through a truncation of the unperturbed
basis.

Let us consider dormal Hamiltonian with a Dirac’sé

|G (Z) | pat =, (27)  function potential

which means H=Hgo+v8(X—Xo) (31)

we arrive at

A=a. (28 with a truncated unperturbed  basis {@,(X)}
(n=1,2,3,...,N). We can regard as the physical coupling
constant of the pointlike scatterer. Notice that a Hamiltonian

like Eqg. (31) cannot be defined in billiard problems with

The above considerations lead us to the and.'t'on for th‘f‘ligher dimension than 1, because one cannot take the limit of
appearance of wave chaos. The effect of a pointlike scatter(?\r|_>OO For a moment, however, we will go further along

g'tgns\};?gghgaﬁt;?y?ﬁars mainly in the eigenstates with aN\vith fixed N, and return to this point later in this section.
9 ' 9 The characteristic equation &f is given by

The estimate of Eq28) is justified from another perspective
later in this paper.

—1
—alnz|=A. 29
[v5 = alnz| (29 detzl —Ho—V)=0, (32
In other words, wave chaos occurs in the energy region ) ] ] ] ] ]
which satisfies where | is an N-dimensional unit matrix. The matrix ele-
ments ofH, andV are given by
1 1
exp{ —_— 1} SZSGX% —+ 1] . (30) (Ho)mn: En5mn (33)
av g av g

an
These conditions are corroborated by the numerical experi-
ments of the spectral statistics of rectangular billiards with a _ v v
e . . V)mn= X Xo), 34
pointlike scatterefsee Figs. 5 and 6 in Ref16]). The con- (V)mn=0 ¢m(X0) @n(Xo) (34
dition of Eq. (29) contains all the essential physics of wave ;i mn=1,2,3,... N, respectively. Using the linearity of

chaos. From this, we can draw the following conclusions. 5 geterminant and noticing that any two column vectors of
(1) For any positive 4, wave chaos appears at the energyy; e linearly dependent, we obtain

which satisfies Eq(29), while it is hardly seen in other en-

ergies. Ifv, is larger thanA~1, wave chaos appears only N

around the ground state region. As the energy increases, it de(zl—H,—V)=][] (z—E,)

tends to disappear. On the other hand jfis substantially n=1

smaller tharA ~, wave chaos appears in the higher-energy N N

region specified by Eq(30). In the limit of v ,— +0, the —v > 12X [T (z—Em |,

system restores the integrability by pushing up the chaotic n=1 m=1

region to the infinite energyln this limit, the eigenvalue of (35)

the single eigenstate with an eigenvalue smaller tamli-

verges to—.) wherell’ signifies that the term ofmn=n is removed from

(2) Wave chaos does not appear at any energy,ifs  the product. By inserting Eq35) into Eq. (32), the charac-
negative. In particular, the system converges to the unpeteristic equation can be rewritten as

turbed one as ,— — 0.
(3) For anyv,, the system behaves as integrable in the G(z)=v 1, (36)
high-energy limit, which agrees with our intuition that a
pointlike scatterer has no effect on a particle motion in thewhere
classical limit. In other words, quantum billiards with a
pointlike scatterer have the nature asymptotic freedom - N on(Xo)?
which has been first discovered in the non-Abelian gauge G(z2)= Z 7 E_ (37)
field theories. =t :

For any v, Eq. (36) has N nondegenerate solutions,

IV. FORMAL DESCRIPTION (n=1,2,3,...,N), giving a complete set of eigenvalues of
OF A POINTLIKE SCATTERER IN TERMS the Hamiltonian Eq(31) with the truncated basis. The cor-
OF A DIRAC'S DELTA FUNCTION responding eigenfunction is given by
We have revealed various features of two-dimensional N - -
billiards with a single pointlike scatterer from a general per- U =N, S Pk(X) ei(Xo) (39)
spective in Sec. Ill. From a practical point of view, however, n " z,—E

we still need to identify the physical meaning of the coupling
strengthv 4, which does not have a direct relation to physicalwith the normalization factor determined by



