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Anisotropic interface depinning: Numerical results
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We study numerically a stochastic differential equation describing an interface driven along the hard direc-
tion of an anisotropic random medium. The interface is subject to a homogeneous driving force, random
pinning forces, and surface tension. In addition, a nonlinear term due to the anisotropy of the medium is
included. The critical exponents characterizing the depinning transition are determined numerically for a
one-dimensional interface. The results are the same, within errors, as those of the “directed percolation
depinning” (DPD) model. We therefore expect that the critical exponents of the stochastic differential equation
are exactly given by the exponents obtained by a mapping of the DPD model to directed percolation. We find
that a moving interface near the depinning transition is not self-affine and shows a behavior similar to the DPD
model.[S1063-651X96)11508-1

PACS numbg(s): 05.40:+j, 75.60.Ch, 47.55.Mh, 74.60.Ge

I INTRODUCTION coordinate systenﬁz(x,h) can be introduced, so that the

The driven viscous motion of an elastic interface in ainterface position is given by a single-valued function
medium with random pinning forces is relevant for the un-h(x,t). The dimension of is denoted byd. Equation(1)
derstanding of various problems in condensed matter physidécomeg9]

[1]. Examples include the ordering dynamics of an impure

Ising magnet after a quench below the critical temperature 1 oh(x.t)
[2], wetting immiscible displacement of one fluid by another \/6 at
in a porous mediuni3], and pinning of flux lines in type-II
superconductorp4,5]. In recent years, studies of fluid imbi- 1 dV(x,h)

bition in paper6,7] and of flameless paper burnifig] have + 7 VhVWWixh) = —r—|, @
been carried out, and observable interfaces allow a direct 9

comparison with theoretical predictions. whereg=1+ (Vh)2.

Common to all of these problems is a competition be- o "gyfficiently large values of the driving forde, the
tween smoothening due to the surface tension and roughefyierface grows continuously. However, for smaller values of
ing due to the interaction with the random pinning forces ofF, growth on some regions of the interface can come to a
the medium. Further, there is a competition between the drivha“, due to the interaction with the quenched disorder. We
ing force and the pinning forces, resulting in a depinningg,y that these regions of the interface have becpimeed
transition. _ o _As the rest of the interface continues to grow, the pinned

On a coarse-grained level, it is expected that the dy”am'cﬁegions can be dragged over the pinning barriers by neigh-
of the_interface can be described by the following continuurnooring moving regions. Then, the formerly pinned regions
equation of motion: advance quickly, which can be considered an avalafibhe

i i o 13].
vn(r,t)=yK(r)+F+»n(r)+n-VV(r). ) The maximum linear sizé of the pinned regions diverges
whenF approaches its critical value,

= yV-(g~Y2Vh)+F+ 7(x,h)

Here,vn(F,t) is the normal velocity of the interface at posi-
tion r. The surface tension generates a term proportional to
the total curvatur&(r)=—V - n, wheren is the normal vec- The thresholdF .. is the critical point of a dynamical phase

tor on the interface at. The coefficienty measures the transition, and¢ the corresp(_)nding correlation length. Th_e
stiffness of the interfacer is a homogeneous driving force. ol of the order parameter is played by the mean velocity,

The last two termsz(F) andn-VV(r), represent random- U =lMi_x 1 dN/dt. (L is the system size and the overbar
field and random-bond disorder, respectively. The randong€notes the spatial average ower The velocity is zero for

forces n(F) and the random potential(F) are short-range <F., and increases as
correlated in space. v~(F—Fg)"? (4)
Equation(1) is considerably simplified by restricting our-
selves to an almost planar interface without overhangs. Aor F close toF.. On length scale$>¢ pinning can be
neglected and we can therefore replace the arguméenthe
disorder termsy(x,h) andV(x,h) by vt; i.e., the quenched
"Present address: Theoretische Physik I, Heinrich-Heine-disorder crosses over to thermal noj4d]. Then, the inter-
Universita Dusseldorf, D-40225 Dsseldorf, Germany. face is governed by the Kardar-Parisi-ZhdidPZ) equation

E~|F—=F™". ()
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[15]. In this paper, we are interested in the critical behaviorthese observations, we consider the following equation of
on length scale$<¢, especially wheré—oo at the depin- motion:
ning transition.

