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A recently developed model of random walks oDadimensional hyperspherical lattice, whebeis not
restricted to integer values, is used to study polymer growth né&udanensional attractive hyperspherical
boundary. The model determines the fract®fx) of the polymer adsorbed on this boundary as a function of
the attractive potentiak for all values ofD. The adsorption fractiof?(«) exhibits a second-order phase
transition with a universal, nontrivial scaling coefficient foc@ <4, D+ 2, and exhibits a first-order phase
transition forD>4. At D=4 there is a tricritical point with logarithmic scaling. This model reproduces earlier
results forD =1 and 2, wherd®(«) scales linearly and exponentially, respectively. A crossover transition that
depends on the radius of the adsorbing boundary is folB1D63-651X96)05806-0

PACS numbds): 05.40:+j, 05.20~y, 05.50+q

[. INTRODUCTION monomers. Such systems are easy to model by means of
self-avoiding random walkgl2,13. In this paper, we exam-

In previous papergl—4] we analyzed a class of models of ine such a polymer growing in the neighborhood of an at-
D-dimensional spherically symmetric random walks, wheretractive D-dimensional hyperspherical boundary. Special
D is not restricted to integer values. In Rdfl] we intro-
duced the notion of spherically symmetric random walks and
in Ref.[2] we studied a simplified model of spherically sym- n
metric random walks that is analytically tractable for all val-
ues ofD. In Ref.[3] we considered random walks that allow L ™ >N .
for the creation and annihilation of random walkers and dem- s =
onstrated that these extended models exhibit critical behavior |—| -
as a function of the birth rate of walkers. In R¢#] we NN \\ .

\

summarized the results of this and the previous papers and RERAMAEY

cal methods and numerical calculations for different lattice

discuss the universality of the critical behavior using analyti- \) \
configurations. This critical behavior exhibits an interesting » /

dependence on the dimensibn In this paper we apply these
ideas specifically to the study of polymer growth near a /7] ]
D-dimensional hyperspherical adsorbing boundéary
Polymers have inspired many experimental and theoreti-
cal investigationg6,7]. Because polymers are complex ob-
jects constructed from simple building blocks, they serve as
a laboratory for the development of scaling methd8§
renormalization-group theorj@], and Monte Carlo simula-
tion [10]. Formulating simplified statistical models of poly-
mer growth is useful for understanding aspects of critical

FIG. 1. Random walk on a lattice consisting of concentric cy-
_ - lindrical surfaces of unit radii. Such a walk serves as model for a
phepomena eXhlt.)'ted by actual polymers. Polymer grOY"th : olymer growing at an attractive cylindrical boundary such as a cell
a d'sorder_ed enVIronment such as d'reCted, polymers in ra nembrane with radium (thickened lines The polymer is initially
dom_ media(DPRM) is also_used to d_escrl_be _ph?nomenagrafted to the boundary and is growing to the right. Every time a
ranging from crack propagation to flux-line pinning in SUper-monomer gets added at the boundary, the polymer gains in potential
conductorg11(a)]. Subtle effects for the adsorption transi- energy by an amounk. The walk consists oN=26 monomer
tion arise When the disorder iS Conﬁned toa random potentia‘nksl but 0n|y L=14 random Steps were required because every
on an adsorbing boundafi1(b)], and extending the study random step in the radial direction is followed by a deterministic
of these effects to dimensiori3>1 is of practical impor- step in the axial direction. This requirement ensures that the random
tance[11(a),11(c)]. walk advances exactly one unit in the axial direction for each ran-

