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Domain growth in a one-dimensional driven diffusive system

Stephen J. Cornell and Alan J. Bray
Department of Theoretical Physics, University of Manchester, Manchester M13 9PL, United Kingdom
(Received 21 March 1996

The low-temperature coarsening dynamics of a one-dimensional Ising model, with conserved magnetization
and subject to a small external driving force, is studied analytically in the limit where the volume fraction
w of the minority phase is small, and numerically for gengralThe mean domain size(t) grows ast?in
all cases, and the domain-size distribution for domains of one sign is very well described by the,foym
oo (1/L3)exd —M(w)(I1%/L3)], which is exact for small (and possibly for allu). The persistence exponent for
the minority phase has the value 3/2 for-0. [S1063-651X96)03008-5

PACS numbgs): 05.40:+j, 05.50+q, 64.60.Cn, 75.40.Gb

I. INTRODUCTION mains of that sign. We also show that the recently introduced
[7] “persistence exponent’d, which describes the fraction
The field of phase-ordering dynamics is by now quite wellf(t)~t~¢ of spins of one phase that have not flipped up to

developed1]. It deals with the approach to equilibrium of a time t (in a sense to be clarified belgpvis 6=3/2 for the
system quenched from a homogeneous high-temperatureinority phase in the limit where that phase has a vanish-
phase into a two-phase region. Familiar examples are binaipgly small volume fraction. These are the first analytical
alloys and binary liquids, which are described by a scalaresults for the coarsening dynamics of this driven diffusive
order parameter. Recent work has addressed also casggstem.
where the order parameter symmetry is continuous rather The paper is organized as follows. In Sec. Il we define the
than discretél]. Especially interesting is the scaling regime model. In Sec. Ill we discuss domain growth and dynamical
that emerges in the late stages of growth. For a scalar ordscaling in the model, while Sec. IV deals with the persistence
parameter, for example, the domain morphology is apparexponent. Section V concludes with a summary and discus-
ently time independent if lengths are scaled to a single timesion of the results.
dependent length scale(t), which represents the typical

“_domain size.” This implie_s that two-point correlgtion func- Il. THE MODEL
tions depend on the spatial separatioof the points only _ _ _ _ _ _
through the ratigr|/L(t). The microscopic model we consider is a chain of Ising

By contrast, the coarsening dynamics of driven system§pinsS;= =1 with nearest-neighbor coupling strengthThe
has been much less studied. A physically relevant examplé&ystem evolves by nearest-neighbor spin-exchange dynam-
indeed the motivation for the present work, is the phase sepdes, with a driving forceE that favors motion of up spins to
ration of a binary liquid under gravity. Numerical simula- the right over motion to the left. That is, the microscopic
tions of a(physically less realisticalloy model with gravity — processes are
suggest the existence of two growing length scales, parallel

and perpendicular to the fie[@—4], although it has proved t+t-—— = +-+-A=4)-E (i),

difficult to unambiguously extract the time dependence of

these length scales. ——++ = —+—-+A=4J+E (ii),
An independent field of study concerns the stationary

properties of these “driven diffusive system§5]. Here we ++—+ = +—-++A=—E (iii),

focus on the nonstationary, coarsening dynamics, which, as

we have noted, has attracted relatively little attention thus —+—-—— = ——+—-A=—-E (iv),

far. Ultimately, we would like to understand the coarsening

of binary liquids under weak gravity, including hydrody- where the rate for a process from left to right is proportional
namic effectd6], but as a first step we settle here for a lessto (1/2) 1—tanh@A/2T)]. We distinguish between the “for-
ambitious goal. Specifically we study a one-dimensionaward” and “backward” versions of the processes depicted
Ising model with conserved dynamics and a driving fieldabove by using—~ and-~— to denote the process from left to
E, which favors transport of “up” spins to the righand  right and right to left, respectively.