The global interface widtlv?=(h(x,t) —h(t)) is another an(x,t)

characteristic quantity of the interface. Here and elsewhere, . yV2h+N(Vh)2+F+ 5(x,h). 9

() denotes an average over the disorder distribution. Choos-

ing a flat interface as the initial conditiom(x,t=0)=0,

w? scales a$16,17 For x>0 the threshold~; has a maximum for an interface
without tilt, i.e., an interface with periodic boundary condi-

W2(E,1)~ 22T (1 &%) (5)  tions in Eq.(9) is driven along the hard direction of the

anisotropic mediunf9].

for a sufficiently large system size>¢. If L<¢, the corre- Equation (9) is the model we study in this paper. For

lation length in Eq. 5 has to be replaced ly. ¥, (y) and  simplicity, we restrict ourselves to interface dimension
W _(y) are scaling functions foF >F; andF<F, respec- d=1 and consider only random-field disordg(x,h). It was
tively. Both functions scale a¥ . (y) ~y?# for y<1, where  shown by Narayan and Fishgt1] for isotropic systems that

B=alz. It follows that random fields and random bonds give rise to the same criti-
5 28 , cal behavior. This has been supported by numerical simula-
W)~ (t<£). (6)  tions of interfaces subject to random-bond disorde;19.

o The random forces are assumed to have zero mean and short-
ForF>F_, pinning is irrelevant on_Iength scales ¢, so we range correlations(n(x’,h") n(x' +x,h’ +h))=5(x)A(h),
can neglect pinning also on time scalés-¢” Thus, \where A(h) decreases exponentially fon| greater than a
¥ (y)~y?Pmfor y>1, whereg,, is the growth exponent of microscopic cutoff.
an interface subject to thermal noise. Below threshold, the
interface becomes pinned ard#l _(y)=const. Using the
scaling of ¥ (y) for y<1 and Eq.(5) we obtain A. Previous results

The caseA=0 in Eq. (9) was first investigated by
t¥hn (1>, F>Fo) @) Feigel'man[20]. Significant progress has been made by a
£ (t1>¢%, F<F,). functional renormalization-group treatmeftt1,14,21 and

by extensive numerical simulatiof$3,21—-29.
It has been shown that the critical exponents fulfill an exact The results for the anisotropic caze>0 are less well

W2(&,t)~

scaling relation[14], established. It was first suggested in Heb] that Eq.(9) is
in the same universality class as the “directed percolation
=v(z—a). (8 depinning” (DPD) model[6,17]. For d=1, directed perco-
lating paths of pinning sites stop the interface. Thus, the
Il. THE MODEL FOR ANISOTROPIC DEPINNING roughness of the pinned interface is given by the scaling of

the directed paths and the corresponding roughness exponent

To further simplify the equation of motiof2), we assume s o=0.633[6,17]. The other critical exponents of the DPD
that the typical gradient8h are small on large length scales, model can also be obtained by a mapping to directed perco-
so that the roughness exponents smaller than one. This |ation; ind=1 the dynamical exponeat=1, the correlation
assumption has to be compared with the final results. Wheength exponentr»=1.733, and the velocity exponent
expanding 1Yg=1—(Vh)?/2, nonlinear terms proportional §~0.636.
to (Vh)? are generated in Eq2). A natural question is Amaral, Barabsi, and Stanley27] measured the tilt de-
whether these terms are relevant at the depinning transitiopendence of the velocity for several versions of the DPD
A term (Vh)? with a positive coefficient on the right-hand model and found a behavior consistent with the relevance of
side of Eq.(2) would give a nonzero contribution to the the term\(Vh)? at the depinning transition. Galluccio and
driving force for any rough interface. This contribution in- Zhang[28] simulated a self-organized versif2g,30 of Eq.
creases when imposing a global tilt of the interface. Thus(9) and obtainedv=0.63, thereby supporting the conjecture
the threshold=. becomes a function of the average orienta-of Ref. [26]. Recently, Olami, Procaccia, and Zeitf5]
tion of the interface. This is reasonable for anisotropic sysargued that the slopes of the pinned surfaces in(Bgare
tems but not for isotropic ones. For interfaces in an isotropibounded and that therefore E@) could belong to the di-
environment, it can indeed be shown that the nonlinear termgected percolation universality class.
generated by expandingid in Eq. (2) are irrelevant close However, Csahb et al. [31] performed the only direct
to the depinning transitiofil1]. If, however, the medium is simulation of the continuum equatid¢@) and came to a dif-
anisotropic, a term of the form(Vh)? can be relevant even ferent conclusion: Their numerical values for the exponents
for the case— 0. In fact, Tang, Kardar, and Dhg®] argued « andg in d=1 are in agreement with a scaling theory for
that if VV and dV/oh are differently distributed, the term Eq. (9), which yieldsa=(4—d)/4 and B=(4—d)/(4+d)
A(Vh)? is generated under coarse graining. More generally}31]. Yet another proposal was made by Paf82]. He ar-
if the system is anisotropic in the sense that the thresholdued thai3=(4—d)/4 and supported this value &+ 1 by a
F. depends on the average orientation of the interfacesimulation of a lattice model, which was assumed to be in
A (Vh)? is the only relevant term that can change the univerthe universality class of Eq9). Problematic is also the in-
sality class of the depinning transitid®]. Motivated by terpretation of Stepanow’s renormalization-group calculation
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FIG. 1. (a) Scaling of the interface widtw?(t)~t2# at thresh-
old. Interfaces of sizé =16 384 atF.=0.1511 were simulated for
the continuum equatiofiL0), and atp.=~0.6631 for the automaton 0.8
(L=262144). The data were averaged over 40 independent disor-
der distributions. The statistical uncertainties are smaller than the
size of the symbols. The asymptotic slopes yigkd 0.64=0.02 for S 07
both lines. (b) The corresponding effective exponeng(t)
=In[w2(t)W?(t/2)]/In4. The valueB=0.633 of the DPD model is
shown as the dashed horizontal line. 0.6
in d=4- e dimensiong 33]. The extrapolation td=1 gives
the resultse=0.86,z=1, v=1.2, andg=0.16[33]. 0.5 L - > . .
10 10 10 10 10
r

