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Controlling chaos using nonlinear feedback with delay
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We generalize a method of control of chaos that uses delayed feedback at the period of an unstable orbit to
stabilize that orbit. The generalization consists of substituting some portion of the nonlinear dynamical system
with a delayed dynamics rather than using a linear delay function for control. A further generalization, in which
the control function retains memory of all previous periods, allows the region of the parameter space over
which control can be achieved to be extended, but at the price of losing the ability to achieve superstability.
Nonlinear feedback results in a larger basin of attraction to the stabilized orbit than linear feedback. For the
simple test mapping studigthe logistic mapthe dimension of the system increases from 1 to 2 by introduc-
ing control. We show in the case involving memory, for a particular choice of the relationship between the
control parameters, that the superstable orbit can be recovered without reducing the parameter space that can
be controlled. This particular solution, in addition to having the largest basin of attraction of the methods
considered, retains the dimension of the uncontrolled syqt8a063-651X%96)05908-9

PACS numbes): 05.45+b

I. INTRODUCTION rameter space, i.e., a given orbit will become eventually un-
stable in the controlled system as the parameters are varied
A number of methods have been proposed for feedbackore deeply into the chaotic regime. The use of delayed
control of chao$1-5]. Two methods of control that stabilize feedback also increases the dimensionality of the system.
an otherwise unstable periodic orbit have received consideiSocolaret al.[4] extended the Pyragas method to include, in
able attention recently. the control term, memory of all the previous states of the
(a) Oftt, Grebogi, and York¢2] introduced a method that system and were thereby able to increase the region of the
stabilizes unstable periodic orbifgPO’s) found in the cha- parameter space where control can be achieved. The dimen-
otic regime via small feedback perturbations to an accessiblsionality of the system also increased in this method, to the
parameter. The control perturbation is given when the orbisame extent as in the method of Pyragas.
crosses a given Poincasection, such that the trajectory will The desirable properties of a control system depend on
be close to the stable manifold of the desired UPO. In thighe application. Here we consider a system with a fixed pe-
method, in the limit of zero noise, the orbit of the controlled riod UPO that we are attempting to control. The parameters
system is identical to the UPO of the uncontrolled systenthat control the coordinates of the UPO may be slowly vary-
and the feedback perturbation vanishes. A drawback for thing compared to the UPO period. The system can be consid-
Ott-Gregobi-Yorke(OGY) method is that it becomes diffi- ered subject to noise, which may take the system coordinates
cult to apply for very fast systems, since it requires computeaway from the periodic orbit. In this general situation we
analysis of the system at each crossing of the Poinsate  may consider the following properties of the control system
tion. Also, noise can result in occasional bursts where thes desirable(i) In the neighborhood of the periodic orbit
trajectory wanders far from the controlled periodic orbit.  (assumed stably controllgthe actual orbit returns optimally
(b) An alternative method of feedback stabilization of fast to the periodic orbit when perturbed away froriritthe
UPQ’s, introduced by Pyragd8], consists of a continuous limiting case the orbit is superstaplgii) A slow drift in
linear feedback applied at each computational time step. Aparameters can be tracked by the control over the largest
in the OGY case, in this method the controlled orbit coin-possible parameter spadgi) In the larger space wéon-
cides with the UPO of the uncontrolled system and the feedlinearly) want the stability to be maintained over the widest
back vanishes, for zero noise, when control is achieved. Theange of uncertainty in either the system parameters or the
feedback procedure can be applied without knovarqyiori dynamical variablegbasin of attraction caused by noise.
the location of the periodic orbit, for a version in which the (iv) In some average sense, we wish to minimize the time
feedback term contains a delayed variable, in which the derequired to return to the desired solution from the basin of
lay corresponds to the period of the UPO. Moreover, it isattraction(in the nonlinear regime
expected that it can be used for fast systems, since no param- In Sec. |l we examine these criteria for control of a fixed
eters are changed on a fast time scale and the method dogsint of a mapping corresponding to a periodic solution of a
not require a computer analysis of the system. For someontinuous system, with a known period. We use the well
systems, the method is robust even in the presence of costudied logistic map as the test bed for the study. Here we
siderable nois¢6]. A disadvantage of Pyragas’'s method isintroduce modifications to the control methods of Pyragas,
that it achieves control only over a limited range of the pa-and Socolar, using a nonlinear function in the feedback term.
As in the OGY, Pyragas, and Socolar methods, the stabilized
orbit is identical to the UPO of the uncontrolled system, and
“Electronic address: mariav@eecs.berkeley.edu when control is achieved the magnitude of the feedback term
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vanishes in the absence of noise. First, we compare the linear T
control of Pyragas with an analogous nonlinear control.
Next, we compare the case in which memory is introduced
into the mapping parameters with case in which memory is ?"7 Delay
introduced into the nonlinear control. In Sec. lll we intro-

