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We study numerically a stochastic differential equation describing an interface driven along the hard direc-
tion of an anisotropic random medium. The interface is subject to a homogeneous driving force, random
pinning forces, and surface tension. In addition, a nonlinear term due to the anisotropy of the medium is
included. The critical exponents characterizing the depinning transition are determined numerically for a
one-dimensional interface. The results are the same, within errors, as those of the ‘‘directed percolation
depinning’’ ~DPD! model. We therefore expect that the critical exponents of the stochastic differential equation
are exactly given by the exponents obtained by a mapping of the DPD model to directed percolation. We find
that a moving interface near the depinning transition is not self-affine and shows a behavior similar to the DPD
model.@S1063-651X~96!11508-7#

PACS number~s!: 05.40.1j, 75.60.Ch, 47.55.Mh, 74.60.Ge

I. INTRODUCTION

The driven viscous motion of an elastic interface in a
medium with random pinning forces is relevant for the un-
derstanding of various problems in condensed matter physics
@1#. Examples include the ordering dynamics of an impure
Ising magnet after a quench below the critical temperature
@2#, wetting immiscible displacement of one fluid by another
in a porous medium@3#, and pinning of flux lines in type-II
superconductors@4,5#. In recent years, studies of fluid imbi-
bition in paper@6,7# and of flameless paper burning@8# have
been carried out, and observable interfaces allow a direct
comparison with theoretical predictions.

Common to all of these problems is a competition be-
tween smoothening due to the surface tension and roughen-
ing due to the interaction with the random pinning forces of
the medium. Further, there is a competition between the driv-
ing force and the pinning forces, resulting in a depinning
transition.

On a coarse-grained level, it is expected that the dynamics
of the interface can be described by the following continuum
equation of motion:

vn~rW,t !5gK~rW !1F1h~rW !1nW •¹W V~rW !. ~1!

Here,vn(rW,t) is the normal velocity of the interface at posi-
tion rW. The surface tension generates a term proportional to
the total curvatureK(rW)52¹W •nW , wherenW is the normal vec-
tor on the interface atrW. The coefficientg measures the
stiffness of the interface.F is a homogeneous driving force.
The last two terms,h(rW) and nW •¹W V(rW), represent random-
field and random-bond disorder, respectively. The random
forcesh(rW) and the random potentialV(rW) are short-range
correlated in space.

Equation~1! is considerably simplified by restricting our-
selves to an almost planar interface without overhangs. A

coordinate systemrW5(x,h) can be introduced, so that the
interface position is given by a single-valued function
h(x,t). The dimension ofx is denoted byd. Equation~1!
becomes@9#

1

Ag
]h~x,t !

]t
5 g¹•~g21/2¹h!1F1h~x,h!

1
1

Ag
F¹h¹V~x,h!2

]V~x,h!

]h G , ~2!

whereg511(¹h)2.
For sufficiently large values of the driving forceF, the

interface grows continuously. However, for smaller values of
F, growth on some regions of the interface can come to a
halt, due to the interaction with the quenched disorder. We
say that these regions of the interface have becomepinned.
As the rest of the interface continues to grow, the pinned
regions can be dragged over the pinning barriers by neigh-
boring moving regions. Then, the formerly pinned regions
advance quickly, which can be considered an avalanche@10–
13#.

The maximum linear sizej of the pinned regions diverges
whenF approaches its critical valueFc ,

j;uF2Fcu2n. ~3!

The thresholdFc is the critical point of a dynamical phase
transition, andj the corresponding correlation length. The
role of the order parameter is played by the mean velocity,
v5 limt→`,L→`]h/]t. (L is the system size and the overbar
denotes the spatial average overx.! The velocity is zero for
F,Fc , and increases as

v;~F2Fc!
u ~4!

for F close toFc . On length scalesl@j pinning can be
neglected and we can therefore replace the argumenth in the
disorder termsh(x,h) andV(x,h) by vt; i.e., the quenched
disorder crosses over to thermal noise@14#. Then, the inter-
face is governed by the Kardar-Parisi-Zhang~KPZ! equation
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@15#. In this paper, we are interested in the critical behavior
on length scalesl!j, especially whenj→` at the depin-
ning transition.