1326 T. SHIGEHARA AND TAKSU CHEON 54

. @(Xo)? latter case, sincexp,(z)cz 2, the right-hand side of Eq.
N =& ZE)? (39 (37 converges. In this case, one can relatsith v , through
= n
The eigenfunction Eq:38) has a form analogous to E{.6). v i=v,t- > (pn()'(’O)Z_ZE”_' (43)
For largeN, the appropriate boundary condition around the n=1 Entl

scatterer is taken into account in a matrix diagonalization L o ) : )
with a Dirac’s 6 function potential. to make the matrix diagonalization with strengthidentical

In an analysis similar to that in Sec. IIl, we recognize that!© the formulation withv, discussed in Sec. II. Thus it is
the inflection points oﬁ(z) are located aroun&(z):o at possible to construct quantum mechanics of one-dimensional

energyz=E/2, implying the appearance of wave chaos un_bi_IIiar,ds with a poin_tlike scatyerer directly in terms of a
der the condition o “'=0. We also expect that it disap- Dirac's 4 funct|0_n without relying on a somewhat compll-.
pears ifu Y= A. In the case ofv~}|=A, the average ratio cated mathematical framework based on functional analysis.
between the diagonal matrix element of thdunction po- We finally emphasize that although the Hamiltonian with a

; oo ; Dirac’s ¢ function potential, Eq(31), loses its meaning in
tential and the mean level spacing is estimated a e . ) ; o )
P g S the limit of N—oo in two-dimensional billiards, Eq42) is

(V| still valid for any v, v, if z<Ey with an arbitrarily fixed
| =—=1. 40 N.
pa | A
av

V. QUANTUM SPECTRUM OF BILLIARDS

This explains why the logarithmic curve of E®4) has a WITH A SMALL BUT FINITE-SIZE SCATTERER

strip with width A; in the case ofiv ~!|=A, the physical
strengthv is too weak to cause mixing among a large num- In this section, we discuss the quantum spectra of billiards
ber of unperturbed eigenstates. In this sense, we can regandth a small but finite-size scatterer. We are after the wave-
|v~1| as a measure of distance to the wave-chaotic curvechaotic spectra in systems with a realistic finite-size scatterer
We stress thay ~1|=0 corresponds to the condition for the inside. For this purpose, we attempt to describe the finite-size
appearance of wave chaos in the energy region arounscatterer in terms of a Dirac’d function potential with a
z=E\/2. Both at lower and higher energies, the value ofsuitably truncated basis. This also enables us to recognize the
G(2) at the inflection points is substantially different from physical meaning of the formal coupling constapt Rely-
zero, since contributions 16(z) from terms withE,<zand  ing on the arguments in Secs. lll and IV, we clarify the
E.>z do not cancel. This fact gives rise to an interestingcondition for the appearance of wave-chaotic spectra for bil-
physical result in Sec. V. liards with a small scatterer.

Equation(37) allows us to relate the physical strength ~_ Suppose that a finite-size scatterer of afba placed at
to the formal strengtly , introduced in Sec. Il. In a similar X=X, inside an integrable billiard of are& We describe the
manner as in Eq22), for z<Ey we obtain interaction in terms of a potential with a constant strength on

the domain of the scatterer,
N

- ., Eq -
G(2)=G(2)+ X en(X0)*zz1 [V xeq
=1 n V(x)= . (44)
« 0, xesS—Q,
St E,
+n:%+l n(Xo) z—E, + E2+1 where we denote the domains of the scatterer and the outer
billiard by the same symbols as the areas. The matrix ele-
_ En E " i
~C(2)+a J N ~ dE ments ofV(x) are given by
o E“+1
. Vimi=V [ en(Den(Rdi (mn=123,..). @9
+JEN z—E ' EZ+1 dE]

