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We present a theoretical approach to the angular-average of the two-body correlation functiong̃(r ) for
simple solids. It is based on three sum rules forg̃(r ): the virial, compressibility, and normalization equations.
We apply the theory to determine this correlation function for the case of the fcc solid phase of hard spheres.
The agreement with simulation data is excellent over all the density range. The application to other simple
systems is discussed. The approach opens a route to perturbation theories for simple solids.
@S1063-651X~96!12108-5#

PACS number~s!: 64.10.1h, 61.50.Ah, 61.20.Gy

The most important correlation function in fluid classical
systems is the radial distribution functiong(r ). Its first ac-
curate description for a hard-sphere~HS! fluid, namely the
Percus-Yevick approximation, was the starting point to the
extraordinary development of the theory of simple liquids
@1,2#. The analogous progress has been lacking in solids, the
structured phases of these systems. In spite of the advance
experimented during the past 15 years@3# in the theory of
classical nonuniform systems, one of the most important
theoretical objectives, correlations, has remained unap-
proachable.

In structured systems the most important correlation func-
tion is g̃(r ), the angular average of the two-particle density
function r (2)(r ,r 8). It appears in all crucial equilibrium
equations as the virial, compressibility, or energy equation
@2#, and it is the key of all perturbation approaches@2–4#.
The g̃(r ) plays the same role in classical solids asg(r ) does
in classical fluids. However, up to now, no theoretical
approach tog̃(r ) had been reported. Here, we present a
theoretical approach to this function and apply it to eval-
uateg̃(r ) for a face-centered-cubic HS solid. The agreement
with simulation results is excellent over all the physical
range of densities from below melting up to almost close-
packing. The application to other systems is straightforward
as it is discussed below.

All previous theoretical approaches reported in the litera-
ture to the correlations of classical solids have been focused
on g(r ,r 8) @defined throughr (2)(r ,r 8)[r(r )r(r 8)g(r ,r 8)#
for HS and mainly in relation to perturbation schemes. They
are not true approximations; rather, they are simple map-
pings to the radial distribution function of a uniform system
at some effective density. None of these approaches can re-
sist a direct comparison with simulation results@5#. In fact,
these mappings could be done over a wide family of func-
tions @6#. Moreover, onlyr (2)(r ,r 8) ~the probability of find-
ing two particles atr andr 8) andr (2)(r ,r 8)/r(r ) ~the prob-
ability of finding a particle atr 8 provided there is another
one atr ) and their angular averages involve a direct physical
meaning. It is, therefore, more sensible to make approxima-
tions on these functions than ong(r ,r 8). The functiong̃(r )
is defined as

g̃~r !5
1

4pVr2E dVE dr1r
~2!~r1 ,r11r !, ~1!

whereV is the volume,r[N/V is the mean density, and
dV the differential solid angle aperture aroundr .

To motivate the theory we shall first discuss the two types
of correlations thatg̃(r ) must account for in a solid. The
long-range correlation, characteristic of structured phases, is
directly due to the periodicity of the solid. If no other corre-
lation is considered, each particle would move around a lat-
tice site independently of each other. As the probability of
finding a particle at r is given by the local density
r(r )—which is a sum of Gaussian-like functions located at
each lattice site—r (2)(r ,r 8) is then given by the simple
product of individual probabilitiesr(r )r(r 8) multiplied by a
steplike function,g(r ,r 8), to avoid double occupancy. Its
proper angular average gives the long-range contribution to
g̃(r ). So, it is convenient to defineg̃0(r ) as the angular
average of the productr(r )r(r 8),

g̃0~r !5
1

4pVr2E dVE dr1r~r1!r~r11r !, ~2!

which has the form of a sum of Gaussian-like peaksg̃0
( i )

centered around successive neighbor distancesRi , normal-
ized to the corresponding number of neighborsni . If we
consider only this long-range correlation, or if other kinds of
correlations are dismisible,g̃(r ) must be given by a sum of
peaksg̃ ( i ) which should coincide withg̃ 0

( i ) for i.0. The
casei50 has to be excluded to avoid double occupancy. For
instance, this long-range correlation is the only one existing
in the close-packing limit of a HS solid. In this limit
r (2)(r ,r 8) is exactly a sum of products ofd functions at any
pair of different lattice sites multiplied by a steplike function
to exclude the double occupancy. Hence, the functiong̃(r )
will be a sum ofd functions at different neighbor distances,
except at zero distance, normalized to the corresponding
number of neighbors.

