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Theoretical approach to the correlations of a classical crystal
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We present a theoretical approach to the angular-average of the two-body correlation fgfcidor
simple solids. It is based on three sum rulesgr): the virial, compressibility, and normalization equations.
We apply the theory to determine this correlation function for the case of the fcc solid phase of hard spheres.
The agreement with simulation data is excellent over all the density range. The application to other simple
systems is discussed. The approach opens a route to perturbation theories for simple solids.
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PACS numbgs): 64.10+h, 61.50.Ah, 61.20.Gy

The most important correlation function in fluid classical whereV is the volume,p=N/V is the mean density, and
systems is the radial distribution functigr). Its first ac-  d( the differential solid angle aperture around
curate description for a hard-sphe(ieS) fluid, namely the To motivate the theory we shall first discuss the two types
Percus-Yevick approximation, was the starting point to theof correlations tha@j(r) must account for in a solid. The
extraordinary development of the theory of simple liquidsiong-range correlation, characteristic of structured phases, is
[1,2]. The analogous progress has been lacking in solids, thgirectly due to the periodicity of the solid. If no other corre-
structured phases of these systems. In spite of the advanggion is considered, each particle would move around a lat-

experimented during the past 15 yeg8$ in the theory of ice sjte independently of each other. As the probability of
classical nonuniform systems, one of the most 'mportanﬁnding a particle atr is given by the local density

theoretical objectives, correlations, has remained unapﬁ(r)—which is a sum of Gaussian-like functions located at

proachable. h latt it @(r 1 is th ; by the simpl
In structured systems the most important correlation func£ach 1atlice site—p (r.r ).'.S. en glv,en y the simple
product of individual probabilitiep(r)p(r’) multiplied by a

tion is'g(r), the angular average of the two-particle density X X , s
function p@(r,r'). It appears in all crucial equilibrium steplike function,g(r,r’), to avoid double occupancy. Its

equations as the virial, compressibility, or energy equatiofP"OPer angular average gives the long-range contribution to
[2], and it is the key of all perturbation approacH@s-4].  9(r). So, it is convenient to defingo(r) as the angular
Theg(r) plays the same role in classical solidsgg{s) does ~ average of the produgi(r)p(r’),
in classical fluids. However, up to now, no theoretical
approach tog(r) had been reported. Here, we present a 1
theoretical approach to this function and apply it to eval- go(r)= zf dﬂf drip(rq)p(ry+r), 2
uateg(r) for a face-centered-cubic HS solid. The agreement 4m\Vp
with simulation results is excellent over all the physical
range of densities from below melting up to almost close-which has the form of a sum of Gaussian-like pegkSs’
packing. The application to other systems is straightforwar@entered around successive neighbor distafGesnormal-
as it is discussed below. ized to the corresponding number of neighbays If we

All previous theoretical approaches reported in the literaconsider only this long-range correlation, or if other kinds of
ture to the correlations of classical solids have been focusegbrrelations are dismisibl@(r) must be given by a sum of
on g(r,r") [defined throughp®(r,r")=p(r)p(r')g(r,r')]  peaksg @ which should coincide witfg () for i>0. The
for HS and mainly in rela_tlon to perturbation sche_mes. Theyeasei =0 has to be excluded to avoid double occupancy. For
are not true approximations; rather, they are simple mapmstance, this long-range correlation is the only one existing
pings to the radial distribution function of a uniform system;, the close-packing limit of a HS solid. In this limit
at some effective density. None of these approaches can rS€2)(r,r') is exactly a sum of products @ functions at any

sist a direct comparison with simulation resul§. In fact, a5 of ditferent lattice sites multiplied by a steplike function
these mappings could bezdone over a wide family of funcyg exclude the double occupancy. Hence, the fundiien
tions[6]. Moreover, onlypf )(r,r’)(ghe Rmbab'“ty of find- il be a sum ofs functions at different neighbor distances,
ing two particles at andr’) andp*®(r,r')/p(r) (the prob-  eycept at zero distance, normalized to the corresponding
ability of finding a particle ar’ provided there is another ymber of neighbors.

one afr) and their angular averages involve a direct physical Tq take into account the other correlations, the successive
meaning. It is, therefore, more sensible to make approximaseaksg () must be increasingly modified from tigel) as

tions on these functions than gr,r’). The functiong(r) i decreases to 1. The compressibility equafizh
is defined as

- 1 - -
g(r)= 47Tszf dQJ drip@(ry,ry+r), 1 1+47TPI drr[g(r)—0o(r)1=pkeTx7, )
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will help us to understand these modifications. The integral To find a compromise between the functional form of Eq.
of go(r) in Eq. (3) gives the average number of particles (5) and the mentioned features of the first peak, we propose
inside the system. The integral gf(r) gives the average the simple parametric form

number of particles inside the systdminus one because of )

the self-exclusionprovided a particle is fixed at the origin. ~(1)f ey _ Ae «r—ry)2