_ If the area of the scatterer is far smaller than that of the

=G(z)+ aln(Ey—2). (41 outer billiard, the scatterer is expected to behave as pointlike

at low energy because waves with long wavelength cannot

From Egs.(18), (36), and (41), we obtain the relation be- ‘“see” the shape of the scatterer. More precisely, the matrix

tween both the coupling constants, element ¥),,, with E,,,E,=<(2MQ) ! is suitably approxi-
. mated byVQen(Xo) en(Xo). Furthermore, the off-diagonal
vy =v "+aln(Ey—2). (42 matrix elements withE,<(2MQ) '<E, are small, be-

cause of the mismatch in the wave numbers. These indicate
We note that the summation in E(37) diverges asN  that the energy spectrum of the billiards with a finite-size
increases for ang#E,. This follows from the fact thatr  scatterer of are&) can be reproduced by the Hamiltonian
defined in Eq.(23) is independent of energy. This under- Eq. (31) in terms of a Dirac’sé function potential with
scores the fact that Dirac’é function potential with a full  strength
unperturbed basis cannot be defined in two-dimensional bil-
liard problems, contrary to the case in one dimension. In the v(Q)=VQ, (46)
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_— (a) We can now describe the low-energy spectra of the bil-
R liards with a finite-size scatterer inside within the framework
10 ! ! ! 7 in Sec. Il. It is realized from Eq(42) that, as long as
r 1 z<Ey(q), the eigenvalues in case of finite-size scatterer can
5L a B be calculated by Eq.18) with
- v, =0(Q) M aIn(En)—2)=v(Q) *+ aInEyq, .
or (48
] - The meaning of the renormalized coupling constapte-
-5 - comes clear; A quantum billiard with a pointlike scatterer
- with strengthv, can be obtained by taking the limit—0
_1of .% e along with the limit
0 4
v(Q)=— ——0, (49
v1 v, +aln(2MQ)
1.01 | ] or equivalently, with the limit
L 4 1
r b ] vy QO+ al)In(2MQ)
- D B
0.0 T 1% Any two sets of ¥,Q), say V;,0;) and (V,,0,), which
i o o o o 9 1 satisfy Eq.(50) with fixed v, describe the same low-energy
-05 b 3 P dynamics as long as<Eyq), whereQ)=max{1,,(),}. The
1 d L o3l 4 logarithmic term in the denominator of E¢G0) expresses
L g q 9 g 4 7 the reason why we cannot define a pointlike scatterer in
RS PP PRI U P PP . T terms of a Dirac’ss function in two dimension; the limit of
0 2 4 6 8 10

Q—0, along with keeping/) constant, induces a potential
hich is too strong to define a quantum mechanical Hamil-
onian for a pointlike scatterer. It is noteworthy that in the
small-size limit, the strength of the scatterer is always nega-
five in the sense thaf — —< as{)—0. This is consistent
terer are [ol,dl,]=[3.53830¢<102,3.140 2% 10°2] and with the fact tha_t a single eigenstate Wlth_ an elger_wglue
>ZO= (0.622 482,0.275 835), respectively. In this choice, the area o§ma”er tharE, eXIS.t.S for any o We.emphaSIZG that thls. IS
the inner scattere) is 1/900. The potential strengih is taken as no.t due to a specific formulatlon dlscusse.d h?re’ but is re-
constant on the inner scatterer. A circle locatedzb (1) repre- quired from the self-adjointness of the Hamiltonian. It should
sents an eigenstate with eigenvalu@n case of potential strength be nqted, however, that as long as the obstacle has a substan-
V=0/Q=900b"1. The value ofv ! ranges from—10 to 10 at tial size, we can deduce all the low-energy physics from the
intervals of 1 in(a), while it ranges from—1 to —0.3 and from  Present formulation by identifying(€2) with v, through Eq.
0 to 1 at intervals of 0.1 ifib). The case ob ~1=0 is calculated by ~ (48), even in the case of positivé.
taking v =1000 (V=900 000). The solid curves are the approxi- Inserting Eq.(48) into Eq. (29), we obtain the condition
mated eigenvalues obtained by using the zero-range potenti&pr the appearance of the wave-chaotic energy spectrum,
V(X)=v8(X—Xo). These curves correspond &z) in Eq. (37).
The unperturbed basis is truncated at
Engar, a1, = {(/261,)+ (/281)}/(2M) = 355.949 in Eq.(37),
irrespective to the value ef. Unperturbed energies are indicated by
vertical lines on the axis. The strip between two broken lines in Keeping Eq.(23) in mind, we can rewrite Eq(51) as
(a) is a prediction of Eq(51) with «=1, on which the signature of
wave chaos appears. (((V)nn> z