“down” spins to the lef). We work in the regime We consider the regim&<E<J. This is very different
T<E<J, whereT andJ are the temperature and exchangefrom other studies, which have concentrated on the limit
coupling, respectively. We derive exact results in the limitJ/T—0 [8]. The system possesses metastable states consist-
where one phase occupies a small volume fraction, and nung of long domains of parallel spins, separated by domain
merical results for general volume fractions. The main re-walls. After a long time of order eXp4J—E)/T], a process of
sults are ayt dependence for the mean domain size, and dype (i—) takes place, i.e., a spin splits off from a domain.
domain-size distribution for domains of one sign of the formProcesses of type(ii—) are inhibited by a factor

P, ()= (1/L3%)exp(AI%/L?), whereL is the mean size of do- exp(—2E/T) relative to(i—), but even if they occur the sys-
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tem quickly relaxes back to the metastable state by the re- 1
verse proces@i—), since all the other possible processes are
endothermic. Once a procefis+) occurs, the system can

relax further by exothermic processes of the kind—), so 0.1
that the up spin moves to the right, eventually meeting and
adhering to a domain wall; the system may also relax exo- __
thermically by processe§ii—), so that a down spin moves ¥  0.01
left, eventually meeting another domain wall. The motion of

these free spins is unidirectional, because the reverse pro-

cesseg(iii—) and (iv—) are inhibited by a factor of order 10° ¢
exp(—E/T).
The result of the free up spin moving to the right is for the
down domain through which the spin has traveled to have 10 ‘ : ‘ : s
moved bodily one step to the left; the result of a free down ! 10 100 t 1000 10000 10

spin moving to the left is for the up domain to the left of the

wall to take one step to the right. We may therefore map the FIG. 1. The average domain denshiyt) for four values of the
microscopic dynamics of the lattice of spins onto one for arvolume fractionu. The straight lines are plots of the asymptotic
array of domains. The system then evolves by a domain afrediction from Eq(10).

up spins moving spontaneously to the right, or a domain of

down spins moving to the left. The rates for such processe§maller than the system size, and the system might be ex-
are independent of the domain size. This mapping is analgyected to display dynamic scaling.

gous to a mapping by Majumdar and HU$g for the low-  * gimuylations using the domain model described in the pre-
temperature Kawasaki chain, corresponding to this model igjous section were performed, using lattice sizes in the re-
the opposite lImitE=0. gion 10-1 spins, for times up to 8 10* and averaging

When domains are of size two spins or less, they camyer several hundred samples. Random initial conditions,
vanish. The microscopic mechanism for this in the Ising spinyhere a spin has a probability of being up and * & of
picture is series of events involving two random walkers thafbeing down, were used: similar results were found if an or-
may coalesce, which translates into rather complex transigered initial state was prepared using alternating single up
tions in the domain representation. However, when the dOSpins and domains of )/« down spins. The dynamics
mains are large, the details of this domain annihilation proconserves the magnetization, so the volume fracgiore-
cess are not expected to be important, S0 we choose 10 StUgiyains unchanged. Several different random number genera-
a model where the simple domain-shifting dynamics appliegors were used, and the results checked for consistency; the
for domains down to size one, and removing a domain if itsfoyr-register shift generator of ZiffL0] was used for the runs
size reduces to zero. Simulations of this simplified systemyf highest statistics, once it had been established that it gave
permitted much better statistics than would be possible withagits consistent with other generators.
the true, microscopic system, whilst still giving indistin-  Figyre 1 shows the average domain density plotted, for
guishable scaling behavior. , . different volume fractionsu, as a function of time on a

The algorithm used for simulation was the followir@ oq_og scale. The straight lines all have gradien®.50.
set up an array of alternating up and down domalinspick  Figyre 2 shows a time-dependent effective exponent, defined
a domain at randonjii) if the domain is up, move o the a5'the gradient of a line between successive points in Fig. 1,

right (i.e., reduce the size of its right neighbor by one, andy|stteqd as a function of 1/l the results show that the data
increase its left neighbor by opetherwise move to the left; appear to approach the value0.50 ast—o, though the
(iv) if one of the neighboring domains is of zero size then '

remove it, merging its neighborgy) update the clock by

1/(number of domains (vi) repeat stepsii)—(vi). By virtue -0.42 ————————
of step(v), the time is defined to be measured in units of ﬁ:g:g o o
exp(4—E)/T, and this convention is adopted throughout the p=0.1 —=—
present paper. 044 ;=001 —— "
5 -046}
11l. DOMAIN GROWTH AND DYNAMICAL SCALING §
= // - * =
A. Simulation results T ousl| e L
Since the number of domains in the model can decrease ‘/;’.:?"1 P i
but not increase, the average domain size must increase 05 | ey
monotonically. In a finite systenwith periodic boundary '

conditions the system will coarsen until there is only one up : : :

domain and one down domain; this state will not be station- 0 0.1 1(/’[,12, 03 04

ary, because the dynamics still permits both domain walls to

perform correlated random walks. There will be a wide re- FIG. 2. The effective exponent for the decay of the domain wall
gime of time during which the average domain size is muchdensity.