duce a special case of nonlinear control with memory that (1= K)F(zn) W
reduces to a remarkable simple form, whose properties are KF(2n1)
generally better than the other cases examined. We show that ()

this latter control can be used efficiently to control other xnﬂ=(1_K)p(xn)+1\fp(xn_l)\f

periodic points and higher-dimensional mappings.

Dynamical

System

FIG. 1. Block diagram for the nonlinear feedback control of

Il. COMPARISON OF CONTINUOUS CONTROL chaos without memory.
METHODS
We start by describing Pyragas’s meth@. He consid- We illustrate this method of control using the logistic map
ered a dynamical system that is governed by ordinary differ-
ential equations, which are, in principle, unknown. However, Xn+1= F(Xp) =4ax,(1—Xp). 4

some scalar variablg can be measured as a system output
and the system also has an input available for an externdlhis map presents a sequence of period doubling bifurca-
force f. These assumptions can be met by the model tions asa increases and enters into chaosat0.8925. The
period-one orbit is stable from=0 to a=3/4. The fixed
1) point x; for the period-one orbit is zero for€9a<1/4 and
X;=1—1/4a for 1/4<a<3/4. If a<0 ora>1, the attractor
is unbounded, diverging to infinity. The attractor will also
wherex describes the remaining variables of the dynamicaljjyerge if the initial condition, is not in the interva[0, 1.
system that are not available for observation or not of interpe period-one orbit loses stability when one of the eigen-
est. The forcing term disturbs only the varialyleand it is  yalues has modulus larger than 1. For the logistic map, for
assumed that the system may be in the chaotic regime whg0< 1 an eigenvalue crossesl, causing the appearance of

the forcing termf(t) is zero. _ _ a pitchfork bifurcation. When this occurs, E¢3) gives
Pyragas studied two types of forcing. In the first methodg/(x,)= —1-2K. Since, for the logistc map,

one determines the UP®; of the chaotic attractor from E’(x)=2—4a, the bifurcation poing* is
y(t), following well known algorithmg¢7]. Then one designs

an oscillator that has an orbit equal to thatypf The forcing 342K

term is given in this case b¥(t)=K[y;(t)—y(t)], where a*= )

K is an empirically adjustable weight of the perturbation. In 4
the other type of forcing considered by Pyragas, the forcing ) _ )
term contains a delayed term of the varialyle namely, A Hopf blfurcguo_n occurs aK=1, where the elgenvalueg
f(t)=K[y(t—7)—y(t)], where r is the delay time. If the Cross the unit (_:lrcle with imaginary values. B_eyond this
delay time coincides with period of thigh UPO then the value ofK there is no stable sollutlon,.so '.[he maximum value
perturbationf (t) vanishes ang(t) will coincide with UPO, ~ ©f & where control can be achieved is given#y=1.25.