-1
-1
Pav ) Ene)—2

Because the logarithmic function in E(1) is negative for
EN(Q)z(ZMQ)‘l. (47) z<Ey(q)/2, we obtain an interesting spectral property for

lowest eigenstates: the wave chaos is most visible when the
It is crucial that the zero-range approximation is justified aspotential is attractive. As the energy increases up to
long asz<Ey(q), even if|V| is sufficiently large. The mix- z=Eyq)/2, the wave-chaotic region is expected to shift to
ing among unperturbed eigenstates is limited to a small num (Q) Y| —0 according to Eq.51). However, the zero-
ber of states even i (or V) is sufficiently large. Note also range approximation tends to lose its validity at high energy,
that the matrixV has a bandlike structure, the width of which particularly in attractive cases, as shown later in numerical
is independent o¥/, but is essentially determined 1. calculations.

FIG. 1. Several lowest eigenvalues of a quantum particle o
massM =2s moving in the rectangular billiard of side lengths
[Ix.1y]=[1.047 19,0.954 920with a small rectangular scatterer in-

Z
v(Q) - aln——r

=A=aq. 51
Ero)—2 (51

<1. (52)

along with a restricted basis up to
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0 Ix
FIG. 2. The contour plot of the wave function for the eigenstates indicate@kye) in Fig. 1 is shown in(a)—(e), respectively. The

value of @,v 1) for the circles(@)—(e) is (4.54,5.0), (4.93,0.1), (4.43,0.3), (5.63-4.0), and (6.13; 10.0), respectively. The location of
the scatterer is indicated by a rectangle in the billiard.

The previous numerical observations of Sinai’s billiard rectangular scatterer inside, which is analogous to the system
give supplementary evidence of the above finding. In Refdiscussed in Ref[8]. The unperturbed eigenvalues and the
[26], Berry exhibited the energy-level diagram of Sinai’s bil- corresponding normalized eigenfunctions of the empty bil-
liard as a function of the radius of a circular obstacle in theliard are given by
billiard. This reveals that the integrability is restored in the
low-energy region as the radius decreases. This can be easily 1 2 a2
understood in the present scope. When the potential is repul- Emn:—“ +(—> ] (53
sive, the wave chaos never appears even at low energy even 2M |
if the repulsion is sufficiently strong. In spite of the infinite
height of the potential in Sinai’'s billiard, the limit of the and
radius being zero can be taken without any difficulty because
only “desymmetrized states” are considered in R&6].

In order to confirm the validity of Eq(51), we examine
the quantum spectra of a rectangular billiard with a small

n——-sin—-— (54)

4
I, MR

Pmn(X,y)= (_

12 . maX  nmwy
Sl
I
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FIG. 3. The eigenvalues aroume- O-1CEN(5IX,5IY) . The indica-

FIG. 4. The eigenvalues aroumekO.SGEN(&Xﬁ,y). The indica-
tions are the same as in Fig. 1.

tions are the same as in Fig. 1.

with m andn=1,2,3,. . ., respectively. The side lengths of ;?Zp;itel\:]eg; The matrix elements of the potential of &)
the (outep rectangle are denoted lby andl, . Suppose that

a rectangular scatterer is placed inside the outer rectangle (V)m nmons=VUm m (L, 8l Xo)Un o (ly, 81y, Y0),
such that the sides of the inner and outer rectangles are par- 1 e 1