L2P,()

FIG. 3. Scaling plot of the domain-size distribution for volume
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convergence is slower for larger valueswof The character-

istic domain size therefore increasest3s’.
Figure 3 is a scaling plot of the domain-size distribution gpnarent simple form foP, suggests that the scaling state

P,(1) (defined as the number of domains of sizger lattice
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FIG. 5. Scaling plot of the equal-time spin-spin correlation func-
tion for u=0.5. The prediction assuming uncorrelated domains is
shown for comparison.

P,(1) is a more natural quantity to describe the system. The

might be very simple, for instance, there might be no corre-

site) for a §imu|ati0r1¥vithu=0.5. The average domain size |ations between domains in the scaling limit. The structure
L(t) is defined byL""=X,P(l). The data show good col- factor S(q) [the Fourier transform of(x)] for a system
|apse to Sca“ng, even for short times. F|gure 4 shows th%onsisting of uncorrelated domains may be shown t@lh.¢

same data plotted in the form[Ie?P(1)/I] versus (/L)?. The
linear behavior evident in the plot suggests scaling of the
form

|
P, o Ls—(t)exp{—)\[I/L(t)]z}.

)

4 1-|Py(a)|?
S =T 5 ~ [} 2
(Q) L@ [1+P (a2 2
Whereﬁ(q) is the Fourier transform oP,. The inverse
Fourier transform of2), whereP, was calculated by assum-
ing the simple form(1), is plotted in Fig. 5 for comparison.

For the caseu+ 0.5, the average sizes of up and down do-
mains differs by a factop/(1— u), but nevertheless the up
and down domain-size distributiorl®, and P_ are both
found to satisfy independently scaling of the fo(fr).

Figure 5 shows the scaling of the equal-time two-poin
correlation functionC(x,t) =(S(t)Si;4(t)). Although the
data appear to collapse to a scaling form, the approach ap-
pears slower than was the case fy, suggesting that

The discrepancy with the simulation data shows that strong
correlations need to be taken into account in this system,
even though simulations measured onh8-5 % correla-
itions between the sizes of neighboring domains.

B. Solution for domain density assuming scaling

The numerical data suggest that the scaling function for

the domain-size distribution is the same for minority and
majority domains, and is independentof Using this as an

;8 - ] assumption, we can calculate the average domain size. The
t_‘jag : number of domain walls changes by a domain of size one
t=1000 = shrinking to nothing, and so we expect that(l.)~I.. for
01 ¢ |.—0. We therefore assume a scaling form
= I
= o001¢ * *
= > P+I+,t :a+—F —), 3
g . e 0=es izl ®
=l
10° | oHgy o
Eﬁ%ﬂgnjm where a.. is chosen so thaE(0)=1, andF'(0)=0. The
4 wiio o ] rate at which up domains vanishis (1), which approaches
10 mom b ma So, o dP, /4l , in the continuum limit. Since each domain vanish-
et ing event removes two domain walls, the rate of decay of the
10°® 0 s 10 1‘5 20 numberN(t) of domain walls per site is
VL)
W dN aP N aP_ ) a, N a_
dt “\al |1, 0 d_|i o) LT LE)

FIG. 4. Fit of the data in Fig. 3 to the forifi).

4
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The domain-size distribution is normalized to the density ofnext domain to the left ofb) an up spin splitting off the
domains, and there are the same number of up as down ddemain, and moving to the next domain on the right. It is

mains, so also possible for a down spin to move from the right to the
left of the domain, but this does not change the valua.of
N/2= J'OOP (1)dl =a+f1 5) Notice that the dynamics is independent of where the neigh-
UL, boring domains are, whether they are vanishing or coalesc-
ing. Once the size of the domain reduces to zero, the domain
o a_fq ceases to exist. The master equation for the probability
N/2= J; P.()dl=——, 6)  P(n,t) of the size being at timet is
e - . dP(n,t)
wheref,= [yxF(x)dx. The densities of up and down spins T P(n+1t)+P(n—1t)—2P(n,t) (11
are
o for n=1, with P(0,t) =0. In the continuum limit this master
,u=f [ P (l)dly=a,f,, (7)  equation approaches the diffusion equation, whose solution
0 with P(n,t=0)=8(n—ny) is
» 2 2
1—M=fo I_P_(I_)dl_=a_f,, (8) P(n,t)=(4wt)1’2|ex;{—(n 4:'0) —EX[{—(n:‘?O) ],
_ (o2 -~ (12
where f,=[(Xx“F(x)dx. Substituting forL. and . from
(5)—(8) into (4), and integrating, we find the following as- nn n2 n?
ymptotic result ag—o: =(7Tt)_1/23in"( —O) exp( - —0) 13
. 2t 4t 4t
23 12 ) o i . .
N(t) =1 57— 1 — _ (9) In the scaling limitt—o, n—o, with n/\t fixed, this re-
fotlp "+ (1-pn) 7] duces to
For the particular cas€ (x)=exp(—\x?), suggested by nn, n2
the data, we havé;=1/(2\), f,= 7N\ "%%4, and P(n,t)amex - E)' (14)
2