B. Aim of the paper FIG. 2. (8 Equal-time correlation functiorC?(r)~r2¢ for

To resolve these discrepancies we carefully determine iRinned interfaces slightly below thresholé=0.149 (=65 536)
this paper the critical exponents by large-scale simulations dPf Ed- (10) andp=0.6623 ( =131 072) for the automaton. We
Eq. (9) for interface dimensiom=1. To this end we carry averaged the data over 12 independent runs. Both lines give
’ . . . ’ . . . =0.63+0.01. (b) Critical effective exponents
out a numerical integration of the equation of motion with a“* . .
continuous height vgriable as well gs a simulation of an aua(lr):In[cz(r)/cz(lr/z)]/In4 corresponding ted) for the continuum

: . . equation (full symbolg. The dashed line indicates the exponent
tomaton model where the height variable takes integer values_ ; 633 of the DPD model. In addition, the effective exponents

only. In addition to the previously measured exponemts , (r) for different momentsy of the equal-time correlation func-
andp we also determine the exponemtaind 6 to strengthen  tion c9(r) for moving interfaces above thresholdF £0.157,
our conclusions. We find that the numerical values for all_ =32 768) are shownq=1 (open circley q=2 (open squarés
critical exponents are in agreement with the suggestion thaindq=4 (open diamonds The data were averaged over 30 disor-
Eq. (9) and the DPD model belong to the same universalityder distributions so that the statistical uncertainties are of the size of
class. the symbols or smallec) The same agb) but for the automaton.

In addition, we investigate the interface roughness forThe open symbols are the effective exponents for moving interfaces
F>F.. Itis shown that a moving interface is not self-affine at p=0.665(30 disorder distributions with =32 768).
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FIG. 3. (a) Effective exponentg(r) (full symbolg for the au- FIG. 4. (a) Effective exponents3(r) and B..(7) for the con-

tomaton with A\=0, y=1, g=1, p=0.801>p,=0.8004, and tinuum equation E=0.157>F.=0.1511, 30 runs with
L=32768. The data were averaged over 30 disorder distributiong.=32768). (b) The same as(a) but for the automaton
The dashed line indicates the critical expongrt0.88[22] from a (p=0.665>p,=0.6631, 30 runs with. =32 768).

measurement of the global width at threshold. The effective expo-

nentsB..(7) (open symbolsseem to approach this value for large
7. (b) The same a%a) but for the DPD model of Refl17] with
p=0.467>p.=0.461(30 runs withL=32768).

Periodic boundary conditions are used ant a parameter
measuring the strength of the disorder. We choose the pa-
rametersy=5, A=1, g=3 [36], and useAt=0.04, for
\{vhich Eq.(10) is found to be stable. We checked that simu-

and that the behavior of the roughness is very similar to thalations with At=0.01 yield consistent results

of the DPD model.