The global interface widthw25^h(x,t)2h̄(t)& is another
characteristic quantity of the interface. Here and elsewhere,
^& denotes an average over the disorder distribution. Choos-
ing a flat interface as the initial condition,h(x,t50)[0,
w2 scales as@16,17#

w2~j,t !;j2aC6~ t/jz! ~5!

for a sufficiently large system size,L.j. If L,j, the corre-
lation lengthj in Eq. ~5! has to be replaced byL. C1(y) and
C2(y) are scaling functions forF.Fc andF,Fc , respec-
tively. Both functions scale asC6(y);y2b for y!1, where
b5a/z. It follows that

w2~ t !;t2b ~ t!jz!. ~6!

ForF.Fc , pinning is irrelevant on length scalesl@j, so we
can neglect pinning also on time scalest@jz. Thus,
C1(y);y2bm for y@1, wherebm is the growth exponent of
an interface subject to thermal noise. Below threshold, the
interface becomes pinned andC2(y)5const. Using the
scaling ofC6(y) for y!1 and Eq.~5! we obtain

w2~j,t !;H t2bm ~ t@jz, F.Fc!

j2a ~ t@jz, F,Fc!.
~7!

It has been shown that the critical exponents fulfill an exact
scaling relation@14#,

u5n~z2a!. ~8!

II. THE MODEL FOR ANISOTROPIC DEPINNING

To further simplify the equation of motion~2!, we assume
that the typical gradients¹h are small on large length scales,
so that the roughness exponenta is smaller than one. This
assumption has to be compared with the final results. When
expanding 1/Ag.12(¹h)2/2, nonlinear terms proportional
to (¹h)2 are generated in Eq.~2!. A natural question is
whether these terms are relevant at the depinning transition.
A term (¹h)2 with a positive coefficient on the right-hand
side of Eq. ~2! would give a nonzero contribution to the
driving force for any rough interface. This contribution in-
creases when imposing a global tilt of the interface. Thus,
the thresholdFc becomes a function of the average orienta-
tion of the interface. This is reasonable for anisotropic sys-
tems but not for isotropic ones. For interfaces in an isotropic
environment, it can indeed be shown that the nonlinear terms
generated by expanding 1/Ag in Eq. ~2! are irrelevant close
to the depinning transition@11#. If, however, the medium is
anisotropic, a term of the forml(¹h)2 can be relevant even
for the casev→0. In fact, Tang, Kardar, and Dhar@9# argued
that if ¹V and ]V/]h are differently distributed, the term
l(¹h)2 is generated under coarse graining. More generally,
if the system is anisotropic in the sense that the threshold
Fc depends on the average orientation of the interface,
l(¹h)2 is the only relevant term that can change the univer-
sality class of the depinning transition@9#. Motivated by

these observations, we consider the following equation of
motion:

]h~x,t !

]t
5g¹2h1l~¹h!21F1h~x,h!. ~9!

For l.0 the thresholdFc has a maximum for an interface
without tilt, i.e., an interface with periodic boundary condi-
tions in Eq. ~9! is driven along the hard direction of the
anisotropic medium@9#.

Equation ~9! is the model we study in this paper. For
simplicity, we restrict ourselves to interface dimension
d51 and consider only random-field disorderh(x,h). It was
shown by Narayan and Fisher@11# for isotropic systems that
random fields and random bonds give rise to the same criti-
cal behavior. This has been supported by numerical simula-
tions of interfaces subject to random-bond disorder@18,19#.
The random forces are assumed to have zero mean and short-
range correlations,̂h(x8,h8)h(x81x,h81h)&5d(x)D(h),
whereD(h) decreases exponentially foruhu greater than a
microscopic cutoff.

A. Previous results

The casel50 in Eq. ~9! was first investigated by
Feigel’man @20#. Significant progress has been made by a
functional renormalization-group treatment@11,14,21# and
by extensive numerical simulations@13,21–25#.

The results for the anisotropic casel.0 are less well
established. It was first suggested in Ref.@26# that Eq.~9! is
in the same universality class as the ‘‘directed percolation
depinning’’ ~DPD! model @6,17#. For d51, directed perco-
lating paths of pinning sites stop the interface. Thus, the
roughness of the pinned interface is given by the scaling of
the directed paths and the corresponding roughness exponent
is a.0.633@6,17#. The other critical exponents of the DPD
model can also be obtained by a mapping to directed perco-
lation; in d51 the dynamical exponentz51, the correlation
length exponentn.1.733, and the velocity exponent
u.0.636.