= — ——— 1 (10 In a random initial state, the number of domains of sige
{mtlp "+ Q=w) 7] per lattice site is (+ u)2u"0. The up domain size distribu-

The straight lines in Fig. 1 are, in fact, plots of E40) for ~ ion ata timet in the scaling limit is therefore
appropriate values qh. The excellent agreement of the data

with the prediction confirms both the predicted depen- P.(l,)=> (1—u)2u"P(l, 1) (15)
dence and also the simple form fB(x). No

C. Solution for P.. in the limit p—0

IR '3)

The simulations are in excellent agreement with the scal- 2\xt3 A
ing hypothesis, and with the simple form for the scaling
function (1). We would like to have a@b initio explanation
for these results. Unfortunately, we were only able to solv
the dynamics in the “off-critical” limit w—0 (or, equiva- 5
lently, u—1). :f” _cH

In the limit «—0, it is necessary only to consider the Nt 0 Pel)dly Jat’ an
motion of the minority spins, i.e., the motion of the majority
domains. This is because the size of each domain performsvehich approachegl0) in the limit u—0.
random walk until it either diegshrinks to zero sizeor We may calculate the size distribution of the majority
coalesces with the nearest domain of the same type. To codomains from the probability that a given region contain no
lesce with another domain, the intervening domain of thedomain walls. Consider a region bf lattice sites containing
opposite type has to shrink to zero size. The time scale fon minority spins; these spins need not necessarily all belong
the vanishing of majority domains will therefore be muchto the same domain. Then the number of minority spins
longer (by a factor~ ~2) than for minority domains. The changes by spins entering the region at the left and coalesc-
dynamics will therefore progress primarily by minority do- ing with the leftmost domain wall in the region, and spins
mains shrinking to zero size, and never coalescing, whereaplitting off the rightmost domain wall. Once reduces to
the majority domains’ sizes only change appreciably due t@ero, however, any spins entering the region from the left
coalescence. will simply pass through the region, and it will remain

Consider a particular minority domain containingup  empty. We have again assumed the limit-0, by not al-
spins at timet. In the limit where coalescence is forbidden, lowing for any domains to move out of the region or to
the domain changes size g an up spin arriving from the coalesce with domains outside the region.

(16)

which is of the form(1), with L=2tY2. The total domain
Jlensity (twice the density of up domainss
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Under these conditions, the probabil@,(n,t) obeys a
master equation of the fornfll), whose solution with
n=uM att=0 is

_ 2
Py (N,t)= (47Tt)1/2( exp{ - %}
2
_exp[_ % ] 18

The probabilityPg of the regionM being empty is then

PE(M,t):l_J’OOOPM(n,t)dn (19)

M u?
=1—(4mt *1’2f ex;{——)du.
(4t) o 7t

Consider now a region ah sites, sitting inside a domain of

(20

size | sites. The number of positions that it can occupy

within the region is [—m)® (I —m), where® is the Heavi-
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For a 1D driven diffusive system, there are two kinds of
persistence that may be considered. The first concerns the
probability that a spin in the microscopic Ising representation
has never changed its value. Whenever a domain wall emits
a spin, that spin moves rapidly through a domain, causing
each of the spins in that domain to flip twice. Since this spin
emission is a Markov process, the probability that a given
spin has never flipped decays exponentially.

A more interesting kind of persistence to investigate is the
probability that a given spin has never belonged to another
stabledomain. That is, we discount the rapid flipping due to
spin motion through a domain, and consider only the case
where an entire domain has migrated towards the site in
question. This kind of coarse graining in time would also be
necessary when studying the Glauber-Ising model at low but
nonzero temperatures, where short-lived thermally activated
flipping of spins within the interiors of domains occurs, in
order to recover the true zero-temperature persistence behav-
ior.