as in the first case. However, in this last case, one does not W& compare these re'sult.s with the use of a nonlinear
need to know the UPO, just its period, nor is it necessary t¢ather than a linear function in the feedback term. Thus the
design an external oscillatofAlthough Pyragas described forcing term to stabilize a periodic orbit is given by is a
his method for the situation in which one knows only a timenonlinear functionG(x,,x,-1). Obviously, many choices
series, in all the cases he studied the equations that describé@n be made foG, with the constraint thaG=0 in the
the system were knownHere we are concerned with the desired UPO. Perhaps the simplest construction is

dy dx
a—P(y:X)"’f(t)a a_Q(y!X)r

®)

second method, i.e., the delayed feedback case. G=—K[F(xn) =F(X,-1)], with K>0, since with this feed-
Applying Eq. () for the stabilization of a period-one orbit back one does not need to know the equafiqx,) that
in a one-dimensional mappirfg(x,,), we have governs the system. We show how this control could be ap-
plied in the block diagram displayed in Fig. 1. This feedback
Xnt1=F (X)) + K[ Xp—Xp_1]. (2) also gave a better performance with respect to basin of at-

traction and transient time than other nonlinear functions.

The controlled system has dimensionality equal to 2 instead For the period-one orbit, our controlled system can be
of 1 for the unperturbed system. The eigenvalues of(Bg. written as

are given by expanding it about the equilibricep, ; =X, to

obtain Xn+ 1= F () =~ K[F () = F (X, _1)]. )
'K+ [F FKP=4K _ _ .
l’ZZF K [F2 Kl 4K, ©) The eigenvalues for this equation are
whereF' =F'(x;) is the derivative of with respect to,, at N (1-K)F' = [(1-K)F']*+4KF’ @

the fixed pointx; . 127 2
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FIG. 2. Boundary of stability of the period-one orbit for the
nonlinear control method without memofgolid line) and Pyra-
gas’s linear contro(dashed ling

When a pitchfork bifurcation occurs, fd¢ not very large,
the most negative eigenvalue is equal-td. From Eq.(7)
we obtainF'(x;) = —1/(1-2K). For the logistic map this
gives

log, |A|

LICHTENBERG

FIG. 3. Liapunov exponent Igh\| as a function ofa for the
nonlinear control method without memorysolid line with
K=1/3 (the value ofK that gives the maximuna*), Pyragas'’s
linear control(dashed lingalong the dotted line of Fig. 2, and for
the uncontrolled logistic mafshort-dashed line

constructing a noise circle around the fixed point, which just
touches the basin boundary, and finding the radiad the

3—4K circle. We illustrate these properties in Figapfor the non-

* = e—
& Ta1-2K)
From Eg. (8) we see that ifK<0, then a*<3/4. For
K>1/3, the period-one loses its stability not via a period

doubling bifurcation, but via a Hopf bifurcation. For this
case, we obtain

L, 112K 9
ST ®

With Egs. (8) and (9) we find that the maximum value for
a where control can be achieved with this method is also
a* =1.25, which occurs aK=1/3.. We comparea* as a
function of K for the nonlinear control in Fig. 2solid line)
to that using the linear control of the Pyragas’s method
(dashed ling In Fig. 3 we compare the values of iy,
with \ being the least stable eigenvalue, for nonlinear con-
trol (solid line) with linear feedbackdashed ling and with
no control (short-dashed line We note that the transient
time (in the linear regimg which is proportional to
1logyA||, is smaller in the nonlinear control than in Pyra-
gas’s method. Also, the superstable orbit,|agy=—c is pre-
served with the nonlinear contr¢The reader might well ask
why the parameters linearized around the fixed point are not
the same for linear and nonlinear control. The use of a linear
(in x) control parameter witiK —K(4a—2) brings the re-
sults into coincidence. However, a dependence of the control
on a introduces a new complexity into the feedback, which
we consider beloyv We note in Fig. 2 that the largest range
of stablea, a<a*, occurs atK=1 for the linear control.
This has significant disadvantages when we consider the
nonlinear phase space, as we now show.