Thus, the left hand side of E3) can be understood as the gr(n= — Y =1 (6)
average numbeAN of particles coming into the system

when a particle is fixed at the origin, i.&AN=pkgTxr. For  with @")(r)=0 forr<1, whereA, r,, anda, will be deter-
example, in the HS close-packing limi=0, the correla- mined by the following sum rules. As the compressibility
tion reduces to the long-range one discussed abovshows that even in the less favorable case the displacement
(@ V=g ) and Eq.(3) is verified identically. In other of the first peak is quite small, the mean location of the
words, no HS comes into the system if it is completelynearest neighborg¢r) can be approximated by the mean
packed. If we imagine a spherical system of radRysve can  value obtained with the first peak gf(r):

estimateAN asp4mR?5R, whereR is the displacement of o

the peaks at the border of the system, i.e., the displacement M ~ (1) :f ~ (1)

of g™ with respect to g for R~R. Then, p () f drrg T(r)= | drrg g7 (r). @)

SR~ pkgTx1/(p4wR?). This is a quite interesting result _ ~1)
that shows that the differences, which should include somd NiS sum rule forg'=(r) becomes more accurate as the

kind of deformation, betweeg @ andg ¢ reduce quadrati- mean density increases and it is exact in the limit of close-
cally with the distar’\ce 0 packing. Besides, two othexactsum rules must be obeyed

Up to now the discussion has been quite general, and noﬁy 9(r). The first one corresponds to the normalization of
! 1 H .

we apply it to the case of a HS solidrom now on all g™ to the nearest-neighbor number:

distances in HS diameter unitd,s). The compressibility of "

the HS solid is so small thalR would be practically imper- 47Tpf drr2g Y(r)=n,. (8)

ceptible in a simulation. A rough estimation of this displace- dus

ment is already negligible for the first peak even at the low- . o
est densities: takingR~1 and pkgTyx;~0.02 gives The virial equation is the secorekactsum rule. It can be

SR~0.001. Thus the location of the peaksgif) does not easily proved that, for nonuniform systems, the pressure is

differ from the location of those @,(r). If the displacement "elated to the value ofi(r) at contact exactly in the same
of the peaks is negligible it seems quite sensible to assumyay as _|t is related to the radial distribution function of uni-
that they cannot differ significantly from the peaks of form fluids:
EQ(r). Howev_er, _the identification o_f peaks cannot be done BPlp=1+473(dus), (9)
without considering the characteristic HS zero value of
g(r) at distances<1 and the fact that the nearest neighborswhere 8= 1/kgT and 7 is the packing fraction §= mp/6).
will bear the most important part of the short-range correla- All the required information to determing(r) (a and
tions. Thereforgg (V) will be different fromg () as we will  pressure as functions @f is now provided by the minimi-
see below. zation of any of the well known and accurate density func-
To go far toward an explicit form of the peaks, we cantionals for the Helmholtz free energy of the HS solid. With
regard the existent functional theorigd which give an ac- these data, the three proposed sum rules form a nonlinear
curate description of the free energy of a HS solid and fromsystem of equations which is solved to fiAd a4, andr at
which it is possible to determing(r). All these theories use eachp. Simultaneously, using and Eq.(5), the successive
successfully the Gaussian parametrizationp@f), [7] peaks ofg(r) are obtained.
Very recent studies have shown that the equation of state
2 —a(r—R)? of the HS solid deduced from different functional approaches
< e Y (4) agrees quite well with simulation results over all the density
' range[8]. For the following calculation, we use the general-
ized effective liquid approximatiofGELA) [9] as it gives
the best overall behavior. However, there are no significant
differences if any other functional approach is used. If we
compare the most recent Monte Carlo simulations by Choi
. 1 1/2 . -
gg)(r)z—(—) n; ' St al. [10] with the pred|ctlons of the presen.t. theory for
4mp |\ 2m rR; g(r), the agreement is excellent over all densities and espe-
cially impressive at high densities. Figures 1 and 2 show
i>0. (5)  g(r) for two significant densitiesy=0.52, the lowest den-
sity below melting ¢7,,~0.54) with available simulation
For the sake of simplicity, we have dropped all terms whichdata, andy=0.71, near close-packingy(,~0.74), respec-
arise from the exponential products wi#* R’ in (5). Atthe  tively. There are some differences between theoretical pre-
usual values ofr they give negligible contributions because dictions and simulation results. Nevertheless, they are quite
of the absence of overlapping. In accordance with the discusmall and can only be appreciated easily at the lowest den-
sion above, we takg (r)=g {(r) for i>1. sities. Let us first pay attention fg )(r). The value at

@ 3/2

P(f)z(;

wherea is the Gaussian width parameter. Setting &j.in
Eq. (2) yields

o e~ alr—R)%2 4 g—a(r+R)?2
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FIG. 3. Parameter, (lower curvg and(r) for the first neigh-
bour (upper curvg as a function of the mean density predicted by
H1e theory. Triangles are simulation data from Céabal.