Ill. NUMERICAL METHODS B. Automaton model

A. Continuum equation Since the simulations of the continuum equati@f) are
computationally expensive, we also study a lattice model

First we simulate Eq9) with a discretization of the trans- 1551 of probabilistic cellular automata, which allows one to

verse coordinate only—i, h(x,t) —hi(t) (with 1<i<L).  getermine the critical exponents more effectively.

The random forces;(h) are chosen as follows: Each integer  the qutomaton model is defined on a square lattice where
positionh; on a square lattice is assigned a random numbeg -, cell[i,h] (with 1<i<L) is assigned a random force

n between zero and one. For noninteder the forces mn, which takes the value 1 with probabilitp and

7;(h) are obtained by _Iinear interpolat?c[GZ]. Fi_nally, the nin=—1 with probability 1-p. During the motion at a
h coordinates ofy;(h) in each columni are shifted by a given timet the local force

random amount &s;<1, i.e., ;(h)— 7;(h+s;) [34].

At t=0 the interface is flath;(t=0)=0. The interface fi(t)=9y[h;1(t)+h;_1() —2h;(t) ]+ N[ h; . 1(1)
configuration at+ At is calculated simultaneously for all )
using the method of finite differenc¢s5], —hi—1 (O] +g7ip, (13)

hi(t+ A=+ AR (O + -2 (D =20 (V)] is determined for ali. The interface configuration is then
+ A [hiz1(t)—hi_1()]?+g7i(h)}. (100  updated simultaneously for all[22]:
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FIG. 5. (a) Scaling plot according to Ed5) for the continuum FIG. 6. (3) The interface velocity as a function of the driving

equation. The same plotting symbol is used for data at a giveorce. The velocity is averaged over sufficiently long time intervals,

driving force F. Above thresholdF is in the range 0.168F<1  gq that the statistical uncertainties are smaller than the size of the

lated 50 independent runs with=16 384. The best data collapse is (| =65536) and for the automatofi=0.63+0.02 (L=131 072).
achieved witha=0.63,z=1, andv=1.7. (b) Scaling plot accord- (h) The effective exponents O(F—F.)=In[v(F)/v(F)V

ing to Eq.(5) for the automaton. Above thresholdis in the range  |n[(F—F)/(F’~F.)]. The dashed line indicates the critical value
0.664<p=<0.695 (20 independent runsand below threshold »—~0 636 of the DPD model.

0.567<p=<0.66(100 independent runsThe exponents for the best
data collapse are=0.63,z=1, andv=1.72. other hand, only a subset of valuegt) and 7; , are up-

) dated at each time step in the cellular automata model.
hi(t)+1 if f;>0, 12
1

hi(t+1)= .
'( ) hi(t) otherwise. IV. NUMERICAL RESULTS

The differencep—(1—p)=2p—1 determines the driving A. Roughness at threshold

force. For simplicity, we use the density as the tunable In this section we determine the critical exponeatand
parameter, and the depinning threshold is denotegphy 3, defined in Eqs(5) and(6), respectively. First we find the
The results shown in this paper were performed with thehreshold valud-. andp. from a measurement of the inter-
parametergy=10,\=1, andg= 20 [36]. face widthw?(t) for different values of the driving force.
The growth rule specified by Eq§ll) and (12) can be Since the correlation length increases when-F., the
derived from the continuum equatia®) by temporal and range of the scaling regime?(t)~t?? also increasefsee
spatial discretizations. In addition, a simple two-state randonq. (6)]. The threshold is estimated as the value where the
force n; n==1 is used. The discretization implies that the power-law scaling holds for the longest time interval. This
critical slowing down close to the threshold is reduced. Thismethod allows one to determine the threshold very accu-
can be seen as follows. For 0, the local force for most of rately.
the interface elements(t) in Eq. (10) is almost zero. None- In Fig. 1(a) the widthw?(t) at the estimated threshold is
theless, in the finite difference approximation E#0), all  shown in the transient regimés<é. In Fig. 1(b) the corre-
hi(t) and z;(h;) have to be updated at each time step. On thesponding effective exponeng(t) = In[w(t)yw(t/2)]/In4 are
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shown. Plotting the effective exponeng3(t) sensitively for =16 and approaches a valyk,, which is consistent
shows the quality of the power-law scaling. From Fig. 1 wewith the values of Refd.22] and[24] obtained by the width
conclude that3=0.64+0.02 for both the continuum equa- at threshold. We conclude that the interface in Ej.with
tion (10) and the automatofEqs.(11) and(12)]. Thisis in A =0 is self-affine with the same growth exponghtor both
very good agreement with the valyg=0.633, obtained by F=FcandF>F..
mapping the DPD model to directed percolat{@yl7].