A. Analytical results for u—0

Let us consider a test site initially within a minority do-

side function. The probability that a randomly chosen inter-main, a distancer; sites from the left domain wall and,

val m lies within a domain of size in the randeo | +dI is
therefore (—m)®(l—m)P,(1)dl, so the probability that a
region of sizem contains no domain walls is

PE(m)=J:(I—m)P|(I)dI. (21

Differentiating twice, we hav@'é(m)z P;(m).
The result for the distribution of majority domains is
therefore

PPe(M)
FL(L)—W - (22
w3l ,u2|2)
=2\/ﬁex ) (23

which is of the form(1) with L_=L_ /u. This shows that
the calculation is only valid to lowest order jm, since the
conservation of magnetization implies that /L,

=(1-w)p.

IV. PERSISTENCE EXPONENT

It was recently found that, in a one-dimensior{aD)

Ising model evolving at zero temperature from a disordered
state under Glauber dynamics, the probability that a given

spin has never flipped up to tintedecays ag~? [7]. The
value of the persistence exponehtlepends upon the mag-

netization, and whether the spin is in the majority or minority

sites from the right wall. We define; and n, such that a
spin in a domain of size unity hasi{,n,)=(1,1). The dy-
namics causes the domain walls to wander stochastically,
and eventually one of the walls will cross the test site; i.e.,
the test site will have flipped.

We shall assume that this domain does not coalesce with
another domain before one of the domain walls reaches the
test site. This assumption will certainly be valid in the limit
pn—0. Then the three processes that cause the domain walls
to move are(i) an up spin joins onto the left-hand edge,
(nq,ny)—(ny+1,n5); (ii) an up spin splits off the right-hand
edge, O1,n,)—(ny,n,—1); (iii) a down spin splits off the
right-hand edge and moves through the domain to the left-
hand edge, r{;,n,)—(n;—1,n,+1). The master equation
for the joint probabilityP(nq,n,,t) is then

phase. The dynamics for a spin in a phase with volume frac-

tion w is the same as for @-state Potts model with symmet-
ric initial condition, with q=1/u [12], leading to the result
that 6 takes values in the range 0-1aslecreases from 1 to
0, with #=23/8 for u=1/2[13].

dP(nlan!t)
TzP(nl—l,n2)+P(n1+1,n2—1) (29
+P(ny,n;+1)—=3P(ny,ny),
(25)
which becomes, in the continuum limit — X4, Ny,— X5,
IP(Xq,Xp,t ? & &
Plaxel) | o 5 P, (26
at IXT  IX5  IX10X;y
Making the change of variable
X=Xq+ Xz (27
= —=(X1—Xp), (28)
y \/§( 1~ X2
Eq. (26) becomes
IP(X,y,1) P 5P
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When either of the domain walls reaches the test site, the test

site flips. Therefore, if we wanP to represent the condi- 06 - ;1
tional probability that the site has not flipped, we must solve 05 | Lot ‘
Eq. (26) with boundary conditionP=0 alongx;=0 and .
X,=0. This corresponds to solving the diffusion EQ9) 04| :
with boundary conditionP=0 along the linesy=+x/4/3, g . 1
for the regionx=y./3, x=—y\3—that is, in a wedge of % o3l TR
angle 7/3 with absorbing boundaries. - + 0
The diffusion equation is readily solved in a wedge of 02| p=0.1 —— 1
angle s with absorbing boundaries, and it is known that the iéz%gé ——
survival probability for a random walker under such condi- 01 | 0.4057 1
tions decays as ™'?¥ [14]. After transforming Eq(29) into
polar coordinates and 8, where 0 " : .
1 10 100 1000 10000
r:(X2+y2)l/2, (30) t
0= ¢+ 7l6, (31 FIG. 6. Bias plot for the persistence probability of minority
spins.
tang=yl/x, (32

to take account not only of the fact that the walls of the

domain can move, but also that the neighboring domains can

vanish before the test spin has flipped. Contributions from

domains that have coalesced will therefore be important, and
3 - the necessity to include information about domain-domain

P(r,0,t)= —E J dre Msin(3mé)sin(3mé,) correlations makes the calculation extremely complicated, if
T m Jo not intractable.

we need to solve the diffusion equation for the region
0<0<x/3, with P=0 on §=0 and#= 7/3. The appropri-
ate solution, starting from=rg, 6= 6, is

