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Polymers interacting with spherical and rodlike particles
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The interaction of a long flexible polymer chain with mesoscopic particles of spherical or elongated cylin-
drical shape is investigated by field-theoretic methods using the polymer-magnet analogy. In the case that these
particles are immersed in a dilute polymer solution and exhibit purely repulsive surfaces we study density
profiles for monomers and chain ends near such a particle, the change of configurational entropy by immersing
a particle into the solution, and the depletion interaction between a particle and a distant planar wall. Both ideal
chains and chains with an excluded-volume interaction are considered. We also analyze particle surfaces with
a short-ranged attraction and the adsorption-desorption transition for an ideal polymer chain. Properties such as
the number of surface contacts are evaluated both in the adsorbed limit, in which the thickness of the adsorbed
layer is much smaller than the unperturbed polymer size so that ground-state dominance applies, and at the
adsorption thresholdS1063-651X96)02308-2

PACS numbg(s): 05.70.Jk, 68.35.Rh, 61.25.Hq, 82.70.Dd

[. INTRODUCTION free chains for chains both with and without EVI. It turns out
that important properties that have originally been discov-
Due to the importance for both basic research and applie@red in the context of field theory can be used also in the
science the behavior of polymers near surfaces or interfacddesent problem of polymer chains near curved boundaries.
has been studied extensively both theoretic@lly6] and  In particular we discuss the polymer behavior arising both in
experimentally[3,6]. Besides planar surfaces, in this contextclose proximity to the surface and in the limit in which the
increasing attention has been devoteduovedsurfaces such ~ Particle has a “small” radiug17].
as those of sphericdl7] or rodlike [8] colloidal particles. We consider a geometry in which the volute R® ac-
This comprises “single chain” problems both for repulsive cessible to the polymers is the outer space
[9] and attractivg10,11] surfaces as well as situations in- donbod.. _
volving many chaing[12,13 and more than one particle V={r=(r,,r) e RXR>"%r, =|r,[>R} (1D
[14,15. _ _ _ o
Apart from lattice-based metho@s, 6], the field-theoretic ©f @ generalized cylinder Kin [d+ (D —d)]-dimensional
continuum approach to polymer statistics is well establishedPace With radiu and is bounded by theurface S=JK of
[4,16]. In this contribution we show that this field-theoretic ("€ generalized cylinder. For the time being we restict
approach, which has been already applied to study the projtndd to integer values 1,2,3.. with d<D. Special cases
erties of polymers near planar substrates, can be extend@f this geometry are the outer space ofDadimensional
successfully to geometries with curved boundaries such a¥Phere with radiusR (d=D) and the outer space of a
those of spheres and cylinders. Although the major part oP -dimensional cylinder with radiuR (d=D —1), which is
our study will concentrate oitleal chains, important results @ genuine cylinder forD =3 (s_ee Fig. L Note that for
are also derived for chains with an excluded-volume interacd=1 the generalized cylindef is a plate of width R and
tion (EVI). Experimentally, almost ideal polymer chains arethe volumeV consists of two disconnected half spaces so
realized by the so-called® polymers”[1,16] for which the  that the geometry degenerates to deeni-infinite geometry
actual self-avoidance is nearly compensated by an attractihich has been studied in much detaiée, e.g., Ref4] for
monomer interaction. In addition in many cases the ideaf review. While only the case® =2 andD =3 are experi-
chain model serves as a starting point for a perturbative treaffentally relevant, the case=4 is of theoretical interest
ment of EVI[16]. becauseD=4 marks the upper critical dimension for the
We shall show that within the continuum approach non-relevance of EVI in the bulk1,16].
trivial phenomena that curved boundaries induce for polymer Within the continuum descriptiofiL8] the partition func-
chains can be derived systematically. In particular we discuséon [19] Z,(r,r") of anideal chain with a fixed monomer
the behavior of a single ideal chain near a spherical or &umber characterized Hy[20] and fixed ends at,r’ eV is
cylindrical surface endowed with a short-ranged attractivesymmetric inr,r’ and satisfies the diffusion-type equation
potential. Properties of its adsorbed state such as the chain
extension perpendicular to the surface or the fraction of ad-
sorbed monomers in contact with the surface, which have
been considered in Refsl0] and[11], arise as special cases.
For purely repulsive surfaces we consider a dilute solution ofvith the “initial condition”

a
ﬁ—L—AD)ZL(I’,r’)=O (1Za
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r’ where Z{%) is the Gaussian partition function in the
5=(D —d)-dimensional unbounded subspaB~¢ of the
parallel components of [19].
It follows from Eq.(1.2) that the Laplace transform

G(r,r’;t,c,R)zf dLe 'z, (r,r'";c,R) (1.9
0

is the two-point correlation function(or propagato)
4 (P(r)®(r'))y, of a Gaussian field theory with a statistical

weight exp(-Hy{P}), whereHc{®} is a Ginzburg-Landau
type Hamiltonian 4]

r 1 1 1
HK{®}=J dPr{ =(V®)%+ =tP? +Jd3—ccb2
(@) \Y 2 2 s 2
(1.9
subspace || (8=1) for a scalar order parametdr(r) e R. In this “magnetic”
} analogy, wheréo (T—T2)/T2 measures the deviation of the

temperatureT from the bulk critical temperaturé"c’ the
quantity —c is related to the surface-coupling enhancement
relative to the bulk couplingk21,22. As above, the position
vectorr covers the volumé& and its boundang.

For an ideal chain the mean fractio®ym(y) of mono-
mers that are located inside the volume elentéht around
y under the constraint that the two chain ends are fixed at
andr’, respectively, is determined By,4]

1L
m(y;r,r’;L,c,R)zfj dL'Z _.(ry;c,R)
subspace L (d=2) 0

d XZ(y,r";e,R)/Z (r,r";c,R);
(b) (1.6)

H : D —
FIG. 1. A spherda) and a cylindexb) as examples of particles " parthular one h‘#V d V”.‘(.V)— 1.1n th_e context.of the.
with curved boundaries. The two spatial argumengsidr’ of the adsorption-desorption transition a quantity of particular in-

partition functionz, in Eq. (1.2) are also shown. terest is the mean fractiou‘yL m, of monomers in @urveo)
layer / of width dy, , which is concentric and in “close

proximity” to the surface. If the distancg, — R of the layer

"= 5D —r’ .
Zi=o(r,r")=8"(r=r’") (1.2D from the surface is much smaller thir) %, R, andL ¥2[23]
the continuum model for an ideal chain leads to a
and the boundary condition y, -independent proximal behavior
OnZu (1) | g=CZu(r )] =rg (1.29 m/(r,f’;L!C'R>=deS/ m(y;r,r';L,¢,R)

: . . 1 )
at the surfaceS. Here Ay is the Laplacian operatdmvhich =—|——2Z./(r,r'";c,R) Z.(r,r';c,R).
acts onreV) and &P)(r) is Dirac’s & distribution in LL oc
D-dimensional spacel, denotes the derivative normal to the 1.7

surface towards the interior of andrg is a point on the
surfaceS. The quantityc is an inverse extrapolation lengt
characterizing a short-ranged surface poterfda®, 4 (see [Of MOnomers near the surface.

Appendix A), which acts only on monomers that are located The remainder of this paper is arranged as follows. We

microscopically close to the surface; the more negative th&PPly the result for the Gaussian propagaorderived in
quantityc, the moreattractivethe surface. Appendix B[24] in order to obtain the partition function

For the present Gaussidideal chaifi model with the Z, via an inverse Laplace transform according to Eqg4).

geometry (1.1) the parallel contributions of the partition In Sec. Il we consider a single ideal chain with one end fixed
functionZ, can be split off, i.e., and one end free and derive the phase diagram for polymer

adsorption. We discuss the behavior of the monomer fraction

layer densitym, , which is the counterpart o, introduced
Z (r,r)=Z.(rr';c,R)=Z(r, 1 e, RIZEN (1)) above for the case in which the chain is fixed with one end
81.3 only. Both an infinitely long chain in the adsorbed region and

h Itfollows from Eq.(1.7) thatc acts like a chemical potential
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a chain at the adsorption threshold are considered. For the Xp;7,0)=x(r, ;t,c,R)IR?
former case we also discuss the behavior of the thickness of
the adsorbed layer. 1 {p~ "Kalp\7) (2.43

In Sec. lll we consider a dilute solution of freely moving e 1 \e
chains near a purely repulsive surface for both ideal chains ’ Ve s(V7) +Ko(V7)
and chains with EVI. We discuss the corresponding end der\ivhere Egs(2.2), (B30), and (B3d) have been used. Here
sity and monomer density profiles and derive the com‘igurar< andK aré modi;‘ied Bessel function&5,26 and
tional free energy for the immersion of a spherical or cylin- “ atl '
drical particle. In Sec. IV we present analytic expressions for a=(d—2)/2. (2.4b
these quantities if the radiu® of the particle is “small” and

address the problem of the interaction of a particle with a4 the limit p— the local susceptibilityy approaches the

planar wall. In Sec. V we present our conclusions. bulk susceptibilityy,=1/t of the Ginzburg-Landau model.