We numerically determined the basin of attraction by con-
structing a grid of initial conditions in thex(_4,X,) space

o
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(8) linear control and in Fig. @) for the linear control. In Fig. 5
we show howr varies witha for the nonlinear control at

FIG. 4. Basin of attraction and noise circle for the nonlinear

and determining which are attracted to the fixed point. Theontrol without memory fora=1 andK=1/3 and(b) Pyragas's
effect of noise on the stability is qualitatively examined by linear control fora=1 andK =0.75.
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FIG. 5. Noise radiug as a function ofa for the nonlinear FIG. 6. Boundary of stability for the period-one orbit using our
control method aK=1/3 (solid line) and for Pyragas’s linear con- nonlinear control method with memorgolid line) and Socolar’s
trol along the dotted line of Fig. &lashed ling control methoddashed ling with R=0.5 in both cases.
K=1/3(solid line) and for the linear control along the dotted Xns1=F(X,) + €, (15)
line of Fig. 2(dashed ling We see that the nonliner control
is more robust in the presence of noise. €ns1=—K[F(Xp+1)—F(Xp)]+Re,. (16

Another method of control of chaos that follows Pyra-

gas’s ideas was in_trod_uced by Bielaws.ki al. [S]. In this When R=0 this control reduces to the case of nonlinear
method the forcing is given to an accessiptgameterof the control studied above. The eigenvalues are
system instead of adding a feedback term to the equation. '

The controlled logistic map in this case is given by (1-K)F' + R+ [(1—K)F'+ R]%+ 4(K—R)F’
A —
Xns 1= 4(a+ €)Xn(1Xy), (10 v 2

(17)
with e€,=(K/4)(Xx,—X,—1). The method has been general-
ized by Socolaret al. [4], with the controlled logistic map and the stability boundaries for the logistic map are obtained

given by Eq.(10), but with from
K 3(1+R)—4K
fn:Z(Xn_Xn—1)+R6n—1! 11 a =4(1+R)—8K 18
whereR<1. The caseR=0 reduces to the Bielawski con- for a pitchfork bifurcation and
trol. Socolaret al. [4] have shown that this form of the con-
trol parameter is equivalent to including memory of all the 1 1
past states of the system. The dimensionality of the new map ar=5+ HK=R) (19

is also two with the variables, ande,,. The eigenvalues are

for a Hopf bifurcation. The maximum value afwhere con-

! ’ 2 __ !

)\IZZF TREyEVF R y)" - 4[F'R+ 7] , (12 trol can be achieved in this method i®*=(5
’ 2 —R)/4(1—R), which occurs aK = (R+1)%/(R+3). In Fig.

. . _ 6 the stability boundaries are shown for the mappings given
- 2
where y=K(4a—1)/(4a)“. A pitchfork bifurcation occurs by Egs. (15) and (16) (solid line and Egs.(10) and (11)

at (dashed ling with R=0.5. For both mappings, the addition
_qak2 * * of a memory ternffinite R) extends the region in parameter
K=8a""(R+1)(4a” -3)/(4a” ~1). (13 space that can be tracked. There is a distinct difference in
A Hopf bifurcation occurs at the results of Fig. 6 for the two methods of control. For the
Socolar method the range afthat can be stabilized becomes

K=16a*?[1+2R(2a* —1)]/(4a* —1). (14) small, asK tracksa to large values. In contrast, the additive

nonlinear control picks out a value &f for which the map-
The stability boundariea* (K,R) are given by Eqs(13) and  ping can be controlled for all values afup to a maximum
(14). By varying R one finds that, in the absence of noise,and thus is not sensitive to parameter drift or uncertainty.
control can be achieved for arbitrary large valuesaofow-  The range ofa that can be controlled at the fixed point in-
ever, the width of the window irma where control can be creases without bound, &—1.
achieved decreases asncreases. There is the price to pay for having a finie when the

Memory can also be included in the form of nonlinear variable is subject to noise. For example,Rs¢ 0.5, a=1,

control by a generalization of E¢f), and K=0.6428 for the additive nonlinear control and