X Jam(r A2 Igm(rA?) (33)
B. Simulation results

:iz sin(3mé)sin(3mé,) The persistence probability for both majority and minority
7t spins was measured for a range of valuesuofwWhile the
' 242 measured values of the exponentor the minority domains
_0) exp( _ 0 (34  was found to be close to 1.5 far small, for u=0.5 there
2t 4 appeared to be some evidence that the asymptotic behavior
where we have used Eq6.615 of [15]. To find the
persistence probability, we need to evaluatp(t)
=ordr[7Rd6P. Performing the integralfl5], and taking

was governed by a different exponent. However, the slow
onset of the asymptotic regime for intermediate values of

the limitt—o (where the dominant contribution comes from

the termm=1 in the sum we find

., together with the large value of the exponentl(, com-
pared with<1 for the Glauber cagd 3]), led to unavoidably
poor statistics in the asymptotic regime, and hence it was not
possible to establish reliable values for the exponent.
2\ 312 Figure 6 shows a plot d?p(t)t*? against time for minor-

Pp— Lsin(g,go)(r_o) (35) ity spins, for u=0.01. For comparison, the constant

2\ 4t (~0.2936) predicted by Eq36) is also shown. There is
reasonable agreement of the simulations with the
On substituting for the initial conditions in terms of jndependent-domain prediction, suggesting that it is a good
x=nJ+n3, y=(n}—n3)/y3, Eg. (35 reduces to approximation for small, for the time regime measured.
Pp(t)=(1/4/m)nnI(nd+nd)t =32 We interpret the deviation from the constant at longer times

In order to calculate the persistence probability, we neeés more likely to be due to statistics than a true systematic
to average over the possible valuesndfandn). The prob-  effect. Similar data foru=0.1 are shown, and deviations
ability in the initial state of a given “up” spin having pre- from the constant predicted p6) (~0.4257) are already
cisely n}—1 consecutive up neighbors to its left is quite marked. _ _
(1—pw) ,un(l)_l, so the probability of an initial configuration The effective persistence exponet{inPe)/d(Int) for mi-

0 ov > nd4nd_2 . o nority spins is plotted as a function of 1flin Fig. 7, for
(%1'”2) s (1=wp)p™M727% Summing overn;=1 and  geyeral values of. The purpose of this plot is to investigate
n;=1 gives the final result, whether there are any underlying trends in the exponent.

When a function of the fornf(t)oct?(Int)° is plotted on a
Po(t)= 1 1+p (36) graph of this kind, the curve approaches thaxis linearly
P 2Jmt3 (1—p)® with gradientb and intercepta. The behavior for data that
converge asymptotically to a power law is for the slope of

One might attempt to perform a similar calculation for a such a plot to level off to zero in the asymptotic regime. For

site within a majority domain. Here, however, it is important small values ofu, the exponent seems to have settled down



54 DOMAIN GROWTH IN A ONE-DIMENSIONAL DRIVEN ... 1159

06 e : — V. SUMMARY
0.7 1 ﬁ=o.4 —— e ] The low-temperature coarsening dynamics of a driven dif-
-08 ﬁ:g:? P fusive system—the 1D Ising model with a driving forge
09} u=0.01 HrJ 1 satisfying T<E<J—has been studied by a combination of
h= -1 / analytical and numerical techniques. Compelling evidence
3 for a mean domain size growing &%, and a domain-size
o Ay distribution of the form(1), has been presented. These results
g 12y are exact in the limit where one phase occupies a vanishingly
© 13+ small volume fractionu. In the same limit, the persistence
14t exponent for the minority phase &= 3/2. The limit of zero
15k volume fraction was studied by Lifshitz and SlyoZd6] to
predict the growth exponent=(1/3) for the case without
-1.6 ' ' ' driving force in general dimension, and it is hoped that the
0 0.1 0.2 0.3 0.4 '

1nt approach of the present paper also might be usefully ex-
tended to higher dimensions.