Appendices A and B are devoted to a discussion of thg, terms of the dimensionless variables the partition function
surface parametar and the Gaussian propagater respec- iL in Eq. (2.1) reads

tively, in the geometry1.1). In Appendix C we consider the

configurational free energy of polymers near weakly curved ~ ) A )
repulsive surfaces of general shape. ZU(r e R =2\ (p ) =L MpiT. )} (2.9

We also consider the monomer fraction layer density
Il. SINGLE CHAIN WITH ONE END FIXED near the surface for the present case in which the chain is

In this section we consider a single ideal polymer chainfixed with one end only. This quantity is given by the last
with one end fixed while the other end is moving freely.  expression in Eq(l1.7) with Z, replaced byZ, , i.e., by

. . . . 1 9 -
A. Adsorption-desorption phase diagram m(r, ;L,c,R)=— = ﬁ_gmz)\(p;g). (2.6)

The partition function of a chain with one end fixed at

r=(r,.r)eV while the other end is free is given by Note that the last expression in E@.43 is well defined

R even if a=(d—2)/2 is variedcontinuouslyover the range
Z(r, ;c,R)=J dPr’z (r,r";c,R)=L {x(r, ;t,c,R)}. a=-—1/2,i.e.,d=1, which we have assumed in the forego-
v ing discussion. This allows us to study the dependence of the
2.1 partition function and related quantities on the spatial dimen-
ond of the radial subspace.
The expression for the local susceptibili&(p;7,{) as
given in Eq.(2.43 is valid only for 7> 7y(¢) with

Here £,_,, denotes an inverse Laplace transform and the’!
local susceptibilityy of the magnetic analogue is given by
the integrated propagator

0, =
X(ri;t,c,R)=deDr’G(r,r’;t,c,R) To({)= D.(0), (<C*. 2.7

C L de1= ' The corresponding phase diagram of the Gaussian field
- fR drirl” "Gyoo(r riin=t.cR)j, theory is shown in Fig. @). The functionp,(¢{) is positive
and decreasingwith increasing?), and follows implicitly

(2.2 from the zero of the denominator of the second term in

~ ) brackets in Eq(2.49 [27], i.e.,
whereG,_, can be read off from Eq$B3c) and (B3d) in

Appendix B. The second line follows from rotational invari- P DK s 1Pl D)+ K (VP (0)=0 2.9
ance around and translational invariance along the general- “ o “ o

ized cylinder. As indicated above, the local susceptibility \ynile £+ =*(d) follows from lim, -+ p.(£)=0. We find
and thus the partition functiod, depend only on theadial

component ; =|r, | of the pointr=(r, ,ri%). It follows from 0, d=2
Eq. (1.3 and from the relatiorf sd°r Z{%)=1 [19] that the §*(d)=[ —(d-2), d>2 (2.99
form of this function doesot depend orv=D—d but will ' '
depend only ond. This is consistent with our result for and the form
G, _¢ derived in Appendix B.
We introduce dimensionless quantities expressed in terms <
of the radiusR of the generalized cylinder: IAZ]= &X[Kaﬂ( Vpo), d=2 295
Ka(VPa) | Kam1(Vpa), d>2,

p=r, IR, 7=tR? (=cR, \=L/R2%2 (2.3
R from whichp, can be determined as a function of the devia-
Note thatZ, is already dimensionless and that the Gaussiaion A{={—{*<0. For a cylinder =2) one hasxc*=0
propagatorG has the same units &2 °. We thus define while for a sphere d=3) one hax* = —1/R [28]. For the
the dimensionless local susceptibility planar cased=1 and ford=3 Egq. (2.9b is solved by
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2 o N
Xp;m,0)= JO dre ™2, (p;0) (2.12
15 1
corresponding to Eq.(2.5 vyields a behavior i’x
11 ~exAp,(2)] for A—oe, which impliesm, R~ \° according
K to Eq. (2.6) and thus dinite asymptotic fraction density
05 1
P(c,R)= limm,(r, ;L,c,R) (2.13
0 Lo
of adsorbed monomers f@r< {*. SinceP(c,R) has the di-

3 2 1 6 1 2 3 4 mension of an inverse length we define the corresponding
dimensionless quantity @({)=RP(c,R).

For {>¢*, however,Z, does not increase exponentially
as a function of so that one hag,R~\ "1 for \— and
P(c,R) vanishes in this limit. This will be verified in detalil
in the next subsectiofc.f. the discussion corresponding to
Eqg.(2.16]. Thus the “magnetic” phase diagram of Figa2
translates into a phase diagram for polymer adsorption in the
A chain length finite (A1, =) plane[Fig. 2(b)] with a nonvanishingvanishing
asymptotic fraction densitfP({) of monomers adsorbed on
the surface fog<{* ({>¢%).

Here we note that for aattractive surface of asphere

@) -G

nonadsorbed adsorbed (which is completely finite and chains with excluded-
0 volume interaction the above results will be strongly modi-
0 fied (see the discussion in Re¢fL0] and in Sec. V beloyw In
(b) —AL=C(d) - ¢ particular, for a chain with EVI, we expect a nonzero asymp-

totic adsorbed fraction densitfP({) only for d=D-1

FIG. 2. (a) Phase diagram of the Gaussian field theoryWwhich includes a cylindrical surface for which=3 and
[Egs. (1.5 and (2.3)] for several dimensiond of the radial sub- d=2.
space. The only stable region is the left and upper part, which is Finally we note that fod=1 and ford= 3 the expression
bounded by the linesy(¢£) and which corresponds to a bulk disor- for the local susceptibility in Eq2.49 reduces td 26|
dered and surface disordered magnetic ptjade?2. The curved
lines are plots of the functiop,(¢) in Eqg. (2.7); the pointsC, are 1
multicritical points.(b) Corresponding adsorption-desorption phase Xp;7,0)= ;{ 1- w\/——l d=13, (219
diagram of an ideal polymer chain in terms »f=R?%L and T+AL
/=cR. In the limit of an infinite chain Iength)(’1:O) a finite where w=1 for d=1 andw=p*l for d=3, respectively,
fraction of the chain is adsorbed on the surfaceffer{* whereas andA¢ has been defined below E@.90. Accordingly the

this fraction vanishes fo¢>¢*. The corresponding transition at inverse Laplace transform in E(2.5) can be performed ex-
{={* is the so-called adsorption-desorption transition. The baSi&Iicitly [29] with the resul30] '
e

mechanism that relates these behaviors of the field theory and t
polymer system is discussed near E@s12 and(2.13.

le” V1(p—1)

Zx(p;§)=1+wA%{exr{<A§)2A+2A£xl’2y]

p.(0)=(A¢)? [26]. Ford=2 andd=4 Eq. (2.9b can be
solved analytically fop,, only in the limit £~ ¢* for which X erf AN+ y) — erfeyl, d=1,3,

we find (2.153

Pao(l/0*)=4e Ce 20 d=2  (2.10  Where

y=(r,—R)/(2LY»=(p—1)/(2A"?);  (2.15h

whereC=0.5772 - - denotes Euler’s constant, and
erfc denotes the complementary error functigs.

2|A i i i *
Puy (L7 0% )= — ; ||A§|| . d=4, 2.19) B.' Fraction density e'md Iayer' thickness(c<c*)
(1agh By using transfer matrix techniques Boettcher and Moshe

[11] studied a one-dimensional lattice model in order to de-
with {*(d=2)=0 and{*(d=4)=—-2. Ford>4 we infer rive the finite adsorbed fraction in the limit— of an ideal
the behaviop, (¢~ {*)=(d—4)|AZ|. polymer chain positioned near a cylindrical boundary. In the

If £ is more negative thafi* (i.e., if the attractive surface following we derive the corresponding quanti®(c,R) in
potential is sufficiently large the local susceptibility the continuum description. We first note that for ¢* the
X(p;7,{) diverges for 7\ ,p,(¢). In this case the direct inverse Laplace transfori4,16] in Eqg. (2.5 can be per-
transform formed for generatl up to a one-dimensional integral:
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2a+{(1—p~29) 2| ¢|ePal®)

Z\(p;d)= 2atl @(a)+p*a[Ka(pVDa(§))/Ka(\/pa(g))]§(§+za)_pa(o O —0)
2i(n e [y H *
+?f° e T T RS es AR 2.16

whereH" denotes a Hankel functiof25] and®(x) is the  haviors of P(c /c*,R) for d=2 and 4 are due to the as-
Heaviside step function. The second term on the right-handimptotic behavior of the modified Bessel function
side (th9 increases exponentially as a function ofand  Ko(z—0)=—Inz _ _ _
arises from a pole at=p,({) appearing inX(p;r,{) for Figure 3a) shows the behavior of the scaling function
(<{* [see the discussion corresponding to E12)]. In  P(£) for arbitraryl<{* and for several dimensiomsof the
the long chain limit\—c and for ¢<¢* this term is the radial subspace. Fod=2 andd=4 we have solved Egq.