A convenient estimate of the roughness exponeran 2. Height-height correlation function for the anisotropic case
be obtained by measuring the equal-time correlation function In contrast, the same measurement for the DPD model
C2(r,t)=([hi+,(t)—h;(t)]?) of pinned interfaces. In [see Fig. )] gives decreasing effective exponergér)
Fig. 2(a), the scalingC?(r)~r?* for r<¢ and F slightty — and B.(7), which shows that there is no scaling with the
below F is shown. The corresponding effective exponentscritical growth exponeng=0.63. For small times., the ef-
a(r)=In[C4r)/C4r/2)]/In4 are plotted in Figs. ®) and fective exponentg(7) andp..(7) are roughly 1, which can
2(c). Equation(10) and the automaton yield the same result,0® understood from the lateral motion of the parts of the
a=0.63+0.01, again in agreement with the prediction 0fln_terface Wlth Imear §I0pe. The_ behavior of the a_lutomaton
directed percolationa=0.633. Using the numerical result With A>0 is very similar[see Fig. 40)]. The effective ex-

for B, we see that the simulations are also consistent witf?®nentA(7) for the continuum equatiofFig. 4(@] also de-
2=alp=11[6,17] creases withr but shows a plateau at a valye=0.82. The

infinite momentc,.(7) seems to show a scaling for large
with 8,=0.63. It is not clear whether or not these plateaus in
Fig. 4@ can be considered as sonraulti) scaling regime.

In this section we consider the steady-state behavior ofVe can only conclude that the behavior is different from that
the roughness for moving interfaces at driving forcesof a self-affine interface, which is characterized by the same
F>F. such that¢é<L. We are interested in the large-time critical growth exponeng for F=F_. andF>F_ as long as
limit, t> &%, when the instantaneous velocity of the interfacetime scalesr< £” are considered.
fluctuates around its mean value

Recently, it was proposed that the roughness of moving
interfaces in the DPD model exhibits scaling with exponents ] )
different from the critical onef24]. This is in disagreement e now proceed to determine the correlation length ex-
with Ref. [17], where it was argued that on scales¢, the ponen_tv and the_ velocity exponerst, which phgracterlze Fhe
moving interfaces areot self-affine because they consist of Pehavior of the interface close to the depinning transition.
pinned regions withe=0.63 and laterally moving regions N Fig. 5, scaling plots according to E¢®) and (5) are
with roughly linear slopes¢=1). As a consequence, differ- shown. Since we already determined the threshold and the

ent moments of the equal-time correlation function critical exponentsr andz= a/ 3, we can tune the correlation
C%r,t)z(W), yield different effective length exponentr to achieve the best data collapse. The

_ It for Eq.(10) is »=1.7+=0.1 and for the automaton
roughness exponentay(r)=In[C(r)/C%(r/2)]/[gIn2]. re_su : . 2
We measur€(r,t) for the continuum equatiofl0) and ~ »~ 1:72-0.03. The corrections to the scaling’(¢) ~ &
for the automaton and find results very similar to the DPDdue to finite size effects are much larger for the continuum
model[17] [see Figs. &) and 2c)]. The effective exponents equation. Therefore simulations very close to the threshold

aqy(r) increase withg. The reason is that the moving regions are not shown in Fig.(®) and the error bar on the result for
(large slopeshave an increasing weight with increasing  ” is rather Iarge. The r_esults for th_e porrelau_on length expo-
[17] nent are consistent with the prediction of directed percola-

Another possibility to investigate the scaling of moving tion,hv: 1'73?;]' 6 . ; o
interfaces is a measurement of the height-height correlation The gf\gt exgorg_enﬁm dellneid>|nz E_q.(? 0; d?vmg
function, c2(7)=([hi(t+ 1) —h(1)]?), for t>¢ andé<L. Or€s c and time scalest>¢" is found to be

. ; , : =0.32-0.03 for the continuum equation and
For r<¢&%, the height-height correlation function scales as'Bm_
c?(7)~ 2P, provided the interface is self-affine. As an illus- Bm=0.32+0.02 for the automaton. These values iy are

: : consistent with the exponeft,,=1/3 of the KPZ equation
tration we consider the cade=0. [15]. This supports the picture that the quenched disorder
7n(x,h) crosses over to a thermal noisgx,vt) on time
] . scalest> ¢£* (see Fig. 5.