Amaral, Baraba´si, and Stanley@27# measured the tilt de-
pendence of the velocity for several versions of the DPD
model and found a behavior consistent with the relevance of
the terml(¹h)2 at the depinning transition. Galluccio and
Zhang@28# simulated a self-organized version@29,30# of Eq.
~9! and obtaineda.0.63, thereby supporting the conjecture
of Ref. @26#. Recently, Olami, Procaccia, and Zeitak@25#
argued that the slopes of the pinned surfaces in Eq.~9! are
bounded and that therefore Eq.~9! could belong to the di-
rected percolation universality class.

However, Csaho´k et al. @31# performed the only direct
simulation of the continuum equation~9! and came to a dif-
ferent conclusion: Their numerical values for the exponents
a andb in d51 are in agreement with a scaling theory for
Eq. ~9!, which yieldsa5(42d)/4 andb5(42d)/(41d)
@31#. Yet another proposal was made by Parisi@32#. He ar-
gued thatb5(42d)/4 and supported this value ind51 by a
simulation of a lattice model, which was assumed to be in
the universality class of Eq.~9!. Problematic is also the in-
terpretation of Stepanow’s renormalization-group calculation
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in d542e dimensions@33#. The extrapolation tod51 gives
the resultsa.0.86,z.1, n.1.2, andu.0.16 @33#.

B. Aim of the paper

To resolve these discrepancies we carefully determine in
this paper the critical exponents by large-scale simulations of
Eq. ~9! for interface dimensiond51. To this end we carry
out a numerical integration of the equation of motion with a
continuous height variable as well as a simulation of an au-
tomaton model where the height variable takes integer values
only. In addition to the previously measured exponentsa
andb we also determine the exponentsn andu to strengthen
our conclusions. We find that the numerical values for all
critical exponents are in agreement with the suggestion that
Eq. ~9! and the DPD model belong to the same universality
class.

In addition, we investigate the interface roughness for
F.Fc . It is shown that a moving interface is not self-affine

FIG. 1. ~a! Scaling of the interface widthw2(t);t2b at thresh-
old. Interfaces of sizeL516 384 atFc.0.1511 were simulated for
the continuum equation~10!, and atpc.0.6631 for the automaton
(L5262 144). The data were averaged over 40 independent disor-
der distributions. The statistical uncertainties are smaller than the
size of the symbols. The asymptotic slopes yieldb50.6460.02 for
both lines. ~b! The corresponding effective exponentsb(t)
5 ln@w2(t)/w2(t/2)#/ ln4. The valueb.0.633 of the DPD model is
shown as the dashed horizontal line.

FIG. 2. ~a! Equal-time correlation functionC2(r );r 2a for
pinned interfaces slightly below threshold:F50.149 (L565 536)
for Eq. ~10! and p50.6623 (L5131 072) for the automaton. We
averaged the data over 12 independent runs. Both lines give
a50.6360.01. ~b! Critical effective exponents
a(r )5 ln@C2(r)/C2(r/2)#/ ln4 corresponding to~a! for the continuum
equation ~full symbols!. The dashed line indicates the exponent
a.0.633 of the DPD model. In addition, the effective exponents
aq(r ) for different momentsq of the equal-time correlation func-
tion Cq(r ) for moving interfaces above threshold (F50.157,
L532 768) are shown:q51 ~open circles!, q52 ~open squares!,
andq54 ~open diamonds!. The data were averaged over 30 disor-
der distributions so that the statistical uncertainties are of the size of
the symbols or smaller.~c! The same as~b! but for the automaton.
The open symbols are the effective exponents for moving interfaces
at p50.665~30 disorder distributions withL532 768).
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and that the behavior of the roughness is very similar to that
of the DPD model.

III. NUMERICAL METHODS

A. Continuum equation

First we simulate Eq.~9! with a discretization of the trans-
verse coordinate only,x→ i , h(x,t)→hi(t) ~with 1< i<L).
The random forcesh i(h) are chosen as follows: Each integer
positionhi on a square lattice is assigned a random number
h between zero and one. For nonintegerhi the forces
h i(h) are obtained by linear interpolation@32#. Finally, the
h coordinates ofh i(h) in each columni are shifted by a
random amount 0<si,1, i.e.,h i(h)→h i(h1si) @34#.

At t50 the interface is flat,hi(t50)[0. The interface
configuration att1Dt is calculated simultaneously for alli
using the method of finite differences@35#,

hi~ t1Dt !5hi~ t !1Dt$g@hi11~ t !1hi21~ t !22hi~ t !#

1l@hi11~ t !2hi21~ t !#
21gh i~hi !%. ~10!