P (2.9b numerically. Note that the behavior &(¢ 7 *) de-
dominating one and Eq2.6), (2.13, and(2.16 lead to[31] pends strongly owl. In particular ford=2 the fraction van-

2p,(0) ishes exponentially11,32. On the other hand one has, for
(Zt2a)—pul) all d, P({— —=)=2|¢|. This is plausible since in this limit
“ (2.17 the thickness of the adsorption layer is much smaller than the
radiusR and the surface is effectively planar.

d
RP(c,R)="P({)=— d—gpa(§)=

Equation(2.17) is to be compared with Eq9) in Ref.

[11(a)]. The expression(2.17) for P(c,R) doesexhibit a 2 | '/./ ' )
manifestscalingform for which dimensional analysis tells us :’&:5 yd
that RP(c,R) depends only on thproductof the two vari- /,/ /'é'=4
ablesc andR. 15 + / 7
In order to facilitate the comparison of our results with I Ve

those of Ref[11] we use the originalunscaledl variables 0 / Vs 4=1,d=3
¢ and R and the adsorption fraction densig(c,R). For 11 ,//
d=1 and d=3 we obtain [26] for arbitrary Ac= /
c—c*<0 / d=2

05 1

P(c,R)=2|Ac|, d=1,3, (2.18
wherec*(d=1)=0 andc*(d=3)=—1/R. Ford=2 and 0 A
0 02 04 06 08 1 12

d=4 Egs.(2.10 and(2.1)) lead to[32]

@) -AL=C'(d) - ¢
* ~ —2Co—2/(|Ac|R) —
P(c,7c*,R) RSIACIZe e , d=2, 12 : : : —
(2.19 vt
11 ,/'/
and =
08 1 yd
P(c/c*,R) 2 d=4, (2.20 S /
c c ) = Bl A~ DN ! = ’ . ~ ’
RIn(|Ac|R) s 06} /./ d=1,d=3
s :
wherec* (d=2)=0 andc* (d=4)=—2/R. N
In Refs.[11(a),(b)] results ford=2 have been reported in /'/ d=2
which the dependences on the radRisn the prefactors of 02 T ./'/
the exponential terms audifferent(by a factorR? for large /
R on a microscopic scalgl8,23)) from those in Eqs(2.10 0 P ' ' ;
and (2.19. This difference can be traced back to a slight 0 02 04 06 08 1 12
error in Refs.[11(a),(b)], which we examine in Refl33]. ©) A =C(d) — L

Within the continuum approach the power laws Rofollow

a_llrea_dy from dlmens!onal analysis. F0§ﬁ<4'.d¢2’ we FIG. 3. Crossover scaling functio¥ {) of the adsorbed mono-
find in agreement Vx'th Refl11] that the fraction density mer fraction densitya) and R/a, ({) of the inverse decay length
scales asRP(c7c*,R)~(|Ac|[R)“ with an exponent cparacterizing the thickness of the adsorption lager respec-
k=(2—|d—2[)/|d—2| while for d>4 it approaches a finite tively, for an ideal chain in the adsorbed linit>, c<c* and for
value,RP(c 7c*,R)=d—4. Thus in this case the adsorbed several dimensiond of the radial subspace. For=2 the fraction
fraction density is a discontinuous function @f (However,  densityP(£”£*) vanishes exponentially, which corresponds to an
this first-order transition is not realized in physical systemsexponential divergence of the length . Note that ford=5 the
with d=3.) Mathematically the exceptional asymptotic be- fraction densityP({ ' ¢*) approaches a finite value.
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A quantitative measure for the thickness of the adsorption

layer is provided by the exponential decay length 10
a, =R/\/p,({) governing the second term on the rhs of Eq. 10° 4
(2.16. The behavior ofR/a, (¢)=p.({) for several di-

mensionsd of the radial subspace is shown in FigbB In 100 +
particular ford=2 the lengtha, diverges exponentially as

(R/2)eCe VIR for ¢ 70 [34]. Forc— — one has, for all AN 104

d, a, =1/|c| as for a planar surface.

C. Number of adsorbed monomers forc=c*

Apart from the behavior of the adsorbed fraction density 011
m, along the adsorption linel< *, A=) as considered 0.01 ; ' ' ' '
above it is of interest how this quantity behaves upon ap- 001 01 1 10 100 10° 10
proaching the special point & {* ,A =) by increasing\ if A
{ is fixed at{*. Here we consider the related dimensionless
quantity Ag(p;\,{)=m,L/R, which is proportional to the FIG. 4. Crossover scaling functiohg(\) for the mean number

numbemg of monomers microscopically close to the surfaceof adsorbed monomers of an ideal chainZatz* for several di-
[23]. For {=¢* the dimensionless local susceptibility in Eq. mensionsd of the radial subspace. The curves clearly show the

(2.49 takes the form crossover from the planar limih<1 to the long chain limit
A1,
P76 = \/;Ka—l(\/;) a along which this point is approached; this is in accordance

2.213 with the fact that ford>4 the adsorption-desorption transi-
tion is first order. A
while in view of Eq.(2.6) Figure 4 shows the behavior R§(p;\,*) for the special
casep=r, /IR=1 and for several dimensiomkof the radial
d p ¢ subspace in terms of the function
— g POl = Ko T)

AsN)=3 mAg(p=1:\, %) (2.23

| 1K qi1(V7), d<2 )
2 so thatAg(A) =\ for d=1. The curves clearly show the
KassNDITKea(V0]? - d>2. crossover from the planar limik=L/R?<1 to the long-
(2.218  chain limitA>1 of Eq.(2.22.
Using Egs(2.5 and(2.6) we find the following asymptotic Figures 3 and 4 show thai(p;\—,{) is smallest for
behavior for\ — oo: d=2. The decrease ixs for d increasing between 1 and 2 is
plausible since more free space and entropic gain is available
(2/\/;))\1/2, d=1 for an unbinding chain around a cylinder than near a planar
—cy 2 wall. To understand the increaseNg asd increases beyond
(1/2)In(4e""L/r f), d=2, 2 one has to take into account that in this casg", which
(Jml2)\Y2 d=3, is related to the attractive surface potential at the threshold,
NS d=4. increases withd, too [see Eq.(2.93]. For example, the
’ (2.22 curves ford=3 would be locatedbelow the curves for
d=2 if — ¢ instead of— A was used as the abscissa in Fig.
We note that ford=2 (cylinden the leading asymptotic be- 3-
havior for L—o does not depend on the cylinder radiRs
but does depend on the radial componentof the point IIl. DILUTE SOLUTION OF FREE CHAINS
where one end of the chain is fixed. The expressions for NEAR A PURELY REPULSIVE SURFACE
d=1 and 3 and arbitraryg(\) follow from Eq. (2.153. The
result for the planar casg=1 is also given in Ref{4].

For 1sd<4, d#2, we find that\g(p;\,{*) scales
as Nl with |a|=|d—2|/2 while for d>4 we infer the .
behavior As=(a@—1)\. This implies that ford>4 and A. End density
N—x the dimensionless adsorbed fraction density The density of chain ends at the pomin a dilute solu-
m/szs(p;)\,g*)/)\ approaches the finite value € 4)/2, tion of freely moving chains without mutual interaction ex-
which differs from the valuel—4, which follows upon ap- hibits a dependence anthat is proportional to that of the
proaching the special point & Z* ,\ =) along the adsorp- Boltzmann-weighted number of configurations of a single
tion line (see Sec. Il B This means that fod>4 the ad- chain with one end fixed at For ideal chains moving in the
sorbed fraction density at the special poigt=(¢* ,A =) volumeV introduced in Eq(1.1) the density of chain ends is
depends on theathin the phase diagram thus proportional to the partition functidf) in Eq. (2.1). In

Ns(piA—, *)=

In this section we discuss a dilute solution of freely mov-
ing polymer chains near a purely repulsive surface.
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FIG. 5. End density profileMg(p;\) as a function of
y=(p—1)/(2\Y? (a) and monomer density profil ;,(;\) as a
function of B=(y¢—1)/(2AY?) (b) of an ideal chain for
27\Y2=0.2 (lower set of linesand 2. Y>=5 (upper set of lines For
d=1 there is no dependence an Note that both densities ap-
proach their bulk values more rapidly dgncreases. For the small
value for\ the curves fod= 2, 3, and 4 are close to the curve for
d=1, which corresponds to the planar boundary.

the following we assume that the surface is purely repulsive, My, (¢;\)=
which is described by the Dirichlet boundary condition

c=+o. It is convenient to normalize the end density with
respect to its bulk valugl9] and to introduce the quantity
[35] [see Eq(2.5]

Me(piN)=Z,(p;f =)/ 2. (3.2)
Ford=1 andd=3 Eq.(2.153 leads to[30]
Me(p;N)=1—w erfcy (3.2

with vy defined in Eg. (2.15h, w=1 for d=1, and
w=p t=(1+2\Y2y)"1 for d=3.