1204 M. de SOUSA VIEIRA AND A. J. LICHTENBERG 54

2 T T T T T T T 0.35 T T T T T T T
1.5 | ] 0.3 F A
0.25 | 4
1k _
o 0.2 _
% 0.5 . H
0.15 ¢ B
0F N 0.1 __\\\\ n
-0.5 | 7 0.05 F .
-1 1 1 | ! ! ] | 0 W R oo L ! N
-2 -1 0 1 2 3 4 5 6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
en a
1.6 7 T T T T FIG. 8. Rescaled noise radiusas a function ofa for our non-
1.4 | (b) o 1 linear control with memory wittK =0.6428(that is, the value of
1.2k . . - K that gives the maximuna* in Fig. 6) and Socolar's control
1 Lk E B method along the median line of the boundary of stability shown in
o8 | Fig. 6. In both caseR=0.5.
R
® 0.6 A T nonlinear control witlR>0 is less robust than the case with
0.4 S 7 R=0, which is shown in Fig. 5. We must also consider the
0.2 | e . effect of varyingR. We do this only for the case of the
o b ‘ R additive nonlinear control in the next section.
-0.2 | .
0.4 1 1 ! L i ] I1l. AN OPTIMAL CONTROL FUNCTION
-4 -3 -2 -1 0 1 2 3

Although, the nonlinear control, with a memory factor
R, has a number of desirable properties, there is the draw-
back that for a giverR at the value ofK for which a*
obtains its maximum value, there is no superstable @ttt
also occurs in the parameter conjrdbince operation at a
superstable orbit is very desirable from the perspective of
return to the fixed point solution in the presence of noise, we

K =1.8333 for the parameter control, which correspond, rel00k for a relation betweeK andR for which a superstable
spectively, to the diamond and cross shown in Fig. 6, werPit is recovered by setting=0 in Eq. (17). We find two
numerically find the basin of attraction for the two cases. Thesolutions
result for additive nonlinear control is shown in Figayand _ , _
for control in the parameter in Fig.(). In both cases the R=0, F'(x)=0 (20
stabilization region has been decreased from that Withoutthat’ for the logistic map, correspondae=0.5, which is the
memory, but much more so with parameter control for whichggtion without memory, and

the basin appears to be fractal. The calculation of the noise

radius here is somewhat subtle, sircdoes not have a clear F'(X¢)

physical meaning. If we add a noise ted® to the right- R=K, K= Fix)—1" (22)
hand side of Eqs(10) and(11) we note that, when the sys- f

tem is at the fixed point, the variation i, ; will still be which, for the logistic map, corresponds to
ox. However, the variation irg, ., will be (1+K/4)éx. If K =(4a—2)/(4a—1). We call the second solution E1)

the same procedure is applied to E¢5) and(16) we find  an optimized control function, as it allows operation with
that the variation ine,.; will now be [1-KF'(x;)]oX.  superstability, i.e., with maximum control at the fixed point,
Therefore the noiséx is amplified in thee variable in both  for 0<a<. We find that this solution has other desirable
cases, with distinct multiplicative factors. To compensate foproperties, such as a large basin of attraction and, remark-
this, we contract thee coordinate by the respective factor ably, it reduces the phase space to a single degree of free-
before calculating the noise radius in the basin of attractiorjom

of the additive nonlinear control and the parameter control. SupstitutingR=K into Eq. (16) and eliminatinge,, in

Our results are shown in Fig. 8 f&®=0.5, for nonlinear favor of x,,; by using Eg. (15, we obtain
additive control(solid line), calculated aK=0.6428, and for ¢, ;= —K[F(Xy+1) —Xn+1]. Dropping the index by 1 and
parameter contrgldashed ling calculated at the median line substituting fore, in Eq. (15), we obtain a remarkably

of the stability boundary shown in Fig. 6. We find that the simple form for the mapping equation

nonlinear additive control is more robust to noise than the

parameter control. However, for the same valueaothe Xn+1=F(X,) —K[F(X,) —X,1, (22

FIG. 7. Basin of attraction and noise circle f@ our nonlinear
control with memory ak =0.6428 and Socolar’s control method at
K=1.8333. In both caseR=0.5 anda=1. These parameters cor-
respond to the diamond and cross shown in Fig. 6.
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Ty Dynamical | F(zx) | (1_K)F(I”) 10 F ;