Periodic boundary conditions are used andg is a parameter
measuring the strength of the disorder. We choose the pa-
rametersg55, l51, g53 @36#, and useDt50.04, for
which Eq.~10! is found to be stable. We checked that simu-
lations withDt50.01 yield consistent results.

B. Automaton model

Since the simulations of the continuum equation~10! are
computationally expensive, we also study a lattice model
@22# of probabilistic cellular automata, which allows one to
determine the critical exponents more effectively.

The automaton model is defined on a square lattice where
each cell@ i ,h# ~with 1< i<L) is assigned a random force
h i ,h , which takes the value 1 with probabilityp and
h i ,h521 with probability 12p. During the motion at a
given timet the local force

f i~ t !5g@hi11~ t !1hi21~ t !22hi~ t !#1l@hi11~ t !

2hi21~ t !#
21gh i ,hi

~11!

is determined for alli . The interface configuration is then
updated simultaneously for alli @22#:

FIG. 3. ~a! Effective exponentsb(t) ~full symbols! for the au-
tomaton with l50, g51, g51, p50.801.pc.0.8004, and
L532 768. The data were averaged over 30 disorder distributions.
The dashed line indicates the critical exponentb.0.88@22# from a
measurement of the global width at threshold. The effective expo-
nentsb`(t) ~open symbols! seem to approach this value for large
t. ~b! The same as~a! but for the DPD model of Ref.@17# with
p50.467.pc.0.461~30 runs withL532 768).

FIG. 4. ~a! Effective exponentsb(t) and b`(t) for the con-
tinuum equation (F50.157.Fc.0.1511, 30 runs with
L532 768). ~b! The same as~a! but for the automaton
(p50.665.pc.0.6631, 30 runs withL532 768).
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hi~ t11!5H hi~ t !11 if f i.0,

hi~ t ! otherwise.
~12!

The differencep2(12p)52p21 determines the driving
force. For simplicity, we use the densityp as the tunable
parameter, and the depinning threshold is denoted bypc .
The results shown in this paper were performed with the
parametersg510, l51, andg520 @36#.

The growth rule specified by Eqs.~11! and ~12! can be
derived from the continuum equation~9! by temporal and
spatial discretizations. In addition, a simple two-state random
force h i ,h561 is used. The discretization implies that the
critical slowing down close to the threshold is reduced. This
can be seen as follows. Forv→0, the local force for most of
the interface elementshi(t) in Eq. ~10! is almost zero. None-
theless, in the finite difference approximation Eq.~10!, all
hi(t) andh i(hi) have to be updated at each time step. On the

other hand, only a subset of valueshi(t) andh i ,hi
are up-

dated at each time step in the cellular automata model.

IV. NUMERICAL RESULTS

A. Roughness at threshold

In this section we determine the critical exponentsa and
b, defined in Eqs.~5! and~6!, respectively. First we find the
threshold valueFc andpc from a measurement of the inter-
face widthw2(t) for different values of the driving force.
Since the correlation length increases whenF→Fc , the
range of the scaling regimew2(t);t2b also increases@see
Eq. ~6!#. The threshold is estimated as the value where the
power-law scaling holds for the longest time interval. This
method allows one to determine the threshold very accu-
rately.

In Fig. 1~a! the widthw2(t) at the estimated threshold is
shown in the transient regime,t!j. In Fig. 1~b! the corre-
sponding effective exponentsb(t)5 ln@w2(t)/w2(t/2)#/ ln4 are

FIG. 5. ~a! Scaling plot according to Eq.~5! for the continuum
equation. The same plotting symbol is used for data at a given
driving forceF. Above threshold,F is in the range 0.163<F<1
and below threshold 0.03<F<0.12. For each value ofF we simu-
lated 50 independent runs withL516 384. The best data collapse is
achieved witha.0.63,z.1, andn.1.7. ~b! Scaling plot accord-
ing to Eq.~5! for the automaton. Above threshold,p is in the range
0.664<p<0.695 ~20 independent runs! and below threshold
0.567<p<0.66~100 independent runs!. The exponents for the best
data collapse area.0.63,z.1, andn.1.72.

FIG. 6. ~a! The interface velocityv as a function of the driving
force. The velocity is averaged over sufficiently long time intervals,
so that the statistical uncertainties are smaller than the size of the
symbols. For the continuum equation we obtainu50.6460.05
(L565 536) and for the automatonu50.6360.02 (L5131 072).
~b! The effective exponents u(F2Fc)5 ln@v(F)/v(F8)#/
ln@(F2Fc)/(F82Fc)#. The dashed line indicates the critical value
u.0.636 of the DPD model.
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shown. Plotting the effective exponentsb(t) sensitively
shows the quality of the power-law scaling. From Fig. 1 we
conclude thatb50.6460.02 for both the continuum equa-
tion ~10! and the automaton@Eqs.~11! and ~12!#. This is in
very good agreement with the valueb.0.633, obtained by
mapping the DPD model to directed percolation@6,17#.