Figure 5a) shows howMg as a function of the scaled
distancey depends on the shape of the boundary, which i
characterized by the dimensiohof the radial subspace. For
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larger (2AY?=5) than the radiuR of the generalized cylin-
der. As expected from Ed2.43, the end density increases
linearly for small distancep—1=(r, —R)/R<1 and ap-
proaches the bulk value foy>1 because in this limit the
chain is unlikely to reach the surface. For sma# L/R? it
is plausible that the surface curvature is negligible and that
the curves fod=2, 3, and 4 should be close to the curve for
d=1, which corresponds to the planar boundig§]. How-
ever, if A is large, the relative reduction-1M ¢ of possible
configurations due to the presence of the surface depends on
d as expected intuitively; it is most pronounced for an infi-
nite planar surfaced=1), less for a cylindricald=2), and
even less for a sphericad& 3) surface. For this reason
Mg approaches its bulk value more rapidly for larger

This is in line with the limit ofMg for A — with p>1
fixed, which equals zero fod<2 and 1—p (4=2 for
d>2, respectively[see EQq.(2.16]. For d=2 (cylinden
Mg vanishes logarithmically advig=(2Inp)/(In\) [37].
These results foR,r, <R are complemented by those for
R<r, ,R, which we shall obtain within a more general
framework in Sec. IV.

B. Monomer density

The monomer density at the poigt=(y, ,yj) eV for a
solution of freely moving ideal chains is proportiofal4] to
the numerator of the rhs of Eq1.6) integrated over the
positionsr andr’ of the two chain ends. Considering again a
purely repulsive surface one finds for the bulk-normalized
monomer density for ideal chains the expresdi@tall that

Z3=1)

1 - A
Mp (i N)= Xfo dN'Z) _\ (=) 2y (i, { =),
(3.3

in which ¢=y, /R denotes the scaled distance from the axis
of the generalized cylinder where the density is monitored.
Ford=1 andd=3 we obtain the explicit resul{6]

1+ j—é[wexp( — B?)— w?exp(—45%)]
—2w(1+2B2) erfcB+ w?(1+8B2) erfc2B,
(3.9

Where ,8 (y—1)(2AY), w=1 for d=1, and
=(1+2\Y?B8)"! for d=3. For the pIanar case
d 1 Eq (3.4) reduces to Eq(3.97) of Ref. [4].

Figure 8b) shows the behavior dfl, as a function of the
scaled distancg for the special cases\3?=0.2 and 5 and
for several dimensiond of the radial subspace. The mono-
mer densityM, increases quadratically for small distances
y—1<1 and approaches the bulk value ¥ 1 [compare
the corresponding behavior of the end density discussed

Sbove in Fig. 89)].

d=2 and 4 we have performed the inverse Laplace trans-

form in Eq. (2.5 numerically. Figure &) shows both the
situation in which the unperturbed polymer siZ0] R is
much smaller (2Y?=0.2) and that in which it is much

C. Free energy for immersing a particle

Upon immersing a single partick€ into a dilute polymer
solution the free energy of the system changes by an amount
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Fre=—kgTIN[(Z+ 6281z, 1V, (3.5 Fie/Vi—Po( — 6201 2%)=posty, (3.60

Here we consider a particle of finite size and\" polymer  \herep,=ksTA7V is the (ideal gas pressure in the system
chains inside a finite volum®. The quantityZ, y, is the  jthout the particle and

partition function of a single free polymer chain in the ab-
sence of the particlé€ and 5Z{"Y), its change due to the pres-

ence ofC. Consider now a particl& with the form of the 6fK:Rd%+Rdedeppdl[l_ME(P'R/R)]'
sectional volumeK NV between the generalized cylindigr d 1 ’ ’
and the finite volumey=))V, (where)) andV, are the 8.7

volumes of the parallel and perpendicular subspace¥, of o . _ .
respectively so thatkC will approachK as)j— [38]. Inthe ~ Qq=27"/I'(d/2) is the surface area of tfeedimensional

limits V) ,V, — the ratios unit sphere. The first term in E¢3.7) arises from the region
R 0<r, <R in Eg. (3.6b whereZ, (r,) does not contribute.
Z, yIV—2{%) (3.6a Equations(3.6) and(3.7) apply both for a dilute solution
of ideal chains and for chains with excluded volume interac-
and tion [35]. This is indicated in E¢(3.7) by using the argument

RI/R in Mg instead of\ as in Eq.(3.1). For ideal chains one
can use the explicit expressi¢d.4g for X and finds

Ko 1(N7) }
(3

52 IV— 629 = fRdddu[ZL(n)—if?@ (3.6b)

f;dppd_l[l_ ME(P;A)]:ETHA[

are independent o¥. iL(rl) is the partition function intro- 7 3% (V1)
duced in Eq.(2.1), which vanishes for , <R. Thus in the

thermodynamic limit(with a finite number density\7V of

polymer chains in the bujkone has For short ideal chains, i.e\=L/R?<1 this leads to
of _Rde—{—Rd*lQ 2 V2, d-1 |—+(d—1)(d—3) L3/2+ i
e 1= T2 R e R (3.9

We note thap,(2/+/7)LY? is the surface free energy per unit surface area for an ideal polymer solution in a half space with
aplanarboundary[38] caused by the depletion layer. While this is refledt&@] by the first term in curly brackets in E¢.9),
the second term in curly brackets is the first-order correction due to the setfa@ureand represents an additiorgsitive
[40] contribution to the free energy for the exterior of a cylindd=2) and a sphered=3) in three-dimensional space. In
Appendix C we generalize the small-curvature expansi® to more general particle shapes.
The result(3.9) can be compared with an approximation in which the interaction between the p&rtaoiel the polymer
chain is as if the polymer chain would be a pointlike hard splierS [41] of radiusR=(2/\/7)LY? otherwise the chains
are treated as pointlike objects without mutual interaction. Within this PHS approximation the counteifigrti®fjiven by

1 D2 _ _ 53 Sd
d-1R? (d-1)(d-2) R® 1 R } .10

- 0 Q -
(PHS _ d27d_pd2fd | pd-1 -
St (R+R) 3 R d+R Q4 R+ 3 R+ 5 R2+"'+d_0'_R’l )

This series terminates for integer valuesdofNote that the 1 2 L2
prefactor in the relation betweéd andL 2 has been chosen 8 sphere 4R’ 3t =R tRel (3.1)
such that for a plated=1) [38] one hassf{HS)=sf, . m

Thus, apart from a numerical prefactor of order unity in frontwhich applies for arbitrarj,=L/R2 and is consistent with
of the third term, Eq(3.10 reproduces correctly the three Eq.(3.9). Thus, for\>1 one has5f spners~ A, Which is much
leading terms in Eq(3.9. However, it does not reproduce smaller than the phs approximation-§£%?) would predict
the dependence:(d—3) of the fourth term in Eq(3.9), [42]. This is expected because the chain will deform and coil
which is quadratic in the curvature. around the spherical particle and its partition function will be
In the opposite limil./R?>1 the phs approximation fails less reduced than in the phs approximation.

completely. In order to demonstrate this we consider a Meijer and Frenkel[14] have introduced an effective
sphere(D =d=3) for which Eqs(3.7) and(3.8) lead t0o[38]  polymer radiusR.zR,R) which follows from equating
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o FIG. 7. Crossover functioix(\) for the configurational free

energy for immersing a particle for several dimensiahsf the
radial subspace. The linear behavib(r — ) =[(d—2)/2] 7\
X valid for d=3,4 corresponds to the expansi@hl4) for small par-

ticle radii.