=

System wp’ z © /7
Tpt1 = F(xn) - I{[F(xn) - $n] 1 E_ _________________ E
FIG. 9. Block diagram for our optimal control method.
0 i l I 1 1 1
which is valid for control of the period-one orbit in one- 0 0.2 0.4 K 0-6 0.8 !

dimensional maps. At the fixed point, the magnitude of the
feedback term vanishes, as in the other methods studied here. FIG. 10. a* anda. for the logistic man using the optimal con-
A block diagram of the optimal control scheme is shown in o s g P 9 P

. . . .trol method.
Fig. 9. One expects this method to be easy to implement in
experiments since the control term contains only amplified

: . . K

versions of the input and output of the dynamical system and O<xo<1l+-——. (26)
one does not need to knolw to apply the control. We note 2-K
that for the particular case of a mapping, the period-one orbi%_h basin of o . ding f
is a fixed point. Thus the variable itself can be thought of as. "¢ aS|r_1 of attraction |Ecreas_es W'Eﬁ (;xtedn ing from
a delayed signal at the fundamental period of the updateg__1 atk=0 to 0_,2 atK—.l. Since the Ixe po_mt IS at
variable. This property allows us to use a feedback signaft=1~1/4a, the noise radius around the fixed point is

with the same index as the mapping function itself. The de- 1 K 1
layed feedback is seen explicitly for control of differential r=minl— —,————+ —|, (27)
equations, as discussed below. The eigenvalue fo(2yis 4a’4a(1-K) 4a
given by which, at the superstable orbit, gives
A=(1-K)F'(x) +K. (23 1
This map loses stability via a pitchfork bifurcation, where 's=2-Kk" (28)

A=-—1. Consequently, the bifurcation point for the con-

trolled logistic map is at such thatr varies from 0.5 to 1 a¥ varies from 0 to 1.

Comparing Eq.{28) to our previous control parameters we
3-K see that this optimized control maintains stability better in
a* :m- (24 the presence of noise.
Although the superstable orbit is maintained, it is not
Thus we see that the parameter region where the period-orféear what happens to the time constant for return to the
orbit is stable increases &sincreases and tends to infinity as Periodic orbit ask—1, for initial conditions that are started

K tends to one. far away from the fixed point. To study the effecttofon the
The superstable orbi=0 is obtained at nonlinear transient we do the following. We start the system
a.= 2-K (25) T T T T T
S 4(1-K)’ 0
where the subscrips denotes superstable orbit. Also here 9
a, increases withK and goes to infinity ak tends to one. In y
Fig. 10 we show, as a function &f, the valuesa* where the = 4l : i
period-one orbit bifurcateésolid line) and the valuesg of pd .
the superstable orbifdashed ling We plot in Fig. 11 the - 6 L N - 1
Liapunov exponent logh| as a function of a for ] P
K=0,0.4,0.8. One can see from this figure that increasing el E ]
K increases the range of the parametesround the super- i
stable orbit for which a given transient time can be achieved. 10 : . L . .
We now calculate the basin of attraction of the controlled 0 0.5 1 1.5 2 2.5 3
UPO. Since our controlled map is one-dimensional this can a

be found easily. Using Eq22) with F given by Eq.(4) the

convergence to the UPO will be attained when F|G. 11. Liapunov exponent lg| for K=0 (solid line),
0=xp=<1+K/[4a(1l—K)]. Substituting fora at the super- K=0.4(dashed ling andK = 0.8 (long-dashed lingfor the logistic
stable orbit from Eq(25) we obtain map using the optimal control method.
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4.8 T . T T ing principles, they are not generic. A generalization of our
“optimized” control scheme for a period-one orbit can be

4.7 F . expressed in the form

4.6 1 7] un+1:P(unaVn)+f1 Vn+1:Q(unaVn)v (32)

4.5 1 7 whereu is a vector of the variables that are available for
observation and describes the remaining variables of the