The random-walk character of the domain dynamics sug-
geststY? growth generally, and this is borne out by the simu-
lation results(Figs. 1 and 2 The simulations also lend

to a value close to-1.5. However, foru clo§e t0 0.5 there strong supportFigs. 3 and #to the scaling distributioril)
still appears to be some trend in the effective exponent, sug), generalu. By contrast, the value of away from the

%esltlr}g tha_t(;thse_ af%/mpto:lc feg'”?g has trr]10tt {Jheer; rteache mall-w limit is difficult to determine numerically, due to
nly for u=9.5 1S there strong evidence that the data cony,,, convergence to the asymptotic regirtfég. 7). For
verge to an exponent different from1.5. Improved statis- —0.5, however, the results seem to be inconsistent with

gglsca:)r:]illor!gﬁr Srr:esewogklll dbrfo?ggd:k;jlet?ogg:)etr?'n un%qu:)v r9:3/2’ suggesting that the exponehtnay depend continu-
usion, but we wou IS using uously on u, as is the case for the 1D Ising model with

current techniques since each set of data required approxis :
mately 1 week of CPU time. "Glauber dynamic12].

The results for the persistence of the majority species are nventional Kawasaki dynamics, for which the mean do-
even more problematic, because for- 0.5 too few spins '

were found to have to flioped for the asvmptotic regime tomain size in the limit3>T far from equilibrium grows as
PP ymp 9 t3 [17]. The difference between these models lies in the
have been reached.

The deviations from the free-domain picture must be duéar.Obab'“tyq(l) that a sPin, having Sp.“t off from & domain,
- Will reach the next domain wall a distan¢eaway before

to the fact that some of the minority domains coalesce. It IS sturnina to its original bosition. For the limit of very stron
possible to estimate the number of minority domains tha ias stugdied in thg preSent paﬁer we ha(d =1 wgereasg
coalesce from the rate at which majority domains vamshfor the unbiased case we hagél)=1/ [18]. SinceO(1?)

From Eq.(4), using (5)-(8), we find such processes are necessary for a domain to vanish, the

FIG. 7. Effective exponent for the persistence probability of
minority spins.

In the absence of the bias fielfl the kinetics reduce to

dN, (1= p)2+u2 P typical lifetime of a domain id? and|® for the strongly
T 2 g ) (37 biased and unbiased cases, respectively, leading to the
» ~ =0 growth lawsL~t'? and L~t'®. How does the system be-

_ o _ have for intermediate values of the driving force? If we have
whereN, =N/2 is the number of minorityup) domains per a small bias giving an average drift velocitytowards the

site. Integrating, we find far wall, then ad divergesq(l) will saturate to some small
X but finite value. It is possible to find an explicit form for
det&P__ _ M N (1) 39) g(l) in the continuum limit by generalizing the approach of

I e R Cordery, Sarkar, and Tobochnj&8] to the case of biased

diffusion[19]. For brevity, we shall instead use the following

The term on the left-hand side is the total number of majorityscaIIng argument: in the time~|" for the spin to have dif

domains that vanish between timeand infinity, which is fu_seq a lengt, the bias E'Ves rise to a dr'tftTNUlz' This
equal to the number of minority-domain coalescences. Somgrlft s of prderl vgflenvl —O(l),_so thesca_lllng form con-
domains may coalesce more than once, so this is an uppgPent with g—1"~ as vI—0 is q(l)=1""(vl), with
bound on the number of minority domains that coalesce a 0)= const. Forg independent of asl — -, we ”_‘“St have
least once after time The fraction of minority domains that (X).MX asx—ec, soq(l)~v asvl—c. In the limits yvhgre
coalesce after timet is therefore less thanu? vL is either Iarg_e_ or small, we can translate this into a
[ w?+ (1— w)?], which vanishes ag.? for small u. growth law by writing

Measurements from the numerical simulations confirmed
the picture that the fraction of domains that coalesce is small E -
for u small. Nevertheless, it is found that the dominant con- t
tribution to persistence in the long-time limit comes from
spins in domains that have coalesced, thus explaining thé/e conclude, therefore, that any finite bias eventually gives
deviations from the free-domain approximation. rise to at'? growth law ast— so—provided, of course, that

q(L)y (L3 for vL<1

—~ 39
L2 vL™2 for vL>1. (39)
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JIT>E/T, so that the system does not saturate to equilibtherefore be metastable. There now arises the question of
rium before this growth law appears. For weak bias,adding a noise source to create droplets at the surface. Sim-

v=E/T, the two growth regimes are ply shaking the tube will tend to induce tilting of the inter-
face, which will lead to hydrodynamic instability. The driv-