FIG. 6. Comparison of our result foff synere With simulation
data obtained by Meijer and FrenKdl4]. The figure displays the
function  Rer(R,R)  defined by  SFPHIRR=Rey)
= 8f soherd RiL="R?/6) wheresf $H' and 5f yhereare given by Eq.
(3.10 with d=3 and by Eq(3.11), respectively, using the reduced 1
variables x=R/Rg, and y=R;/Ry, (see the main S(N)= E\/; R0 d
text). Our result (3.11) implies the explicit form d
x*(y—2m Y3 +x(y?~1)+y*/3=0, which is shown as the solid The prefactor has been chosen such tB&h)=\Y2 for
line. The open circles are taken from Fig. 2 of Rdf4]. Note the d=1. According to Eqs(3.13 and(3.7) the functionX (\)
strong  deviation for long chainsx¢<1) from the behavior g asqentially given by the integral in E€3.8) over the rela-
y=2m""* (dashed lingvalid for short chainsx>1). tive reduction - Mg(p) of chain configurations with one

end fixed. Note that although-1M¢ is largest for a planar

(PHS) -« i i boundary (I=1) and decreases for largdr=2, 3, and 4
Of sphereWith 6f spnere Figure 6 shows a comparison between[Comloare Fig. &)], the behavior of8(\) is opposite[43]:
their simulgtion _data and our analytical res(®11). We 3 is smallestfor the planar boundary cast=1 and in-
choose their variables creasedor d=2, 3, and 4. This effect is caused by the pre-
factor p9~1 in the integrand on the left-hand sidas) of Eq.
(3.9), i.e., the relevant integration volume, which becomes
larger asd increases. Compare also the explicit behavior of
3 (A—o) for d>2 presented at the end of Sec. IV C below.

Figure 7 shows the behavior dif¢ for several dimen-
sionsd of the radial subspace in terms of the function

sfe 1
K . (3.13

x=RILY?= JBRIR=RIR, (3.123
and

Y= Ren/ L= VBRet/ R=Refil Ry, (3128 IV. EXPANSION FOR SMALL RADII

where Rg,, is the radius of gyratiori16]. The deviation is In the limit for which the radiusR of the generalized
only about 5% and is expected to disappear if the number dfylinderK is much smallef44] than the length scales set by
links of the chain and the sphere radius in the simulation argne polymer end-to-end distanc® and the distances
sufficiently large. One should note the crossover from therL—R or y, —R from the surface for which the densities
behavior Reg=R = (2/\/m)LY? (i.e., y=2/\m) for short Mg or M,, are monitored, one may use an expansion intro-
chains x>1 to the behavior Res=(3RL)Y® [i.e., duced in Ref[17]. There it was argued that for a field theory
y=(3x)¥9] for long chainsx<1. Both limits of the cross- such as(1.5) the statistical weighe~ 27, which describes
over follow immediately from Eq43.10 and (3.11). the presence ok can, forc= +«, be replaced by

ddyy ®2(y, =0y)+---, &>0,
e Ak o 1+ AR X JR? i $70L =0 4.2

dA(y=0)+---, 5=0.
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In the upper line the integration over the cylinder axis in Ref.where z{%) is the Gaussian partition function in the

[17(b)] has been generalized to & (D —d)-dimensional

integration over the “axis” of the generalized cylind#r.

The quantity.Ax is an amplitude(see below. The leading
nontrivial dependence oR is determined by the exponent

(4.29

XK:X(DZ_ 5,

wherexg2 is thebulk scaling dimension of the “energy den-

d-dimensional bulk spacfl9], andI'(a,x) the incomplete
I' function[25]. Here we have used the relation

| v 2@r-yh=20r -y @9

which implies that for an ideal chaiy: depends o but not
on D. SinceM¢ has the same property, this must also hold

sity” @2, The ellipses in Eq(4.1) denote contributions that ¢ e amplitudeAy in Eq. (4.38 so that we can use the
are of higher order inR. For the Gaussian model results forD=d from Ref.[17(b)] in order to obtain

Xgp2=D—2 and thus in this case

Xe=d—2=2a (4.2b

depends ol but not onD. The expansioi4.1) makes sense

Ac=—27YIT(a). (4.6)

Due to Eqs(4.3), (4.4), and (4.6) one thus has for ideal
chains

only for xx>0, i.e., in the case of the Gaussian model for

d>2 [see, however, Eq4.10 below]. This has important
consequences for the polymer statistics near a purely repul-
sive generalized cylinder as we shall demonstrate in the fol-

lowing.

A. End density

Using Eq.(4.1) together with the definition oM g in Eq.
(3.2 one finds

Me=1+ AR*2Lge(r, L), (4.39
where
Jéd‘syu My(y, =0yj;r;L), >0,
ge(r,,L)=9 Jr
My(y=0;r;L), 5=0.
(4.3b

The R-independent quantity
Mp(y;1;L) =my(ly—r[;L)

1
— oo e @men ey,
R

-1

x cHLfRDdDr'<<I><r><I><r'>>b ,

(4.30

R d—-2
MEzl—(E) I'(a, )T (a). 4.7

This result can be verified directly by using the explicit ex-
pression(2.4g for X'in the casg =+ and its behavior for
R—O0.

We expect that the relationshi@.3) is valid also for
chains with EVI [45]. However, in this case one has
xx=d— v~ with the Flory exponent=»(D) [1] and one is
led to consider an amplituddy defined by

Ag=Ag(D,d)R¥/(2LD), 4.9
where R is the root-mean-square end-to-end distance of a
single chain with EVI in the unbounded bulkompare Refs.
[20] and[35]). While due tor~1+#2 the amplitude4 is not
dimensionless and depends upon details of EVI, the ampli-
tude Ay is dimensionless and univerdal6]. We note that in
the presence of EVI the universal functipts]

RPMy(ly—rl;L)=My(ly—r|/R) (4.99
depends oD while ;&K and
RYGe(r, ,L)=Ge(r, /R) (4.9

in general depend on bofd andd. Furthermore we expect
that forD =3 and in the presence of EVI the behavi¢4sl)
and (4.3 apply not only for a sphered= 3) but also for a

with (), denoting thermal averages in the unbounded bullcylinder (d=2) because the expone7(b)]

space, is the monomer fraction densityyat(y, ,y)) e RP

for a single chain in the unbounded bulk with one end fixed

at re RP and the other end free. Similarly as(y) in Eq.
(1.6) it is normalized:f yodPymy(ly—r|)=1.

For an ideal chairi.e., within a Gaussian model f@b)
we obtain

1w 1 r; > ,
9e(r, ,L)=[JO dL'Z v p(r)= gan — '@ 7%)
(4.439
with

np=r, [(2LY?), (4.4b

x(D=3d=2)=2—-v"}D=3)~0.30 (4.10
is positivein this case[whereasxx(d=2)=0 for an ideal
chain].

A simple and general result follows fdR<r; <R in
which case the behavior ofi,(|y—r|) in Eq. (4.30 is deter-
mined by the leading term in the short distance expansion in
the unbounded bulk47] :

D(r)PA(y)= am ®(N+---, (4113

b
Ir—y|°~

where
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B,=B,(D)2LD/RY", (4119  [ed% gg=1 one finds with Eq.(4.8) that the quantity
ofk in Eq. (3.7) for R<R tends to
with a dimensionless and universpd6] bulk amplitude
By, which depends ob. Inserting Eq(4.11) into Eq.(4.30
leads to[48]

- :1 R 1/v
6fK—>5fK=—AK2LRXK=—RdFK(E (4.19

~ _ R\ % This relation applies for both ideal chains and chains with
Me— 12AK(Dvd)Bb(D)CK(r_) : (4128 EVI as long asxx>0. For ideal chains and>2 it can be
+ verified by using Eq93.8) and (4.6). For the function
where 2(\) in Eq. (3.13 it leads to the asymptotic behavior
S(N—o)=[(d—2)/2] Jm\, which increases withl in ac-
D—yp ! cordance with Fig. 7.
2

1, 0=0.

w5’2r(xK/2)/r( ) 5>0

Ci= (4.120

D. Effective interaction of a particle with a planar wall

In the following we consider a particl€ immersed in a

The first line in Eq.(4.12bh follows from the integral dilute polymer solution that fills a half spa¢elS) bounded
f]Rﬁd(SYH(r 2, ynz)f(offl)/z which is convergent for by a planar walW. The effective interaction of this particle
3 1 1

x¢>0. The rhs of Eq(4.12a does not depend o and with the wallW is given by the difference of the free energy

suggests that in the presence of BNk remains nonzero for for imm_ersing a particle at. a finite and an infinite distance,
R—o not only for a sphere but also for a cylinder in respectively, from the wall:
D=3. This should be compared with the ideal chain behav- SF e w=(Frew—Fw) —Fr. (4.15
ior for d=2 whereMg—0 for R—o0 as discussed in the last
paragraph in Sec. Il A. If K approaches a generalized cylindérwith its axis par-
allel to and a distanca apart from the planar wall the inter-
B. Monomer density action free energy per “unit axis length[38] oF . w/V)