The simplest polymer system is an unbranched chain ofiom step.
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cases of this polymer system have already been investigateth ensemble of polymers near an attractivelimensional
for planar ©=1) [14] and cylindrical D=2) [15,16  hyperspherical boundary of radims, wherem=0 is mea-
boundaries. sured in discrete monomer units. We derived the adsorption
The spherically symmetric random-walk model intro- fractionP(«) as a function of the attractive potentiain the
duced in Ref[1] was used in Ref[15] to determine the limit where the average length of a polymer reaches infinity.
critical properties of a polymer growing near an attractiveThe parametek is closely related to the birth rateused in
D-dimensional hyperspherical boundary. However, thaRRef.[3].
model was mathematically intractable except ib+=1 and We find that if the attractive potentia¢ drops below a
2. Here we use the model of hyperspherical random walksritical valuex, which in general depends @, the adsorp-
introduced in Ref[2] to solve theD-dimensional polymer tion fraction vanishes. A& — «.—0+ for fixed radiusm,
growth model for arbitraryp>0. Specifically, we consider the asymptotic behavior d?(«) is given by

[ C1(D,m)(k— k)PP (0<D<?2)
8
C2(2,m)(K—KC)*2 EX[{—W(K_KC) (D=2)
P(k)~{ Ca(D,m)(x— k)4 D/D=2 (2<D<4) (1.1)
1
C4(4,m) m (D—4)
| Cs(D,m) (D>4),

whereC,;(D,m) are constants that depend on the dimensiorwalker's probability of moving inward is zerpRegardless
D and the radiusn of the adsorbing boundary. of whether the walker moves radially or remains on the same
Equation(1.1) ceases to be valid aa— . When radial surface, we then require the walker to move one addi-

tional monomer unit in the axial direction in tHe+1 di-

K= K~ @ (1.2 mension. This o_leterministic ax_ial motio_n _guarantges that the

m random walk will never cross itselfA similar requirement

is imposed in restricted solid-on-solid modglglence, at
whereB(D) is a constant of order 1, we observerassover gach step the polymer grows by adding either one or two
transition to linear scaling behavior P(«) ask—«k.—0+.  monomers, but always advances exactly one unit in the axial

In Sec. Il we discuss the theory of polymer growth neargi e tion. The growth of such a polymer is illustrated in Fig.
an attractiveD -dimensional spherically symmetric boundary. 1 for the casd =2

In Sec. lll we solve the eigenvalue problem that results from

a transfer-matrix description of this growth process. FinaIIy,ba
in Sec. IV we determine for alD >0 the adsorption fraction
P(«) near the critical poink,.

The dynamics of the polymer growth is regulated by a
lance between energy and entropy. There is one energy
associated with the addition of a new monomer and another
associated with adsorption on the attractive boundary. Each
addition of a monomer is characterized by a factor @ind
each addition of a monomer on the attractive boun@®&ys
associated with an additional factor af The factor« is

We model polymer growth as a nonintersectidgected,  shown in Fig. 1, but the factor df is not indicated because
random walk in D+ 1)-dimensional space. This random there is one such factor for each line segnfemnomey. As
walk takes place on the union of a one-dimensional semithe dimensiorD increases there is a corresponding increase
infinite lattice and &-dimensional lattice consisting of a set in the available volume for the polymer to occupy as it grows
of concentric hyperspherical surfaces labefgd The hyper- away from the adsorbing boundary. For any giv@nthis
spherical surfaces are equally spaced in units of one mon@onfigurational entropy balances the binding potential on the
mer length. The innermost surfa&,, m=0, is the attrac- attractive boundary. Thus one might anticipate that the criti-
tive boundary, which has a radius of in monomer units. cal properties of this system will vary in an interesting way
The next surfac&,, ; has a radius ofn+1 and so on. The as a function of the curvature of the boundary.
extra axial dimension is introduced to ensure that the random While this random walk model is only a crude description
walk is nonintersecting; thus we are actually studying aof an actual polymer growing in a continuum, one might
cylindrically-symmetric random walk ilD + 1 dimensions.  hope that the critical properties of the polymer system in the

At each step the random walker has a probability of mov-nfinite chain limit are universal and well approximated by
ing one monomer unit radially outward, moving one mono-such a model.
mer unit radially inward, or staying on the same radial sur- We consider next the probabilities that define the radial
face. (When the walker is on the boundary surfégg the  motion of the random walk. We have introduced a hyper-