To take into account the other correlations, the successive
peaksg̃ ( i ) must be increasingly modified from theg̃ 0

( i ) as
i decreases to 1. The compressibility equation@2#,

114prE drr 2@ g̃~r !2g̃0~r !#5rkBTxT , ~3!
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will help us to understand these modifications. The integral
of g̃0(r ) in Eq. ~3! gives the average number of particles
inside the system. The integral ofg̃(r ) gives the average
number of particles inside the system~minus one because of
the self-exclusion! provided a particle is fixed at the origin.
Thus, the left hand side of Eq.~3! can be understood as the
average numberDN of particles coming into the system
when a particle is fixed at the origin, i.e.,DN5rkBTxT . For
example, in the HS close-packing limitxT50, the correla-
tion reduces to the long-range one discussed above
(g̃ ( i )[g̃ 0

( i )) and Eq. ~3! is verified identically. In other
words, no HS comes into the system if it is completely
packed. If we imagine a spherical system of radiusR, we can
estimateDN asr4pR2dR, wheredR is the displacement of
the peaks at the border of the system, i.e., the displacement
of g̃ ( i ) with respect to g̃ 0

( i ) for Ri'R. Then,
dR'rkBTxT /(r4pRi

2). This is a quite interesting result
that shows that the differences, which should include some
kind of deformation, betweeng̃ ( i ) andg̃ 0

( i ) reduce quadrati-
cally with the distance.

Up to now the discussion has been quite general, and now
we apply it to the case of a HS solid~from now on all
distances in HS diameter units,dHS). The compressibility of
the HS solid is so small thatdR would be practically imper-
ceptible in a simulation. A rough estimation of this displace-
ment is already negligible for the first peak even at the low-
est densities: takingR'1 and rkBTxT'0.02 gives
dR'0.001. Thus the location of the peaks ofg̃(r ) does not
differ from the location of those ofg̃0(r ). If the displacement
of the peaks is negligible it seems quite sensible to assume
that they cannot differ significantly from the peaks of
g̃0(r ). However, the identification of peaks cannot be done
without considering the characteristic HS zero value of
g̃(r ) at distancesr,1 and the fact that the nearest neighbors
will bear the most important part of the short-range correla-
tions. Thereforeg̃ (1) will be different from g̃ 0

(1) as we will
see below.

To go far toward an explicit form of the peaks, we can
regard the existent functional theories@3# which give an ac-
curate description of the free energy of a HS solid and from
which it is possible to determiner(r ). All these theories use
successfully the Gaussian parametrization ofr(r ), @7#

r~r !5S a

p D 3/2(
Ri

e2a~r2Ri !
2
, ~4!

wherea is the Gaussian width parameter. Setting Eq.~4! in
Eq. ~2! yields

g̃0
~ i !~r !5

1

4pr S a

2p D 1/2ni e2a~r2Ri !
2/21e2a~r1Ri !

2/2

rRi
,

i.0. ~5!

For the sake of simplicity, we have dropped all terms which
arise from the exponential products withRÞR8 in ~5!. At the
usual values ofa they give negligible contributions because
of the absence of overlapping. In accordance with the discus-
sion above, we takeg̃ ( i )(r )5g̃ 0

( i )(r ) for i.1.

To find a compromise between the functional form of Eq.
~5! and the mentioned features of the first peak, we propose
the simple parametric form

g̃ ~1!~r !5
Ae2a1~r2r1!2/2

r
, r>1, ~6!

with g̃(1)(r )50 for r,1, whereA, r 1, anda1 will be deter-
mined by the following sum rules. As the compressibility
shows that even in the less favorable case the displacement
of the first peak is quite small, the mean location of the
nearest neighborŝr & can be approximated by the mean
value obtained with the first peak ofg̃0(r ):

n1
r

^r &[E dr rg̃ ~1!~r !5E dr rg̃ 0
~1!~r !. ~7!

This sum rule forg̃(1)(r ) becomes more accurate as the
mean density increases and it is exact in the limit of close-
packing. Besides, two otherexactsum rules must be obeyed
by g̃(r ). The first one corresponds to the normalization of
g̃ (1) to the nearest-neighbor number:

4prE
dHS

`

drr 2g̃ ~1!~r !5n1 . ~8!

The virial equation is the secondexactsum rule. It can be
easily proved that, for nonuniform systems, the pressure is
related to the value ofg̃(r ) at contact exactly in the same
way as it is related to the radial distribution function of uni-
form fluids:

bP/r5114hg̃~dHS!, ~9!

whereb51/kBT andh is the packing fraction (h5pr/6).
All the required information to determineg̃(r ) (a and

pressure as functions ofr) is now provided by the minimi-
zation of any of the well known and accurate density func-
tionals for the Helmholtz free energy of the HS solid. With
these data, the three proposed sum rules form a nonlinear
system of equations which is solved to findA, a1, andr 1 at
eachr. Simultaneously, usinga and Eq.~5!, the successive
peaks ofg̃(r ) are obtained.