Nonlinear transient

4.4 1 ] dynamical system, which are not available or not of interest.
a3l | The control term operates only on thevector and is given
’ by f=K[u,—P(u,,v,)]. We apply this more general form to
4.2 ; \ ) ) a higher-dimensional mapping. For a specific example, we
0 0.2 0.4 0.6 0.8 1 study the Haon map, which is given by

Xn+1:1+yn_axﬁa Yn+1= 0%y (33

FIG. 12. Nonlinear transient for the logistic map along the line

of the superstable orbigs, shown in Fig. 9. In this map, forb=0.3 (which is the case we consider hgre
the period-one orbit is stable in the interval

with 1000 different initial conditions, uniformly distributed —0.1225ca=<0.3671. The system enters into chaos when
in the interval[0,1+K/4a(1—K)]. Then we verify how a=1.059 and the orbit becomes unbounded digr 1.428.
many iterations on average are necessary to bring the orbior this map we can use three types of control: in both vari-
within a radius of 10# around the fixed point. The result of ables, only in thex variable, or only in the variable. For the
the nonlinear transient as a functionkffor a=ag is shown  first type of control we have
in Fig. 12. It increases slightly as increases and goes to

infinity at K=1, where Eq(22) is marginally stable. Xnt1= 1+yn—axﬁ—K[l+yn—axﬁ—xn], (34
In a more general way, the nonlinear control with memory
for stabilization of an UPO in a one-dimensional map with Vs 1=bX,—K[bX,—y,]. (35)

periodm is is given by
For the second type of control the equations are
Xn+m:Fm(Xn)+€na (29
Xni1=1+Yp— @ K[L+y,—axi—X,],  (36)

€nim=—K[F"(Xntm) —FM(X,) ]+ Rep. (30)
Yn+1=0Xy. (37)
For the case in whick =R this control reduces to the opti-

mized version The third type of control gives

_ _ 2
X rm=F ") = KLF™() = X, (3 K=y ax, 39

Also for higher periodic orbits the dimensionality of the con- Yn+1= bX = K[DXy =yn]. (39

trolled map is still one. The fixed points of the iterated mapI I th the fixed point th in th
are identical to the fixed points of the uncontrolled equation.n a i e”sezj csses € Tixe dpt(r)wln? a(rﬁ) E tsame as'lr;] €
We have applied the optimized control for a period two orbit'“";]con ro ? | _eonhmapdar:N he eef a% thertn:hvanls teSI
(m=2) of the logistic map, in which the fixed points when control IS achieved. We have foun at the contro
are  given by x=[4at1+\(4a_3)(dar1)]/8a does not c_hange the Iqwer boundary of the region of stab|_I|ty

; f - . " .. of the period-one orbit. However, the upper boundary in-
The eigenvalue for the period-two orbit can be easily

calculated and one finds that a pitchfork bifurcation ¢'¢25€S a¥ increases for the three types of forcing. For
from period two to period four will occur when example, forK=0.4 the period-one orbit bifurcates at

. 1  a~1.98, 1.74, and 0.49 for the the first, second, and third
a*= 7[1+5+(1+K)/(1-K)]. The superstable orbit is methods, respectively. Thus different types of control have
at a;= 2[1+5+K/(1—K)]. The value ofa where the different regions for which stabilization is possible. For the
bifurcation from period one to period two occurs is at Henon map the largest region of control occurs whensxhe
a=0.75, which is the same value found in the uncontrolledand y variables are controlled simultaneously. The largest
map. Consequently, the region of the parameter space whekéapunov exponent for the uncontrolled and for the con-
control can be achieved in the period-two orbit also growsrolled Henon map is shown in Fig. 13, also f&r=0.4. As
with increasingK and goes to infinity aK tends to one. We we see, no superstable orbit exists for anyor the period-
note that the period-two orbit is also controllable by theone orbit in the uncontrolled equation witi 0.3. The feed-
methods considered in Sec. Il, but are also “nonoptimal” inback terms we use to expand the region of stability modifies
the sense that we have discussed. the location of the most stable orbit but do not create a su-

Although the results of our study of controlling a simple perstable orbit when one does not exist for any valua of
one-dimensional mapping are suggestive of general underlyhe uncontrolled equation.
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superstable orbit is recovered and, remarkably, the phase
space for the controlled logistic map is again one dimen-
sional. Because we recover the superstable orbit we call this
an optimized solution.