Il. DIRECTED-WALK MODEL
FOR POLYMER ADSORPTION
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spherical lattice because spherical symmetry reduces the critical properties of polymer growth at an attractive
D-dimensional problem to a one-dimensional problem. Théboundary, we must investigate the average behavior of an
probability distribution of a spherically symmetric random ensemble of walkers. Thus we derive a partition function for
walk is described completely by a one-dimensional recursiomandom walks and use it to generate ensemble averages that
relation [1]. The coefficients in this recursion relation are describe, for example, the fraction of a growing polymer that
dependent on the location of the walker and express the ras adsorbed on the boundary. From the above probabilities
dial bias (or entropy of the spherical geometry; that is, a and the parameters and « associated with adding mono-
random walker tends to move outward rather than inwardners, we construct a transfer matiix; that expresses the
because more volume is available in the outward directiomprobability of the walker moving from théth to the jth
whenD>1. In Ref.[1] inward and outward walk probabili- surface at each step:

ties were proposed that express this radial bias. Unfortu-

nately, for arb_itrar;D, these probabilities_ are so _compli_cated Tj'i:Z“_HK‘Sm,j[Psta)(i)%J +Poul(i) 8- 1+ Pin(i) 81151
that an analytical solution to the recursion relation is impos-

sible except for a few special values Df 23

In a recent papef2] it was shown that the recursion re- A particular polymer configuration generated by a random
lation can be solved analytically for alD>0 by replacing \yalk consisting ofL steps is characterized by a set lof
the outward and inward walk probabilities for regiSnwith integers{h} -_, that specify the surfacé, reached on the

a umfo_rm approximation for alh. In R.Ef.‘ [2] it was shown_ ith step in the axial direction. The total statistical weight of
that this simplified random walk exhibits the usual scaling :
such a polymer is expressed as a product aflements of

properties of a random walk model. For example, walks O e transfer matrix:

this lattice have a Hausdorff dimensi@n,=2. In compari- '

son with random walks on other lattices, such as a hypercu- L

bic lattice, the random walk model studied in this paper is Z"8mhg Thyhg Thy by Thy vy g

remarkable because it is analytically tractable. Numerical

and analytical studies in Ref3] suggest that, despite the where the Kronecker delta ensures that the polymer is ini-
simplicity of the model, the nontrivial phenomena obtainedtially grafted to the boundary. The partition functidp for

in this paper are indeed universal. all polymers having axial length is then
We represent the probabilities that define the random
walk considered in this paper B, (n), the probability that Z.= ApOTLa

a walker stays on the surfa& and just moves in the axial

direction,P,(n), the probability that the walker moves out- - ¢ . , .
ward from the surfaceS, to the surfaceS, ., (and then whereb® and & are vectors accounting for beginning and

moves in the axial direction on the surfaG.,), and end effects. Henc&=2=/_,Z, , the total partition function
P,.(n), the probability that the walker moves inward from for configurations of all axial lengths, is given by
the surfaceS, to the surfaceS,_; (and then moves in the

axial direction on the surfac8,_;). Generalizing the prob- Z(z,x)=5(‘)zT(1—zT)*1§. (2.4
abilities used in Refl2] to include the possibility of staying
on the surfaceS,, we express theelative probabilities as Let Ao 6,2Z) be the largest eigenvalue of the transfer
) matrix T and definez..(«) by
n
PsafM=1 Pi(M)=5—F—7.
sia ™ 2n+D-1 1=2,(K) A ad K, 2() . (2.5
p — 2(n+D-1) 27 Letting Az=z,(«)—z, note that the partition functioZ in
ouN) - (n>m). (2.) .
2n+D-1 Eq. (2.4) diverges af\z—0+.