Very recent studies have shown that the equation of state
of the HS solid deduced from different functional approaches
agrees quite well with simulation results over all the density
range@8#. For the following calculation, we use the general-
ized effective liquid approximation~GELA! @9# as it gives
the best overall behavior. However, there are no significant
differences if any other functional approach is used. If we
compare the most recent Monte Carlo simulations by Choi
et al. @10# with the predictions of the present theory for
g̃(r ), the agreement is excellent over all densities and espe-
cially impressive at high densities. Figures 1 and 2 show
g̃(r ) for two significant densities:h50.52, the lowest den-
sity below melting (hm'0.54) with available simulation
data, andh50.71, near close-packing (hcp'0.74), respec-
tively. There are some differences between theoretical pre-
dictions and simulation results. Nevertheless, they are quite
small and can only be appreciated easily at the lowest den-
sities. Let us first pay attention tog̃ (1)(r ). The value at
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contact differs from that of simulation. It is a direct conse-
quence, via virial equation, of the approximate theoretical
pressure. If theexactpressure~from simulation! is used in
the theory, the agreement with simulation would be almost
complete~see Fig. 1! confirming the goodness of the theory.
The rest of the peaks ofg̃(r ), which only depends on the
parametera (a5113 for h50.54 and a510094 for
h50.71), also agree quite well with the simulation results.
Introducing again theexacta values~estimated from simu-
lation: a591 for h50.54 anda57659 for h50.71) the
agreement is excellent. The Gaussian parametera1 is ap-
proximately half that of the rest of the peaks (a1550 for
h50.54 anda155405 forh50.71). However, because of
the cut, the width of this first peak is similar to the rest. The
excellent agreement of the first peak showed in the inset of

the figures would give an estimation ofa1 from simulation
practically equal to that predicted by the theory. More inter-
esting is ther 1 parameter which corresponds to the position
where the first peak has practically its maximum value. No-
tice that at very low densities the real maximum is located at
contact~see Fig. 1! andr 1 would be the maximum if the first
peak is analytically extrapolated belowr51. The important
point is that simulation data of this maximum have been
reported~at very low densities the extrapolation has been
also estimated and reported!. Figure 3 shows these data for
different densities together with our theoretical predictions.
The parameterr 1 must always be smaller than the^r & except
at the close-packing limit where both coincide. Asr de-
creases from this limit, the pressure decreases rapidily from
infinity and also the value ofg̃(r ) at contact. Meanwhile, the
lattice parameter hardly changes and the peak width still re-
mains quite sharp. Under these circumstances, the only way
to keep on with the normalization is increasingr 1. However,
the pressure does not change too much at lowr and the peak
becomes duller asr decreases. Then,r 1 must recede to
maintain the normalization. We mention this because the
overall agreement of the peaks would not necessarily imply
the nice agreement of the behavior ofr 1 with the mean den-
sity. Futhermore, as Fig. 3 shows, the expression for^r &, Eq.
~7!, which is only exact in the close-packing limit, turns out
to be quite accurate over all the density range~the simulation
numerical values whenh50.54 and50.71 are 1.1208 and
1.0141, respectively, while the theoretical predictions are
1.1190 and 1.0142). All this proves the suitable physical
description of our theoretical approach. The parameterA is a
simple factor to adjust the normalization or to adjust the
value at contact.

A major consequence of the theoretical knowledge
of g̃(r ) is the possibility to develop and use proper pertur-
bation theories for solids where the perturbative term can
now use the appropriate correlation function of the reference
HS system instead of the correlation function of a HS fluid at
the same effective density@3#. Work along this direction is in
progress. Moreover, these theories provide a way to deter-

FIG. 1. g̃(r ) at h50.52. Solid line is the prediction of the
present theory using theoretical data from GELA functional ap-
proach. Dotted line corresponds to the theoretical predictions using
data from a hypothetical exact theory. Triangles are Monte Carlo
results from Choiet al. The inset shows details of the first peak
g̃1(r ).

FIG. 2. As Fig. 1. but forh50.71.

FIG. 3. Parameterr 1 ~lower curve! and ^r & for the first neigh-
bour ~upper curve! as a function of the mean density predicted by
the theory. Triangles are simulation data from Choiet al.
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mine g̃(r ) for any simple system in the very same way as in
the theory of simple liquids where the HS system is used as
a reference system@2#. An alternative and fresh method is to
apply the present approach directly. A parametric form of
g̃(r ) can be proposed which includes all the relevant phys-
ics. Extending the approach to systems with significant com-
pressibility, the two parameters of each peak,a and Ri ,
should differ from their homologous ofg̃0(r ) in an amount
which should decrease quadratically with the distance. The
normalization and equilibrium equations should be enough to
determine this decrease and to describeg̃(r ) reasonably. No-

tice that the energy equation is another sum rule which can
be applied to these systems. The presence of defects, vacants,
and interstitials would change the normalization of the peaks
in both g̃(r ) and g̃0(r ) depending on the distance. For this
contribution, however, one expects an exponential decrease
as defects behave as a kind of fluid inside the solid, which
induces a short-range correlation.
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