A convenient estimate of the roughness exponenta can
be obtained by measuring the equal-time correlation function
C2(r ,t)5^@hi1r(t)2hi(t)#

2& of pinned interfaces. In
Fig. 2~a!, the scalingC2(r );r 2a for r!j and F slightly
below Fc is shown. The corresponding effective exponents
a(r )5 ln@C2(r)/C2(r/2)#/ ln4 are plotted in Figs. 2~b! and
2~c!. Equation~10! and the automaton yield the same result,
a50.6360.01, again in agreement with the prediction of
directed percolation,a.0.633. Using the numerical result
for b, we see that the simulations are also consistent with
z5a/b51 @6,17#.

B. Roughness above threshold

In this section we consider the steady-state behavior of
the roughness for moving interfaces at driving forces
F.Fc such thatj,L. We are interested in the large-time
limit, t@jz, when the instantaneous velocity of the interface
fluctuates around its mean valuev.

Recently, it was proposed that the roughness of moving
interfaces in the DPD model exhibits scaling with exponents
different from the critical ones@24#. This is in disagreement
with Ref. @17#, where it was argued that on scalesl<j, the
moving interfaces arenot self-affine because they consist of
pinned regions witha.0.63 and laterally moving regions
with roughly linear slopes (a.1). As a consequence, differ-
ent moments of the equal-time correlation function,
Cq(r ,t)5^uhi1r(t)2hi(t)uq&, yield different effective
roughness exponents,aq(r )5 ln@Cq(r)/Cq(r/2)#/@qln2#.

We measureCq(r ,t) for the continuum equation~10! and
for the automaton and find results very similar to the DPD
model@17# @see Figs. 2~b! and 2~c!#. The effective exponents
aq(r ) increase withq. The reason is that the moving regions
~large slopes! have an increasing weight with increasingq
@17#.

Another possibility to investigate the scaling of moving
interfaces is a measurement of the height-height correlation
function, c2(t)5^@hi(t1t)2hi(t)#

2&, for t@jz and j,L.
For t!jz, the height-height correlation function scales as
c2(t);t2b, provided the interface is self-affine. As an illus-
tration we consider the casel50.

1. Height-height correlation function for the casel50

The growth exponentb has been determined in Refs.
@22,24# by simulations of the automaton model, Eqs.~11!
and ~12!, with l50. The scaling of the interface width at
threshold, Eq.~6!, yields b.0.88 @22# and b.0.85 @24#.
Here, we measure the effective exponents in the steady-state
regime,b(t)5 ln@c2(t)/c2(t/2)#/ ln4. They are approximately
constant over three orders of magnitude oft, with
b50.8860.01 @see Fig. 3~a!#. The effective exponent
b`(t) of the infinite moment of the height-height correlation
function, c`(t)5^maxi$hi(t1t)2hi(t)%&;tb`, is also shown
in Fig. 3~a!. The effective exponentb`(t) increases slightly

for t>16 and approaches a valueb` , which is consistent
with the values of Refs.@22# and@24# obtained by the width
at threshold. We conclude that the interface in Eq.~9! with
l50 is self-affine with the same growth exponentb for both
F5Fc andF.Fc .

2. Height-height correlation function for the anisotropic case

In contrast, the same measurement for the DPD model
@see Fig. 3~b!# gives decreasing effective exponentsb(t)
and b`(t), which shows that there is no scaling with the
critical growth exponentb.0.63. For small timest, the ef-
fective exponentsb(t) andb`(t) are roughly 1, which can
be understood from the lateral motion of the parts of the
interface with linear slope. The behavior of the automaton
with l.0 is very similar@see Fig. 4~b!#. The effective ex-
ponentb(t) for the continuum equation@Fig. 4~a!# also de-
creases witht but shows a plateau at a valueb.0.82. The
infinite momentc`(t) seems to show a scaling for larget
with b`.0.63. It is not clear whether or not these plateaus in
Fig. 4~a! can be considered as some~multi! scaling regime.
We can only conclude that the behavior is different from that
of a self-affine interface, which is characterized by the same
critical growth exponentb for F5Fc andF.Fc as long as
time scalest!jz are considered.