. _ We can express the average length of a polymer in terms
Note that the walker is more likely to move outward@s  of the partition functiorz:

increases. However, as increases withD held fixed, the
outward and inward probabilities become equal; this happens P
because at large radius our nested spheres appear |[c@ally (N(z,k))=2 — In Z(z,).
the scale of a monomer lengtto be equally spaced parallel 9z
planes.
On the boundans,, we enforce the condition that the Similarly, the average number of monomers adsorbed on the
walker is prohibited from moving inward by requiring that boundary is given by

Psta)xm):lr Pin(m) =0, Pg{m)=1. 2.2 0
<Nsm(Z,K)>:K P In Z(z,«).
The probabilities for the special one-dimensional case con- K
sidered in Ref[14] are obtained if we sdd =1 in Egs.(2.1) _ _
[17]. As Az—0+, both(N) and(Ns ) diverge; that is, the aver-
A single random walk can represent only one of the manyage length of a polymer chain diverges. In this paper we
configurations that a growing polymer can attain. To obtainstudy the fraction of adsorbed monoméx) as a function
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of the binding potentiak for an ensemble of polymers of all lll. EIGENVALUES OF THE TRANSFER MATRIX
possible lengths. The adsorption fraction is given by FOR ARBITRARY D
_ (Ns (z,x)) Kk dz,(x) In this section we obtain an eigenvalue condition whose
P(x)= lim = (2.9

solution yields the spectrum of the transfer matrixI' de-
fined in Eq.(2.3). Inserting the probabilities in Eq&.1) and
Note that the adsorption fractid?( «) is defined only on the (2.2 into Eq.(2.3), we obtain the difference-equation eigen-

(N(z,k))  z.(k) dx

Az—0+

line z.(x) in the (k,z) plane. value probleni 18]
( 5 n+D—-2 5 n+1< (n=m-+2)
Ot o2 onip—3 91T nypyg Invr N7
- m-+2
)\gn:i:;+1 Tn,igi:< gm+1+ng+22mgm+2 (n=m+1) (3.9
5 m+1 (n=m)
| “Om* K2 omi D1 I -
|
This problem has a continuous spectrum for all values of 27 m+D—-1[1/2 1\ 1] 2m+D-1
«, but the spectrum contains bound states only for a certaig=—=, A=——— |~ |-t |- |- ——.
. A1 m k\e z] z me
range ofx. The continuous spectrum, and thus the value of 3.3

its upper limit, does not vary as a function efIf xis in a

range such that the upper limit of the continuous spectrum itJsing z=z.(x) as defined in Eg(2.5), the eigenvalue con-
the largest eigenvalue of the transfer matrix, the adsorptiouition in (3.2) yields an implicit relation forz..(«x) and thus
fraction as defined in Eq(2.6) vanishes because, by the we obtain the adsorption fractioR(«) as defined in Eq.
chain rule, it is proportional to the derivative &f,,x as a (2.6).

function of x. On the other hand, if the value &fis such that

a bound state exists, the bound-state eigenvalue usiedly IV. CRITICAL POINT ANALYSIS

vary as a function ok and its value is larger than the upper

limit of the continuous spectrum, which leads to a nonvan- The numerical value oP(«) for any «x can be obtained
ishing adsorption fraction. Thus the emergence of boundrom the implicit equation forz..(«). However, using as-

states is the criterion for the appearance of an adsorbed phag@ptotic analysis we can determine the behavior near the
for the polymer. critical point explicitly. We showed that the critical transition

In the Appendix we show that the eigenvalue conditioniS associated mathematically with the onset of bound states.
for the bound states of the eigenvalue problem Egd) is  Thus the critical point is located at=1. Using[19]

given by I'(c)I(c—a—h)

2F1(a,b;C;X)=m

0_2m+D—1 m m+1 D-1 , X Er(abatbhect1 1
—Tz 1 5,7,m+ 5 V€ 2 1(a, a (o] ; X)
+ j—

1 m 2 (1o @I (@Tb=0)
+€eAsF, T'E+1;m+ 5 € 3.2 I'(a)I'(b)
X ,Fi(c—a,c—b;c—a—-b+1;1-x),
where we have defined we rewrite the eigenvalue conditid.2) as

m+1 [1-—e2\D21 m+D—-1 m+D—2_D_1 ) AE m+D m+D—l_D_1 )
miD—1| 12 2P| T T T e S i gde
_m+D—2 m m+1_4—D_1 2) L A m+1 m_’_1_4—D_1 ) 41
L A i A B a A S 41
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with » 4K
D 7 ke’
F(l——)l“(erD) . _
2 4.2 where,K is given in Eq.(4.3).
: In the following subsections, we determine the critical
5 1) I'(m+2) point k. and the asymptotic relation betwedz and Ak by
balancing terms in Eq(4.3) order by order in the limits
Observe that the special cases of even inté@er2 require  AZ—0+, Ak—0+. The asymptotic behavior of the adsorp-
special attention; we consider these special cases later. THEN transition near the critical point is then obtained from
caseD =2 has already been studied in Rgif6] and will not