55
allel to each other. We denote the side lengths and the posi- ®9
tion of the center of the scatterer @,, Jl, and (o.,yo),  where

(2 1 (m=n)mxy . (M=n)7dl
— COS sin
7| m—n I 2l

1 (m+n)mxy, . (m+n)7dl
Umn(l, 81,%0) = $ ~ T aCoS i sin 5 , m#n (56)

sl 1 2nwXy . nwdl
— — —C0S——Sin——, m=n.

\ | nm I I

In the actual numerical calculations, we skt=21, v~ L. The circles indicate the exact eigenvalues obtained by
ly=m/3=1.047 19, and, = 3/m=0.954 929, which leads to diagonalizing the Hamiltonian matrix along with E(p5).
pa=1 and a=1. We also assumedl,=3.53830 The strength of the scatterdt is determined by Eq(46):
X1072,  61,=3.1402%10°2  and  Xo=(X0,Yo) =p/Q. That is, a circle atZ,v 1) in Fig. 1(a) represents
=(0.622 482,0.275 835). In this choice, the area of the sca@n eigenstate with eigenvaluein case of potential height
terer, (), is 1/900 of the outer rectangle. (depth V=0v/Q=900b ~* on the inner rectangular scatterer.
Figure 1a) shows the several lowest eigenvalues of thisThe value ofv ~! ranges from—10 to 10 at intervals of 1.
system for various values of the inverse physical strengtiWe takev =1000 (V=900 000) in the numerical calculation
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1 (a) nalization with 12 000 unperturbed stajeEhe eigenvalue of
VI S negative eigenstates is sensitive to the valueVofThis
10 ?

causes a rapid change of the lowest positive eigenvalues as
the potential strength varies. On the other hand, there is at
most one negative eigenstate in the zero-range approxima-
tion, as seen from Eq36). Accordingly, the lowest positive
eigenstates gradually change along the solid curves in Fig.
1(b). In particular, they are continuous evenvat*=0.

We emphasize that, since the summation in &7) di-
verges adN—oo, the appropriate truncation by E7) of
the unperturbed basis is crucial for the succ@ssept for
the strong attractionof the zero-range approximation.

As shown in Fig. 1a), the inflection points of the solid
curves in the low-energy region appear in a weakly attractive
region. The prediction of Eq51), shown by a strip between
- two broken lines in Fig. (), reproduces the position of the
0%' ¢ inflection points. Notice that, since the strip crosses zhe

axis aroundz= EN(5|X,5|y)/2 [see Eq.(51)], the inflection
points appear on the attractive side at low energy,
zZ< EN((;,X,&y)/Z. In Fig. 2, we show the contour plot of the
3 1 exact eigenfunction for several eigenstates obtained by di-
] agonalizing the Hamiltonian matrix with the potential, Eq.
o | 1] (55). It can be seen that the mixture of the unperturbed eigen-
functions indeed occurs around the inflections points, while
the wave function does not differ substantially from one of
10 | thfeI unperturbed $_ir?enfu;ctions ir? the region far from the
' R inflection points. This indicates that, contrary to our naive
190 192 194 196 198 200 intuition, the effects of the small scatterer in lowest eigen-

FIG. 5. The eigenvalues aroume-0.55y 5 s, The indica- states are most pror.ninent. ip the weakly attractive case. We

tions are the same as in Fig. 1. xTy stress that, even jb| is sufficiently large, the effects of high

momentum components are visible mainly in the vicinity of
for v ~1=0. The solid curves are the eigenvalues obtained b)Bhe scatterer. The global k?ehavior of eig_enfunctions gradu-
the approximation in terms of a Dirac&function potential: ally _Changes as the potential st_rength varies.