13 for L<T/E ing vibrations therefore have to be of a wavelength much

L~ (EYT)Y? for L>TIE, (40 smaller than the width of the tube in order to create droplets

without exciting the “sloshing” mode. We leave the prob-

[It should be remembered thatis measured in units of lems of finding an ultrasonic source of high enough intensity,
exp(4—E)/T]. Similar arguments have been used by Cadilheand of preparing the intial condition, as challenges for the
and Privmar{20] in relation to the dynamic critical behavior keen experimenter.
in this type of system. In a separate papgRl] we will present results for the

It is tempting to propose an experimental setup that mighf =0 dynamics of a deterministic 1D scalar field model, de-
be described by the present one-dimensional model. If twéined by the modified Cahn-Hilliard equatiors;¢
immiscible fluids of differing density are stirred and placed = —65((9§¢>+ d— ) +Edayd. In the smallE limit, the
in a vertical tube, then they will typically be able to slide pastcoarsening dynamics of this driven diffusive model also ex-
each other and separate hydrodynamically. However, if théibit a scaling distribution for domain sizes, anttd growth
tube is sufficiently narrow then it is possible for a state whereof the mean domain size. Both models, the stochastic Ising
the denser fluid is above the lighter fluid to be metastablemodel considered here and the deterministic model, are of
the loss in gravitational potential energy if the interface isgreat interest in higher dimensions. The approach of looking
tilted slightly can be stabilized by the increase in interfacialat the limit of small volume fractiorn, which proved so
energy as the area of the interface increases. A state consisticcessful here, may well be fruitful in elucidating the be-
ing of alternating quasi-one-dimensional “domains” can havior of these models in general dimens@n

[1] For a recent review see A. J. Bray, Adv. Ph48, 357(1994. [12] E. Ben-Naim, L. Frachebourg, and P. L. Krapivsky, Phys. Rev.
[2] C. Yeung, T. Rogers, A. Hernandez-Machado, and D. Jasnow, E 53, 3078(1996.

J. Stat. Phys66, 1071(1992. [13] B. Derrida, V. Hakim, and V. Pasquier, Phys. Rev. L&8,
[3] S. Puri, K. Binder, and S. Dattagupta, Phys. Rev4® 98 751 (1999; (unpublished

(1992; S. Puri, N. Parekh, and S. Dattagupta, J. Stat. PHys. [14] H. S. Carslaw and J. C. Jaeg@onduction of Heat in Soligls

839(1994. 2nd ed.(Oxford University Press, Oxford, 195M. E. Fisher
[4] F. J. Alexander, C. A. Laberge, J. L. Lebowitz, and R. K. P. and M. P. Gelfand, J. Stat. Phy&3, 175 (1988.

Zia, J. Stat. Phys82, 1133(1999. » [15] I. S. Gradshteyn and I. M. Ryzhik;ables of Integrals, Series
[5] B. Schmittmann and R. K. P. Zia, iRhase Transitions and and Products/Academic, New York, 1965

Critical Phenomenaedited by C. Domb and J. L. LeboWitz 11 . Lifshitz and VV.V. Slyozov, J. Phys. Chem. Solids, 35
(Academic, New York, 1995 Vol. 17. (1961

6] E. D. Siggia, Phys. Rev. R0, 595(1979.
H o Demgg N JyBray e Goi(tbe% phys. 27, Lgs7  [17) F- Leyvraz and N. Jan, J. Phys.2, 1303(198; S. J. Cor-
' o ' : - e nell, K. Kaski, and R. B. Stinchcombe, Phys. Rev.4B,

(1994; D. Stauffer,ibid. 27, 5029(1994.

[8] See, e.g., B. Derrida, M. R. Evans, and D. Mukamel, J. Phys, 12 263(1993). )
A 26, 4911(1993; B. Derrida, M. R. Evans, V. Hakim, and v. 18] R. Cordery, S. Sarkar, and J. Tobochnik, Phys. Re\24B
Pasquier, Physica 200, 25(1993; B. Derrida, M. R. Evans, 5402 (1982). )
and K. Mallick, J. Stat. Phygg, 833 (1993 [19] S. J. Cornell and A. J. Brawnpubllshedi
[9] S. N. Majumdar and D. A. Huse, PhyS Revs5E 270(1995 [20] A. M. R. Cadilhe and V. Privman, Int. J. Mod. Phys.(m be
[10] R. M. Ziff, Phys. Rev. Lett69, 2670(1992. published.

[11] K. Kawasaki, A. Ogawa, and T. Nagai, PhysicalB9, 97  [21] C. L. Emmott and A. J. Brayunpublished
(1988.