K=— 3D/2—1

r

be discussed here. P(1)~ 2 daz. (4.4)
We now substitute Z,. (k) dAk
z=2.(k;)—Az (Az—0+), A. Case xD<2
k=Kt Ak (Ak—0+). In this case we eliminate a divergent term in E4.3) by
imposing the condition?"=0, which gives
We will determinex, later from asymptotic analysis of the
eigenvalue condition. However, using|zx(,<c): 1 and Kc:‘_‘_ (4.5

A =1/z,,(x) and the definition ok in Egs.(3.3), it is easy to 3

determine that To balance the terms in next order we demand that

Z..(K)= % A~ YA Ak
Thus we find that
Retaining terms to sufficient order for the subsequent analy-

27\ 2[(2—D)
SIS, Az~ ( <//7;/) AKZ/(ZfD)
e~1—6Az+:--,
and, according to Eq4.4),
m+D-1 ( 4 3 m ) 4 A
~———— || —3————|— = Ak 2/(2—-D)
m K¢ m+D-1/ &2 P(k)~ 16 [9(m+1) } (k—K)P/(2D)
8 8m+5D-5 3(2-D) [4(2=D)
+ e — + cee
2 ke mMm+D-1 Az ' (k—xl). (4.6)
we obtain from the eigenvalue condition (#.1) B Case xD<4
A+ PAk+ CAZ+ -~ AP 2+ YA+, Here, to balance the most dominant terms in @), we
4.3 set.2=0, which yields
where 4
KCZT. (47)
4 D-2 3——
/=3 K m+D-1’
Note thatx in Eq.(4.7) joins continuously onto the value of
. .m+D-1 2in Eq. (4.5 atD=2 for all m, rises withD for D>2, and
‘/))_4(m+ 1)k’ levels off atk,=2 asD—. On the other hand, ag—
for fixed D>2 we regain the value of the critical point for
D=1.
= (m+1)4=D) [Z(D —-1)(2D+1)+m(28D —13) To next order in the asymptotic analysis we obtain
7\ 2(D-2)
4 _ 2/(D-2)
+6m2(D+5)+9m*~ — (m+D—1)(3m?+9m Az (} Ax
C
or

+D+2)

_ _ 432 12(D-2)
P 16m+D—1) [(3m+2D 1)

(D—2)(3m+2D—1) |4K(D—2)(m+1)

X(k—Kg) 4~ DNO=2) (K—>KC+). (4.8
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FIG. 2. Plot of the adsorption
fraction P(«). For increasing
D<2 the scaling exponent in-
creases and the transition be-
comes weaker until fob =2 ex-
ponential scaling is obtained. For
increasingD>2 the scaling ex-
ponent decreases and the transi-
tion itself becomes stronger
again, which is compensated for
by an increase in the critical
binding potentialx. that is re-
quired to bring about the transi-
tion. At D=4 we observe a tric-
ritical point with logarithmic
scaling and foD>4 the transi-
tion is first order, indicated by a
discontinuity (green shaded re-
gion) in P(«) across the critical
point.

C. CaseD>4 The leading asymptotic contribution to the eigenvalue

As in the preceding subsection we must sét=0 and condition in(3.2) in this case is balanced when again
obtain the same value fot, as in Eq.(4.7). Higher-order

asymptotic analysis then gives _ 4 _4(m+3)
P Ke 3 D-2 3m+7
AZ~_?AK. m+D-1 D=4

Thus, to leading order the adsorption fraction is asymptoti-The remaining terms to higher order are
cally a constant:

24m+1)(m+2)(m+3)
(D—4)(3m+2D—1) Axk~— (Bm+7)2 AzIn Az+O(Az).