. __remains finite F /)| approaches the rhs of E(.60; the
The expansioni4.1) can be used to express the behav'orthermodynamic limit of Excy—Fw)/V| has the same form

of the monomer densit,, for small R in terms of the ; (K)
monomer density correlation function of a single chain in the™® the rhs of Eq(3.60 with 67, replaced by

unbounded bulkwhich is related to the “magnetic” corre- W kW
lation function(®(r)®(r")®?(y)®3(y’))p]. Here we only sz )Zf 4% ddhf dr [Z{W(r.r")
present the explicit result for ideal chains. We find from i H% H%
Egs.(3.3) and(2.43 for d>2 _ZE_W)(”/)]_ (4.16
d-2
Mle—(B) 2 pot Here Z(*W) and z™) denote partition functions of a chain
Yo I'(a) with two ends fixed, which coils in the half space
X exp(— ¢12)Woo_zp0n(¢?), (4133 HS={r=(r 1.f 2, ... f q:r) eRIXR%r ;>—a}

) ) . (4.173
where ¢=y, /(2L¥?) and W, , is Whittaker's function

[25]. Ford=3 it reduces to bounded by the walW atr, ;=—a in the presence and
absence, respectively, of the generalized cylindevith axis
atr, =0 and radiusR. The integrations over, and ri in
Eq. (4.16 are over the subspace 58f HS wherer;=0 in
Eq. (4.173. It is understood thag=R and thatZ(LK'W)

d=3, (413D  vanishes for, <R or r|, <R. In Eq.(4.16) there is no inte-
gration over| since bothiz{**" andz{"’ depend orr| and

r‘] only in the form|r— r‘/‘l and becaus®) has been factored

R\?2 ) out. For later use we introduce another coordinate represen-
My=1-— Vo 2Ey(¢°), d=4, (4.130 tation
1

My=1- y5[2(1+ 24?) erfch— (41m) ¢ expl — ¢?)],
1
and ford=4 to

HS={x=(z,5) e RxRP~1;z>0} (4.17b
for the HS in Eq.(4.179 where

whereE, is the exponential integr@P5).

C. Free energy for the immersion of a particle z=r,,+a (4.179

The expansiori4.1) can also be used to evaluate the be-, )
havior of the free energf . for smallR upon immersing a IS the distance from the boundary wl and
particle C=K into a dllutg polymgr solution as dlscyssed in S=(rig, - fiail)) (4.179
Sec. lll C. ForR<R the integral in Eq(3.7) is dominated
by the regionR<r, =O(R) where Eqg.(4.3) holds. Since comprises théd —1 components parallel td/.
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The finite limit 5fK’W of 5FK,W/(VHpO) asK—K [38] is V. CONCLUDING REMARKS AND SUMMARY
the counterpart 0bf in Eq. (3.69 and depends only on the
radius R, the polymer end-to-end distan@®, and the dis-
tancea of the axis of the generalized cylinder from the wal
[18]. While the full functionéf \y is not known exactly in
general even for a Gaussian chain, one finds a simple explic
form in the limit R<R,a. In this case the expansigd.l)
can be used to evaluate Eg.16), which leads to a depen-

We have investigated the interaction of a long flexible
| polymer chain with rigid particles of spherical or cylindrical
shape[52]. Possible applications include colloidal particles
f spherical or rodlike shapg7,8,50,51 immersed into a
ilute polymer solution. We have studied both the case in
which the surface of the particles is purely repulsive for the
: - chain monomergdepletion caseand the case of a surface
dence Of&vaW_on (?N)proportmnal to the _bulk-normallzed with a short-ranged attraction, which leads to the possibility
monomer densitiM,” in a half space, which has the form ot o adsorption-desorption transition. While for the latter
[4] case explicit results have been obtained onlyideal chains,
for the depletion case we have considered both ideal chains
and chains with an EVI.
MF\}N)(a/R)“ﬁHLJ d°x | dPx’ We haye used the polyr_ner—magnet analo(B/MA)
HS HS [1,16,4, which relates the chain problem to properties of a
field theory. As discussed in Sec. |, the field theory corre-
><<CD(x)CI>(x’)%CD2(a,s:O)> . (418 spo_nding to an ideal chain is characterized by the Ha_mil-
hs tonian (1.5). In the presence of EVI one may use a similar
field theory in which, however, the order parameter
do=(d,, ..., dy) hasN components andiy in Eq. (1.5 is
to be supplemented by an interactiorf,d°r |®|*.

Here()ps denotes the thermal average for the half sjae The PMA is already useful for an ideal chain. The propa-
with the wall atz=0 [see Eq.(4.17H]. Since the contribu- gatorG qf the Gau35|an_f|eld theolit.5) is known explicitly
tion to &f v from — F . in Eq. (4.15 is given by— &f and (Appendix B for an arbitrary value of the surface parameter

since 8fy \y must vanish in the limia—o we obtain for ¢ The chain partition functior, follows by a Laplace
R<R.a. transform[see Eq(1.4) and Sec. Il A. This approach allows

one to obtain theull partition function for an ideal chain
near the adsorption-desorption transition, which contains
_ 7 (W) _ contributions from both the ground staft3] and excited
Ok w=of My (a/R)~ 1], 419 states. The renormalization-group approach, which is well
advanced for such local field theories, leads via the PMA to
an explanation of universality and scaling in polymer statis-
tics[1,4,16. In combination with perturbative methods such
as thee expansior{ 16] the influence of EVI can be studied
systematically and quantitatively.
In addition short-distance expansiofts4,16,47 (SDE)

with 6fy defined in Eq(4.14). This means that the presence
of the polymer chains leads to amcreaseof 5fy \y for in-
creasinga and thus to arattractive force between the wall
and the particle. In the particular cage<a<R one has

5vaij_ ofy because in this limit 7 vanishes[1] as (. g ,ch field theories offer important nonperturbative in-

(a/R)™. Equations(4.18 and (4.19 hold for I(J\A%th ideal  sights into the polymer statistics. Interesting features of poly-
chains and chains with EVI. For ideal chaiy™ corre-  mer solutions that are exposed to immersed spherical or cy-
sponds to the quantity in E¢3.4) for d=1. ~_lindrical objects of finite extensiofi.e., particle radiusR)

The general mechanism for the attractive depletion intersgn pe inferred from the special typ&7] of SDE discussed
action has first been pointed out by Asakura and Oosawg sec. |V. We have shown how to use this expansion in
[41]. This interaction is relevant for colloidsee, e.g., the qrder to obtain results for polymers in the depletion case if
classic experiments of Sperry, Hopfenberg, and Thomage particle radiuR is much smaller than th&oot-mean-

[50], the recent reviews in Reff51], and the references cited squarg end-to-end distanc® of a chain in the bulk polymer
therein. While approximate expressions for the interactiongg|ytion.

exist for the caseR<R [6,7] and for R of the order ofR Still another type of SDE applies for a “small” distance
[14], to our knowledge Eq(4.19 is the first quantitative from a planar surfac22]. This is modified in an interesting
result for the cas&>R. way if the surface is curved. Consider, e.g., the Gaussian

Similar results can be obtained for the solvation forcemqgdel(1.5) for c= + . In this case Eq(B3) implies that the
between two spherical particles or between a sphere and opagatoiG=G(r, ,r. ,9 |rH—r|"|'t c=%,R) reduces to
- 1t Y, LU=,

cylinder in unbounded space with radii that are much smalle
than bothR and their mutual distance. In these cases the
dependence oa/R is determined by the monomer density
correlation function of a single chain in unbounded bulk. For
three or more spherical particles with small radii the expan-
sion(4.1) leads to higher monomer correlation functions of aif the other variables are kept fixed and
single chain and to a polymer-induced interaction that is not
pairwise additivg]14] (compare the discussion in Ref.7]

for the corresponding situation of binary liquid mixtures at
criticality).

aG
G(r,\R)=D ar, —r+tO((r,—-R)® (5.13

I,

d_l rl_R
; (5.1b

’D(H):(H_R)[l_ > "R
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TABLE I. End densityMg for R—o and various geometries iD=3 spatial dimensions. While the
result for a sphere and a cylinder in the first line apply Ror, <R with arbitrary R/r, <1, those in the
second line apply only foR<r, <R. The variablez for the half space denotes the distance from the planar
wall. The exponents 1.30 and 0.30 eqdat v~ with d=3 andd=2, respectively, and with~1~1.70
[47(b)]. The exponent 0.82 for the half space is a critical surface expoaeamtgb are universal amplitudes.
For a small distance from the surface of a sphere and a cylirder R<R,R) we expect a power-law
dependenc =~ (r, — R)%# with the same surface exponent as for a planar surface.