The control methods we have been considering have in
common with the OGY method the following properties: the
fixed points of the controlled map are the same as in the
uncontrolled system, the feedback term vanishes in the ab-
sence of noise when control is achieved, and one does not
need to know the mapping equations in order to apply the

log, |A|

-l.2r ] control. Unlike the OGY method, no computer analysis of
1.4 b L : L the system is necessary to apply the control and the methods
0 0.5 1 1.5 2 probably can be applied for fast systems, and knowledge of

a the location of the unstable periodic orbit is not necessary.

For the optimized control, the dimensionality of the con-
trolled equations is the same as in the uncontrolled system;
the control does not destroy the superstable orbit of the un-
controlled system, while simultaneously control can be
achieved in a very large region of the parameter space; the
basin of attraction of the controlled orbit is larger than in the
IV. CONCLUSIONS AND DISCUSSION other methods; and, consequently, the control is more robust
in the presence of noise.

FIG. 13. Largest Liapunov exponent lfig for the Henon map
without feedbacKlabel Haon), with feedback in thex andy vari-
ables(label xy), with feedback only in the variable(labelx), and
with feedback only in the variable(labely).

We have generalized a method introduced by Pyrg8hs thouah h | idered th licati
used to control an otherwise unstable periodic orbit, as ap- “\though we have only considered the application to

plied to mappings. The method consists of feeding back &'2PPings of the various methods of control, the methods are
delayed signal with the delay equal to the period to be con@lso applicable to continuous systems governed by ordinary

trolled, done in such a manner that the position of the stabigl'f_fe_rem'alI equationSODE’s). This was ConSI_dered in the
lized orbit in the phase space is not changed. The generaffiginal paper by Pyragds}], who applied the linear control
zation consists of feeding back the nonlinear mapping sign the Roes_sler, Dufﬁng and Lorenz systems. Hov_veve_r, un-
rather than a signal linearized around the fixed point. Thi ke a mapping, a simple delay makgs the dlmenslonallty of
increases the basin of attraction of the controlled signal an{!® SYStem infinite. We can generalize our nonlinear feed-
thus decreases the sensitivity to noise. However, the range pck control for the case of ODE S For the method without
parameters for which control can be achieved is limited. Anemory the f(t) in Eq. (1) is replaced by f(t)
addition to the control procedure, introduced by Socolar= — K[P(Y().x(1)—P(y(t—7),x(t—7))], where 7 is the
et al. [4], is to allow memory of all previous periods. This period of the UPO. For the nonlinear control with memory
latter procedure was implemented in the mapping parametdrd: (1) becomes dy(t)/dt=P(y(t),x(t))+ €(t), with
rather than directly into the variables. The method allows arf(t) =~ K[P(y(t),x(t)) = P(y(t— 7),x(t— 7)) ]+ Re(t— 7).
arbitrary range of the parameter in the logistic map to bdn the case of the optimized control we have for shequa-
tracked, but at the expense of a rapidly decreasing the basfiPn dy(t)/dt=(1-K)P(y(t),x(t))+ K[dy(t—7)/dt]. We
of attraction with increasing range of parameter tracking. Ahave achieved control of the Roessler system using all of
generalization of the nonlinear feedback applied to the varithese types of feedback. We are currently investigating
ables, to include memory, also allows arbitrary tracking of'hich methods give the best performance with respect to the
the parameter, with a significantly improved basin of attraciSSues that we considered in this paper.
tion. All of these above control procedures increase the di-
trgeznsionality of the phase space for a one-dimensional map ACKNOWLEDGMENTS
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