2m+D)(3m+2D—5) (<~ k). (4.9

P(x)~

. L , , ... Inverting this relation then yields
The discontinuity in the adsorption fraction across the criti-

cal point indicates a first-order phase transition. (3m+7)2 Ak
The higher-order correction to this jump discontinuity is Az~ —
given by a term of orden «®?~2. This correction domi- 24m+1)(m+2)(m+3) In Ax
nates forD<6. WhenD=6, the dominant correction be- 1
comes a term of ordekx, scaling independently dd. Note Inn —
that the jump discontinuity disappearsras-o°. | 1+0 I AAK
n Ax

D. Special caseb=4
Finally, we obtain a logarithmic scaling relation for the ad-

The caseD =4 is special because here a line of first- and ; .
gorption fraction

second-order phase transitions meet. Our analysis must pr

ceed somewhat differently because certain coefficients in Eq. 1

(4.3 diverge asD—4. To investigate this case we return to P(K)~— 3m+7 (k— k)
Eq. (3.2, evaluated aD =4, and use the relatiofsee for- 3(m+1)(M+2) In(k—k¢) ¢
mula 15.3.11 in Ref[19]) (4.10
mm+l 3 2™ (m+3) The behavior of the adsorption fraction is summarized in
2F1 2 9o ;m+ o€ \/;F(mJFZ) Fig. 2, where we have plotted the adsorption fracti®(x)

for 0<D=6 and for 1.25:«x<2 by solving numerically the
X[1+3m(m+1)Az In Az+O(Az)] eigenvalue equation i183.2). In this plot we chosen=0
because the critical phenomena derived in this section are
and the relation obtained by shifting to m+ 1. most prominent for small values of the radios
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E. Crossover transition ment of Energy for support under Grant No. DE-AC02-76-

In the limit of large radiusn we intuitively expect that the CH00016.
attractive boundary will be effectively planar on the length
scale of monomer units. In this limit the asymptotic behavior APPENDIX: CALCULATION
of the adsorption fraction near the critical point should thus OF THE EIGENVALUE CONDITION
be linear. Hence, fom>1 there must be arossoveregion
such that the scaling coefficient obtained for the adsorptiorguring that the likelihood of finding the walker in remote
fraction P(x) changes from being dimensionally dependemregionsnaoo is diminishing sufficiently fast:
and sensitive to the curvature of the boundary to the value 1, '

A bound state of Eqs(3.1) must satisfy a condition en-

which is obtained for the cadge=1. To be precise, if we g—0 (n—o). (A1)

allow the binding potential to vary in a small neighborhood

abovex,, To find such a condition it is convenient to define
k=k.+tAk (Ak<l) (2n+D-1)h, (n>m)

On= _
for some fixed radiusn>1, we find that the relations given 2(m+D—-1hy (n=m).

in Egs. (4.60—(4.10 hold when Ax<1/m. However, for

. e . Then, Egs(3.1) reduce to
1>Ak>1/m linear scaling is obtained. Consequently, the as(3.1 .

crossover between these two regimes occurs for Rm0 0=(1-M)(2n+D—-1)h,+2z(n+D—-2)h,_;
when Ax=0(1/m) (aside from possible logarithmic correc-
tions for even integeD), as stated in Eq1.2). +2z(n+1)h, 1 (N>m), (A2)

To locate the crossover region analytically it is useful to .
study the eigenvalue condition {8.2) asymptotically in the SUPPlemented by the boundary condition
limits Az<1, Ak<1, and 1m<1. There are three distinct _
cases to considerti) Az>m™2, (i) Az~m2, and (iii) 0=(k=M)(M+D=D)hy+ kz(M+ 1Ny (A3)
Az<m™ 2. As was found in Ref[16] for the particular case
D=2, we find here that for alD >0 caseqi) and(ii) lead
immediately to linear scaling. For cagé) we find, to lead-
ing order, that