The growth exponenf8 has been determined in Refs.  The scaling of the steady-state velocityEq. (4) and the
[22,24 by simulations of the automaton model, Eq$1)  corresponding effective exponeritare shown in Fig. 6. The
and (12), with )\=0._ The scaling of the interface width at egyit for the continuum equation i8=0.64=0.05, and
threshold, Eq.(6), yields 3=0.88[22] and 8=0.85[24].  y—0.63+0.02 for the automaton, again in agreement with
Here, we measure the effective exponents in the steady-stafigs value of the DPD model=0.636[17].
regime, (1) =In[c®(D)IcX(72)]/In4. They are approximately
constant over three orders of magnitude of with V. SUMMARY AND CONCLUSIONS
£=0.88+0.01 [see Fig. Ba)]. The effective exponent
B(7) of the infinite moment of the height-height correlation  The results for the roughness of E§) with and without
function, c..(7) = (max{hi(t+n—h(t)})~ 7=, is also shown the term\(Vh)? are summarized in Table I.
in Fig. 3(@). The effective exponer..(7) increases slightly For A>0, pinned interfaces & =F are self-affine with

B. Roughness above threshold

C. Scaling of the correlation length and the velocity

1. Height-height correlation function for the cas&. =0
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TABLE |. Behavior of the roughness for EQ) in d=1. TABLE Il. Comparison of the critical exponents of the DPD
model with our numerical results.

Eq. (9) with A\=0 Eq.(9) with A>0

Exponent DPD  Continuum eq. Automaton
F=F., v—0 £=0.88[22] a=£3=0.63
F>F., v=const-0, 7<¢* B=0.88 Not self-affine ~ Roughnessy 0.633 0.63= 0.01 0.63x 0.01
F>F., t>¢ Bm=1/4[22] Bm=1/3 Growth 8 0.633 0.64= 0.02 0.64+ 0.02
Correlation lengthv 1.733 1.7 01 1.72+ 0.03
Velocity 6 0.636 0.64= 0.05 0.63+ 0.02

a roughness exponenrt=0.63. Moving interfaces are not
self-affine, which we demonstrated by measuring the corre-

lation functionsCA(r,t) andc(7) (see Figs. 2-A Thisisin  hand, are easier to pin, due to the smaller contribution of
comparison to the simpler behavior of E®) with A=0,  \(Vh)2.

where not only pinned interfaces are self-affifea length The observation that the interface motion is mainly due to
scales|<¢) but also moving interfaces on time scalesthe gradient termx (Vh)? causes a clustering of growth sites,
7<¢° The latter can be seen from the fact that the heightwhich can be understood as follows. A motion of an inter-
height correlation functior(7) for an interface moving with  face elemenh(x)—h(x) +dh increases the contribution of
constant velocity scales with the same growth exponent(Vh)? to the local force ah(x+dx) or h(x—dx). Thus,
B=0.88 as the global width & =F_ [see Fig. 88) and  this neighboring interface element is likely to be the next
Table I]. The values for the exponeft, [Eq. (7)] are ob-  new growth site, resulting in a cluster of growth sites to be
tained by the scaling of the global widti(t) on time scales formed. The moving regions have larger slopes than the
t>& and correspond to those of the Edwards-Wilkinsonpinned parts. As a consequence, a moving interface is not
equation §=0) [37] and the KPZ equation\(>0) [15],  self-affine. The clustering of growth sites in E§) does not
respectively. destroy the dynamical scaling of global quantities of the in-

The results for the critical exponents characterizing theterface, such as the width and the velogige Eqs(4)—(6)].
depinning transition of Eq.9) with A>0 are summarized in The scaling relatior{8) is also fulfilled by the exponents of
Table II. the DPD model and by our numerical results.

The numerical results for both the continuum equation The behavior of moving interfaces deserves further inves-
(10) and the automaton are in excellent agreement with théigation to understand better the concepts of scaling and self-
DPD model. We therefore expect that the critical exponentaffinity (see Sec. IV B Further, it would be very interesting
of the anisotropic depinning model E(@) are exactly given to construct a rigorous proof that E®) and the DPD model

by the exponents of directed percolation. are in the same universality class.
In the DPD model, the dynamic and the static behavior is
determined by directed percolation paths of pinning sites. ACKNOWLEDGMENTS
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