Free space Sphere Cylinder Half space
Ideal chains 1 +R/r, ~In(r, /R/IN(R/R) ~ZIR
Chains with EVI 1 a(R/r, )10 1—b(R/r )00 ~(zIR)%82

the termo(r, —R)2, which is of second order in the small be expressed in terms Mg [see Eq(3.7)] and depends on
distance from the surface, is due to the curvature and dropR/R. For ideal chains we have evaluated the complete de-
out for 1/R—0 [54]. The short-distance dependenfeis pendence for spheres and cylinddeee Fig. 7. Recent
proliferated to the partition functio@, in Eq. (1.4 and to  simulation data for a sphefé4] are very close to our exact
integrated quantities such gsin Eq. (2.2 andZ, in Eq. ~ asymptotic resul{see Fig. . In the limit R>R we have
(2.9): found a general expression for this free energy difference
[see Eq(4.14], which is also valid in the presence of EVI.
ax Bounding surfaces of more general shapes such as those of
x(ri\R)=D E|M=R_ E(rl ~R?Z+0((r. ~R)%) flexible membranes with a small but spatially varying local
(5.2 curvature have also been addres&sze Appendix €
(3) If a particle is positioned near the planar container
and wall of a dilute polymer solution the interference between
5 the depletion in front of the wall and around the particle
5 e leads to an effective interaction between the wall and the
2L N\R)=D EM:R“L O((r, =R)). (53 particle. In the particular case in which the radRf the
particle is much smaller than both the distaracef the par-
The second term on the rhs of H§.2) appears already for a ticle from the wall and the end-to-end distane in the
planar surface and arises from those contributions to the ingolymer solution the interaction free energy is determined by
tegral in Eq.(2.2 whereri is close to the surfacei=R the monomer densith\)lN) in the half space and is given by
[55]. Since it does not depend danit drops out from the Eg.(4.19. Such effective interactions are experimentally rel-
inverse Laplace transform and is absent in £&q3). evant[50,51].

In the following we summarize our main results, starting We now summarize our results for a single ideal polymer
with the depletion phenomena in which a dilute polymerchain, which is fixed with one end near a curved boundary
solution is in contact with onéor more purely repulsive endowed with arattractive short-ranged surface potential.
particles. (4) The “magnetic” phase diagram and the correspond-

(1) For a single sphere or cylinder both the density ofing phase diagram for polymer adsorption have been dis-
chain endsM ¢ and the monomer number densiy, in the  cussed for the Gaussidideal chain case. Figure @) shows
surrounding polymer solution have been considered as #he “magnetic” phase diagram as a function of the param-
function of the distance, —R from the particle surface and eters{=cR and 7=tR?, which occur in the Hamiltonian
of the ratioR/R of the polymer end-to-end distande and (1.5 of the Gaussian field theory. The quantiyis an in-
the particle radiu®. For ideal chains the explicit results are verse extrapolation length and characterizes the short-ranged
shown in Figs. Ea) and §b). We have found analytic expres- surface potentidlcompare Eq(1.29 and Appendix A. The
sions[see Egs(4.7) and (4.13] for R<r, ,R with r; /R  “magnetic’ phase diagram translates into a phase diagram
arbitrary and forR, r, <R with arbitraryR/r, <1 (see the for polymer adsorption shown in Fig(i® in which the pa-
last paragraph in Sec. IIIAIf the shape of the boundary rameterr is replaced by\ "*=R?L and the “chain length”
changes from a plane via a cylinder to a sphere the depletioh is related to the end-to-end distarRevia R?=2LD [20].
hole in Mg and My, becomes less and less pronounced ifln the limit of an infinite chain length\~1=0) important
R>R while for R<R the profiles are close to those for a properties change nonanalytically &passeg™. In particu-
planar boundary. The quantitative behavior bfz for lar the fraction of chain monomers in a layer of finite width
R— o is given for these three cases in the first line of Tablearound the surface vanishes for (* (nonadsorbed state
I. For chains with EVI we have obtained the behavior ofwhile it is finite for {<{* (adsorbed staje(The effects of
Mg for spheres and cylinders in the regi®<r, <R [see EVI on the results obtained for an ideal chain will be ad-
Eg. (4.12]. This is shown in the second line of Table |. We dressed below.
emphasize that the EVI weakens the repulsive character of (5) For an infinite ideal chain in the adsorbed state
the boundaries. In particular for the cylinder it leads to a(A~1=0,(<{*) the layer densityP(c,R) of the monomer
finite limit of Mg for R—oo. fraction near the surface and the “decay lengtn’, which

(2) The free energy from conformation changes upon im4s a quantitative measure of the thickness of the adsorption
mersing a single particle into a dilute polymer solution canlayer, are shown in Figs.(8 and 3b) as a function of the
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ticular for d=2 (cylinden the fraction densityP vanishes
exponentially[11,33 for ¢ 7{*, which corresponds to an
exponential divergence of the lengé) [34]. In the limit
|{—¢*|>1 the thickness of the adsorption layer is much
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) . publication. The work of A.H. and S.D. has been supported
smaller tharR and both the fraction densify and the length by the German Science Foundation through Sonderfors-

a, exhibit in all cases the limiting behav_|d?:2|c| and chungsbereich 237 “Unordnung und groRRe Fluktuationen.”
a, =1/|c| known from a planar surface. This crossover scal-

ing behavior for an ideal chain near the adsorbing general-

ized cylinder is expected to be universal, i.e., to apply quan- APPENDIX A: SURFACE POTENTIAL

titatively also for the asymptoti¢large scalg behavior of AND EXTRAPOLATION LENGTH

lattice modeli23] It turns out that the universal asymptotic We are interested either in a pure|y repu|sive surface of

scaling functions are easily accessible within the present conpe generalized cylindé£ in Eq. (1.1) so thatZ, vanishes at

tinuum approach. the boundarywhich may formally be described by the limit
(6) The behavior of the number of adsorbed monomers a¢= + <) or in the neighborhood of the adsorption threshold

the adsorption thresholg=¢* as a function oh =L/R?is  where the extrapolation lengthd [1,2] is much larger than

shown in Fig. 4 for an ideal chain in terms of the scalingmicroscopic lengths such as the rargef the attractive part
function A5 defined in Eq.(2.23. The curves display the of the surface potentidlL8].

crossover from the planar limit/R*<1 to the long-chain In an effort to analyze explicitly the origin af near the
limit L/R2>1 for which we have obtained analytlcal results adsorption threshold for the geome(ml) we add a short-
[see Eq(2.22]. ranged attractive surface potentiékr ) inside the bracket

We conclude by discussing in which cases in the presencgs the diffusion equatioril.2a:
of EVI the adsorption-desorption transition, i.e., the forma-
tion of a finite adsorbed monomer fraction &sdiverges, + oo, r,<R-b
survives for an attractive surface with<c*. As long as W(r,)={ —w, R—b<r, <R (A1)
d<D-1 (planar or cylindrical boundary irD=3 and + ' *
straight line boundary irD=2) [10], we expect that the 0, R<ry,
transition always occurs because the chain has the possibili
to grow along the remainingé=D—d=1 infinitely ex-
tended dimensions, thus effectively avoiding contact with it-
self. For the phase diagram in Figapof the Gaussian field
theory this means that the ling,(¢) for d=2 is the Gauss-
ian approximation of an experimentally accessible phase
transition line, which in the presence of EVI corresponds t
the limit N— 0 of theN-component field theory in the outer
space of a cylinder ifd =3 with §=1 [56]. In particular the
existence of the transition has been proven rigoro(iSK} 1
for the planar cas® =2, d=1 with §=1. However, for Q(rf)):—.(rf))‘“[
d=D excluded volume effects will become so sevgté] 2i
that a finite limit of the adsorbed monomer fraction is not @ <)
possible and a true phase transition will not occur. B HZ  (Vor () ]

N_ote added in prooﬂRec_entIy we received a copy of un- H<O(2+>/[ \/E(R—b)] '
published work by Ch. Hiergeist and R. LipowskiiL)
[Max-Planck-Institut fu Kolloid- und Grenzflahenfors-  \here u,=w—p?—t and H'®, H® denote Hankel func-

chung, Teltow-Seehof, Germany repd996] in which  {ions[25]. The logarithmic derivative o) with respect to
polymers are considered that are anchored with one end to &-<)