C. Scaling of the correlation length and the velocity

We now proceed to determine the correlation length ex-
ponentn and the velocity exponentu, which characterize the
behavior of the interface close to the depinning transition.

In Fig. 5, scaling plots according to Eqs.~3! and ~5! are
shown. Since we already determined the threshold and the
critical exponentsa andz5a/b, we can tune the correlation
length exponentn to achieve the best data collapse. The
result for Eq. ~10! is n51.760.1 and for the automaton
n51.7260.03. The corrections to the scalingw2(j);j2a

due to finite size effects are much larger for the continuum
equation. Therefore simulations very close to the threshold
are not shown in Fig. 5~a! and the error bar on the result for
n is rather large. The results for the correlation length expo-
nent are consistent with the prediction of directed percola-
tion, n.1.733.

The growth exponentbm defined in Eq.~7! for driving
forces F.Fc and time scalest@jz is found to be
bm50.3260.03 for the continuum equation and
bm50.3260.02 for the automaton. These values forbm are
consistent with the exponentbm51/3 of the KPZ equation
@15#. This supports the picture that the quenched disorder
h(x,h) crosses over to a thermal noiseh(x,vt) on time
scalest@jz ~see Fig. 5!.

The scaling of the steady-state velocityv Eq. ~4! and the
corresponding effective exponentsu are shown in Fig. 6. The
result for the continuum equation isu50.6460.05, and
u50.6360.02 for the automaton, again in agreement with
the value of the DPD model,u.0.636@17#.

V. SUMMARY AND CONCLUSIONS

The results for the roughness of Eq.~9! with and without
the terml(¹h)2 are summarized in Table I.

For l.0, pinned interfaces atF5Fc are self-affine with
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a roughness exponenta.0.63. Moving interfaces are not
self-affine, which we demonstrated by measuring the corre-
lation functionsCq(r ,t) andc(t) ~see Figs. 2–4!. This is in
comparison to the simpler behavior of Eq.~9! with l50,
where not only pinned interfaces are self-affine~on length
scales l!j) but also moving interfaces on time scales
t!jz. The latter can be seen from the fact that the height-
height correlation functionc(t) for an interface moving with
constant velocity scales with the same growth exponent
b.0.88 as the global width atF5Fc @see Fig. 3~a! and
Table I#. The values for the exponentbm @Eq. ~7!# are ob-
tained by the scaling of the global widthw(t) on time scales
t@jz and correspond to those of the Edwards-Wilkinson
equation (l50) @37# and the KPZ equation (l.0) @15#,
respectively.

The results for the critical exponents characterizing the
depinning transition of Eq.~9! with l.0 are summarized in
Table II.

The numerical results for both the continuum equation
~10! and the automaton are in excellent agreement with the
DPD model. We therefore expect that the critical exponents
of the anisotropic depinning model Eq.~9! are exactly given
by the exponents of directed percolation.

In the DPD model, the dynamic and the static behavior is
determined by directed percolation paths of pinning sites.
Due to the restricted solid-on-solid condition of the directed
percolation paths, the pinned regions of the interface have
small gradients~bounded by a slope one! @17#. In contrast,
the laterally moving regions have a linear slope of about two
@17#. This behavior is analogous to that of Eq.~9!; regions of
the interface with large slopes are likely to move due to the
positive contribution of the terml(¹h)2 to the driving force.
Regions of the interface with small gradients, on the other

hand, are easier to pin, due to the smaller contribution of
l(¹h)2.

The observation that the interface motion is mainly due to
the gradient terml(¹h)2 causes a clustering of growth sites,
which can be understood as follows. A motion of an inter-
face elementh(x)→h(x)1dh increases the contribution of
l(¹h)2 to the local force ath(x1dx) or h(x2dx). Thus,
this neighboring interface element is likely to be the next
new growth site, resulting in a cluster of growth sites to be
formed. The moving regions have larger slopes than the
pinned parts. As a consequence, a moving interface is not
self-affine. The clustering of growth sites in Eq.~9! does not
destroy the dynamical scaling of global quantities of the in-
terface, such as the width and the velocity@see Eqs.~4!–~6!#.
The scaling relation~8! is also fulfilled by the exponents of
the DPD model and by our numerical results.

The behavior of moving interfaces deserves further inves-
tigation to understand better the concepts of scaling and self-
affinity ~see Sec. IV B!. Further, it would be very interesting
to construct a rigorous proof that Eq.~9! and the DPD model
are in the same universality class.
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