FIG. 1. g(r) at =0.52. Solid line is the prediction of the
present theory using theoretical data from GELA functional ap-
proach. Dotted line corresponds to the theoretical predictions usin
data from a hypothetical exact theory. Triangles are Monte Carlo
results from Choiet al. The inset shows details of the first peak the figures would give an estimation af from simulation
ga(r). practically equal to that predicted by the theory. More inter-

esting is ther; parameter which corresponds to the position
contact differs from that of simulation. It is a direct conse-Wwhere the first peak has practically its maximum value. No-
quence, via virial equation, of the approximate theoreticafice that at very low densities the real maximum is located at
pressure. If theexactpressure(from simulation is used in ~ contact(see Fig. 1andr; would be the maximum if the first
the theory, the agreement with simulation would be almospeak is analytically extrapolated belaw=1. The important
complete(see Fig. 1 confirming the goodness of the theory. point is that simulation data of this maximum have been
The rest of the peaks @(r), which only depends on the reported(at very low densities the extrapolation has been
parameter @ (a=113 for »=0.54 and a=10094 for also estimated and reportedrigure 3 shows these data for
7=0.71), also agree quite well with the simulation results.different densities together with our theoretical predictions.
Introducing again thexacta values(estimated from simu- The parameter; must always be smaller than tke) except
lation: =91 for »=0.54 anda=7659 for =0.71) the at the close-packing limit where both coincide. psde-
agreement is excellent. The Gaussian parameteis ap- creases from this limit, the pressure decreases rapidily from
proximate|y half that of the rest of the peaksl(: 50 for |nf|n|ty and also the value dj(r) at contact. Meanwhile, the
n=0.54 anda,=5405 for =0.71). However, because of lattice parameter hardly changes and the peak width still re-
the cut, the width of this first peak is similar to the rest. Themains quite sharp. Under these circumstances, the only way
excellent agreement of the first peak showed in the inset dP keep on with the normalization is increasing However,

the pressure does not change too much atdaand the peak

becomes duller ap decreases. Therm,, must recede to

40 maintain the normalization. We mention this because the
a5 L 25 overall agreement of the peaks would not necessarily imply
20 - the nice agreement of the behaviorrgfwith the mean den-
oL o[ sity. Futhermore, as Fig. 3 shows, the expressioffprEqg.
10 - (7), which is only exact in the close-packing limit, turns out
25 - 51 to be quite accurate over all the density rafifpe simulation
o ; 1.1)1 1.1)2 1"()3 1.'04 Ton numerical values whem=0.54 and=0.71 are 1.1208 and
= 1.0141, respectively, while the theoretical predictions are
15 b 1.1190 and 1.0142). All this proves the suitable physical
4 description of our theoretical approach. The paramatira
10 i+ simple factor to adjust the normalization or to adjust the
value at contact.
5 E ‘A A A major consequence of the theoretical knowledge
0 | L | of g(r) is the possibility to develop and use proper pertur-
1 12 14 18 18 2 22 24 bation theories for solids where the perturbative term can
now use the appropriate correlation function of the reference
r/dys HS system instead of the correlation function of a HS fluid at

the same effective densifg]. Work along this direction is in
FIG. 2. As Fig. 1. but forp=0.71. progress. Moreover, these theories provide a way to deter-
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mineg(r) for any simple system in the very same way as intice that the energy equation is another sum rule which can
the theory of simple liquids where the HS system is used abe applied to these systems. The presence of defects, vacants,
a reference systef2]. An alternative and fresh method is to and interstitials would change the normalization of the peaks
apply the present approach directly. A parametric form ofin bothg(r) andgo(r) depending on the distance. For this

3(r) can be proposed which includes all the relevant physg:ontribution, however, one expects an exponential decrease

ics. Extending the approach to systems with significant com@S defects behave as a kind of fluid inside the solid, which

pressibility, the two parameters of each peakand R;, induces a short-range correlation.

should differ from their homologous @,(r) in an amount We thank P. Tarazona for helpful discussions. This work
which should decrease quadratically with the distance. Thaas been supported by the DireatiGeneral de Investiga-
normalization and equilibrium equations should be enough teion Cientfica y Tecnica of Spain under grant number PB94-
determine this decrease and to descgbe reasonably. No- 0005-C02.
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