, : &) atr(*)=R definesc. Since near the threshold one has
repulsive surface. In a small curvature expansion fro thefor R/b large[18]

mushroom regime not only the spontaneous curvature term

(see Ref.[40]) put also the _r|g|d|ty termsocl/R%1 and \/M_bR: 7RI(2b) (A3)
«1/(R,R,) have signs that are different from those in the free

polymer case considered in the present paper, compare Eghe Hankel functions attain their asymptotic form for which
(32 of HL with our Eq. (C1). For the convenience of the the dependence am+ / drops out. There remains, however,
reader we note the formMy'=(p—1[(m\) "*+(d-1)/  a dependence cthfrom the prefactori({~)) "¢ on the rhs of
2+(MmYd—1)(d—3)/4+--] of Mg in the linear region Eq.(A2) so that

[compare Fig. )] which determines the partition function

of an ideal chain that is anchored close to the surface of a T d-1
weakly curved generalized cylinder. Fd=1, 2, and 3 this c= E(E_ \/W) T 2R
leads to the partition function given in HL for a half sapce

(HS), cylinder, and sphere, respectively, and to the correapart from a negligible contributionb(p?+t).
sponding free energy differencdgT In[M'é”/(M'é”)HS] in Using the threshold values*, which follow from Eq.
which p—1 drops out. (2.99 one finds

With w>0. This leads to a Laplace transfor@ of Z, ,
which has the form given by E4B3) of Appendix B. How-
ever, forR—b<r{*)<R the quantity

()7 Das Aar ) = ALK (e ()]

%n the rhs of Eq(B.30) has to be replaced by a dependence
on r(f) proportional to

HE, (Vor ™)
HE [ Vus(R—b)]

(A2)

(A4)
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al (d—1)/(2R), d=2 with the boundary condition
E(%‘J"F):{(s—d)/(zm d>2 (A5)

, , InG(r,r";t,¢,R)|; = =CG(r,r";t,¢,R)| ;= , (Blb)
so that the threshold valug* of w in W(r,) depends on
d. In particular w* =w*(d) is smallest ford=2 and
w* (3)=w* (1), which is consistent with the results of Ball,
Blunt, and Barford 58].

Equation(A4) shows that the description of the surface of
K (which has a constant curvatiirey means of a logarith- .
mic derivative or inverse extrapolation lengttalso encom- Ap=Aq+ E —, (B2a)
passes the asymptotic behavior near the adsorption threshold =1 0rj;
of the particular modelAl). The quantityc enters into mea-
surable quantities in a much more direct and universal way'hereé=Db—d and

wherer g is a point on the surface ¢. In order to solve Eq.
(B1) we first note that the Laplacian operatbg in coordi-

nates adapted to our specific problem has the fdbmatd

d are integers

than potential distributions in a continuum modet energy 2 _ 2

Lo : . J d-1 ¢ 1] 9 J
gains in surface layers of a lattice moddh this work we Ag=—s —+ | =5 +(d—2)cotd —
assume that has a given value and thus we avoid the com- gri  rpoorp rpod 2y

plicated task of calculating for a particular curved surface (B2b)

exposed to a specific polymer system. is the Laplacian operator in thd-dimensional subspace

. {r, eR%r, >R} in spherical coordinates. Her& denotes
APPENDIX B: THE GAUSSIAN PROPAGATOR the angle of the coordinate with respect to a fixed direc-

The Gaussian two-point correlation function in the vol- tion in the radial subspadsee Fig. 1. (Ford=1 there is no
umeV as introduced in Eq(1.1) satisfies the Schdinger- angled so that in this case the term in square brackets must

type equatior{22] be omitted
Using a well-known techniqugb9] for solving Eg.(B1)

(—Ap+t)G(r,r';t,c,R) =6 (r—r") (Bla)  we eventually arrive at

i ’ ’ Oc @) dﬁp H NI~ ’
G(r.,r';t,c,RI=G(r, .1}, d,[r—r{[;t,c,R)= 2 WY (ﬂ)f Soysexdip(r—r)IG(r .ri;u.c,R), d<D,
/=0 RS (277)

=ZO WS(HG,(r, r!:t,c,R), d=D, (B3a)

wherea=(d—2)/2 andu=p?+t. The last line holds because fdr=D there is no parallel componen‘t—rﬁ and hence no
Fourier variablep. The functionW{®(9) is given by

(2792 71T (a)(/+ a)C%(cosd), d#2,

() —
WD) (2m) 42— 6, 9)cod /D), d=2,

(B3b)

where I is the I' function, C7 denote Gegenbauer polynomid®5], and 6, o=1 for /=0 and zero otherwise. Here
WI(9) is_normalized so thaf dQqW =5, 4. The second line of Eq(B3b) is the limit d—2 of the first line. The
propagatoiG , takes the form

G (ry 1 im, e R =(r ) 7oK (Nt D (Ve ) = A9 (1,6, RIK oy (Ver ()], (B30)

wherer(®)=min(r, r]) andr{*)=max¢, ,r|). Ford=D the variableu is to be replaced by. | , andK, denote modified
Bessel function$25] and

VERl,t e 1(NuR) +(/ = CR) o (VuR)

A(a) , ’R =
O T R (R (7 CRIK (VR

(B3d)

(see also Refd60], [24], and[28]).
We note that in the casg#=1 only the terms with’=0 and 1 appear on the rhs of E®3a) and yield the well-known
Gaussian propagator for the semi-infinite space R [4,22,6]

D-1
p . ’ 1 — ’
G(ry,ri.|r—r(l;it.c :f —————exdip(rj—r;)]—=| e VHlrL-ril—
(ro riulr=rilit.c) (o-1(2m)P 1 dip(ry H)]Z m

c—Vu

c+u

e—\sﬁ(rﬁri—zR) _ (B4)
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Finally we note that the usual Gaussian propagé@gpin the D-dimensional unbounded bulk space is given by @B8) with
A(/")(,u,c,R)=O. In this case the summation ovérand the integration ovep can be carried out explicitly yielding the
well-known result

K(D—z)/z(\/ﬂr_r,h

) — ~D/2¢(D—2)!
Gp(|r—r'|;t)=(2m) PP~/ /[ 27 (BS)
|
APPENDIX C: SMALL-CURVATURE EXPANSION is the mean local curvature, and R4R,) is the local Gauss-
FOR A REPULSIVE SURFACE OF GENERAL SHAPE ian curvature(We use the convention th&; ,R,>0 means

that the boundary surface is beatvay from the polymer

A small-curvature expansion such &.9 is also ex- solution located in the exterior df.) We note that

pected for a particléC of more general shaperovided its
surfaceS is smooth and all principal radii of curvature are 1 1 1( 1 1 )2>0

much larger than the chain end-to-end distaRc20] (com- Emf_ R:R, ) R, R,

(€3

pare the related discussions in Ré82] and[12](c)]).
We consider a particléC in D=3 with finite volumev,, ~ The prefactors(curvature energigsof the terms 1R,

and with a purely repulsive boundary surfaSe 9k im-  1/R3 and 1/R;R,) on the rhs of Eq(C1) are uniquely

mersed in a dilute solution of ideal chains. Due to generafletermined by the special cases thét is a sphere

argumentg63] the expressioffF .- /po,— v« corresponding to  (R1=R;=R) and that is a cylinder R;=R, R,=«) and

Egs.(3.60 and(3.9) is expected to take the usual form of a follow by the comparison with Eq(3.9) for d=3 and

surface integral over the local surface free energy densitfl =2, respectively. _ .

and the first- and second-order local curvature energy densj- 1he rhs of Eq(C1) determines also the change in surface

ties, i.e., free energy and in the first- and second-order curvature en-

ergies of aflexiblesurface such as membraneupon expos-

2 L 2L%2 1 1 ing one side of it to a solution of ideal polymdi&2(d),(e)],
Fi/Po—vi= f ds| —LY%+ R 22" RR which are repelled by the surface. Thus the addition of poly-
S Vm m 37 |Rm 12 mers favors a bending of the membrane surfaseardsthe

(CY The sign of the Gaussian curvature energy will generally

solution[40] and leads to aveakeningof its surface rigidity.
+ 1
] favor surfaces with higher genuses and thus the formation of

handles.
whereR;, R; are the two principal local radii of curvature,  These predictions are opposite to some of the conclusions
1 1/1 1 in Refs.[62(d),(e)] [see in particular Eq(12) and the text
- _(_+ _) (C2) below Eq.(13) in Ref.[62(d)]]. For an examination and ex-
Rm 2\R1 R planation of this discrepancy see Rgf4].
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