- - - Figures 3-5 show the eigenvalues in three cases:
V(X)=vd(Xx—Xg). As seen from Eq(36), these curves are _ __ - ~ -

. ~ 00 : z=0.1CEN(s. 51,) IN Fig. 3,2=0.3CEys_ 4, in Fig. 4, and
nothing butG(z) in Eq. (37). Following Eq.(47), we trun- _ L XY
cate the unperturbed basis GEN(5|X,5|y):{(7T/25|x)2 Z_O'SEEN(ﬁlxﬁly) in Fig. 5, respectlvely_/. It |.s observed that
+ (/261 y)z}/(ZM) =355.949 in Eq(37), irrespective of the the accuracy of thg zero-range gpprommanon depends on the
value ofuv. This corresponds to making a truncation at theSign Of the potential. For attractive cases, the zero-range ap-
momentak,=m/(24l,) andk,=/(24l,). From Fig. 1a), proximation fa|I§ at somew.hat low energy, as pointed out
we observe that the approximation of a zero-range potenti@Pove. There is a considerable discrepancy even for
with a suitably truncated basis is quite satisfactory, even ip=—1 (V=-900) at z=0.1CEy(s, a,)- On the other
the potential is strong repulsion. Since we havehand, for repulsive cases, the approximated eigenvalues are
vz((V)m,n;m,n)/p;\,1 with a=1, the case ofv=1000 in fairly good agreement with the exact eigenvalues up to

(V=900 000) indeed corresponds to a strong repulsion irz:O.S(EN(&,Xﬁ, y- As the energy increases further, the zero-
the sense that the diagonal matrix elementsvVofre far 4

larger than the mean level spacipg,;' as well as the maxi-
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range approximation starts to fail except for in case of a very

! - weak potential. It is easily recognized that the spectral prop-
mal unperturbed enerdgi, ,a1,) in the zero-range approxi- erties of the exact eigenstates at high energy are subject to

mation. In case of a strong attractive potential, there is dhe geometry of the scatterer, since a quantum particle mov-
considerable discrepancy between the exact and approxig in the billiard tends to “see” the shape of the scatterer as
mated eigenvalues. Figurghl shows the eigenvalues for the energy increases.

large|v|. When the scatterer is attractive, there exist, in gen- Finally, we make a comment on the size dependence of
eral, several eigenstates with negative eigenvalues in case tife scatterer. It is obvious that, as the size of scatterer
finite-size scatterer; for example, three eigenstates with eishrinks, the zero-range approximation goes well even at
genvalues —1098, —261, and —151 for v '=—0.5 higher energy. For a fixed energy IR Ey(q) , the effective
(V=-1800), and four eigenstates with eigenvaluesstrengthu ()1, which satisfies the condition E¢51), ap-
—2182, —1131, —944, and —12 for v '=-0.3 proaches minus infinity aky, becomes large. Thus we
(V=—3000).(These values, particularly for shallow eigen- can expect that the wave-chaotic spectrum is observed with
states, are not fully convergent despite a huge matrix diagesmaller value fojv| as the scatterer shrinks.
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. . . . e

We have examined quantum spectra in two-dlmensmna}t‘q
billiards with a small-size scatterer inside. First, we clarified
a

the spectral properties of pseudointegrable billiards with

pointlike scatterer from a general point of view. The strength

of a pointlike scatterer is specified by a renormalized cou
pling constantv,, formally defined within the formulation

based on functional analysis. Although the coupling constant
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basis is a consequence of finiteness of the size of the scat-
rer, as the uncertainty principle implies. Applying the find-
gs in pseudointegrable billiards to the cases of a small but
finite-size scatterer, we have shown that the signature of
ave chaos in lowest eigenstates are observed most promi-
nently when the scatterer is weakly attractive. The numerical

experiments of a rectangular billiard with a small rectangular
catterer inside corroborate these arguments.

W

does not have a direct relation to physical observables, it can

be related to the physical coupling constantlefined as a
strength of a Dirac’sé function potential together with a
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