To simplify the analysis of this problem, we define the
generating functions

G(X)= 2, gnX"
n=m

erl3
2 16
Ak~ (M2AZ)1~P2— —— mAz and
3D
31+D/21‘*(1__)m 0
2 H(x)= > hx".
n=m
(0<D<2) (4.11
Using the identity
and
J
D > nx"h,=x — 2, x"h,, (A4)
8r|2— - i X
A 2 2A D/2—-1 16 A
K~ (M°Az) " 3(4-D) mAz G(x) can be formally obtained frorfi (x):

EE LI

J
64 G(x)=2x§—xH(x)+(D—1)[H(x)+xmhm]. (A5)
—mm3AZZ (D>2, D#4,,..).
A differential form of the eigenvalue problem may now
(4.12  be obtained by multiplying Eq(A2) by x" and summing

) ) from n=m+1 to n=9. After shifting indices and applying
For allD>0 we therefore find that thB-dependent scaling  the identity in Eq.(A4), we obtain

relations derived in Secs. IV A-IV D hold for cagié). The
crossover transition happens when all the terms in Egs.
(4.11) and(4.12 are of equal order, that is, where cd§g)
borders on casdii). Hence the crossover occurs when
m?Az=0(1), which verifies Eq.(1.2).

P
(1—)\)(D—1+2xﬁ—x g™

J
+2zX D—1+x—)

J
+225 H(x)
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We eliminateh,,; by applying the boundary condition in Egs.(A7) thatG(x) in general has singularities at y and

Eqg. (A3) and divide both sides byZto obtain x=1/y. If yis complex, theny=1/y* and both singularities
) , ) are located on the unit circle. Thus conditigkl) cannot be
Q*(x)H'(x)+(D—=1)Q(x)Q"(x)H(x) satisfied and there is no bound state. The largest value of the

transfer matrix is given by the upper limit of the continuous
spectrum)\,,,{x)=2. Hence the adsorption fraction vanishes
and the polymer is in the desorbed phase.
To obtain a nonzero adsorption fractid¥{«) we must
1 find bound states in the spectruxm Bound stategdiscrete
=2 (1=Vl- %), Q(X)=(x—y)(x—1ly) values of\) appear for values ok andz such thaty is real
(A7) and yfl. W_e must ellmlngte growing solu_t|ons of t_h_e form
g,y ". This is accomplished by imposing the finiteness

=(1+Ax)mhx""1, (A6)

where we have defined

andA and e are given in Eqs(3.3). condition
It is easy to solve EqA6) because it is a linear first-order )
differential equation. We multiply by the integrating factor lim |G (x)| <.
Q(x)P 3 to get x>y
D-1 ' D-3 m A local analysis ofG(x) for x—y~ reveals thaG(x) is
[Q™ " COHEOT"= 1+ AN QT ()M A finite atx= vy if the following eigenvalue condition is satis-
Requiring that fied:

limx "H(x)=h,
x—0

0= fldt ™ L1+ AY[(1—t)(1—5%t)] P37,
0

gives (A9)

« This integral is divergent fob <1 (or for D<2 wheny=1).
H(x)=mth1‘D(x)j dt t" QP 3(t)(1+At). Therefore, to study this integral for all values Bfwe ob-

0 serve that when it converges it defines a hypergeometric
function ,F;(a,b;c;z) [19]. We then rely on the analytic

Thus, from Eq.(A5) the generating functio®(x) is given continuation provided by the hypergeometric function to re-

by write Eq. (A9) as
2(1+Ax)
GX)=(D—1)mh{ XM 14+ ———>— 2m+D—-1 3-D D-1
)=~ m‘ (O-D0) -, 1( S = ;yz)
(1=X%) % 1 op-3 3-D D+1
- g J TR A +7A2F1(T,m+1;m+7;72>.

A8
(A8 Finally, we use the quadratic transformation formula for hy-

The behavior ofy, asn— is determined by the singu- pergeometric functions 15.3.26 in Rdfl9] to obtain the
larities of G(x). It is evident from the definition oQ(x) in  form of the eigenvalue condition given in E.2).
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