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The interaction of a long flexible polymer chain with mesoscopic particles of spherical or elongated cylin-
drical shape is investigated by field-theoretic methods using the polymer-magnet analogy. In the case that these
particles are immersed in a dilute polymer solution and exhibit purely repulsive surfaces we study density
profiles for monomers and chain ends near such a particle, the change of configurational entropy by immersing
a particle into the solution, and the depletion interaction between a particle and a distant planar wall. Both ideal
chains and chains with an excluded-volume interaction are considered. We also analyze particle surfaces with
a short-ranged attraction and the adsorption-desorption transition for an ideal polymer chain. Properties such as
the number of surface contacts are evaluated both in the adsorbed limit, in which the thickness of the adsorbed
layer is much smaller than the unperturbed polymer size so that ground-state dominance applies, and at the
adsorption threshold.@S1063-651X~96!02308-2#

PACS number~s!: 05.70.Jk, 68.35.Rh, 61.25.Hq, 82.70.Dd

I. INTRODUCTION

Due to the importance for both basic research and applied
science the behavior of polymers near surfaces or interfaces
has been studied extensively both theoretically@1–6# and
experimentally@3,6#. Besides planar surfaces, in this context
increasing attention has been devoted tocurvedsurfaces such
as those of spherical@7# or rodlike @8# colloidal particles.
This comprises ‘‘single chain’’ problems both for repulsive
@9# and attractive@10,11# surfaces as well as situations in-
volving many chains@12,13# and more than one particle
@14,15#.

Apart from lattice-based methods@5,6#, the field-theoretic
continuum approach to polymer statistics is well established
@4,16#. In this contribution we show that this field-theoretic
approach, which has been already applied to study the prop-
erties of polymers near planar substrates, can be extended
successfully to geometries with curved boundaries such as
those of spheres and cylinders. Although the major part of
our study will concentrate onideal chains, important results
are also derived for chains with an excluded-volume interac-
tion ~EVI!. Experimentally, almost ideal polymer chains are
realized by the so-called ‘‘Q polymers’’ @1,16# for which the
actual self-avoidance is nearly compensated by an attractive
monomer interaction. In addition in many cases the ideal
chain model serves as a starting point for a perturbative treat-
ment of EVI @16#.

We shall show that within the continuum approach non-
trivial phenomena that curved boundaries induce for polymer
chains can be derived systematically. In particular we discuss
the behavior of a single ideal chain near a spherical or a
cylindrical surface endowed with a short-ranged attractive
potential. Properties of its adsorbed state such as the chain
extension perpendicular to the surface or the fraction of ad-
sorbed monomers in contact with the surface, which have
been considered in Refs.@10# and@11#, arise as special cases.
For purely repulsive surfaces we consider a dilute solution of

free chains for chains both with and without EVI. It turns out
that important properties that have originally been discov-
ered in the context of field theory can be used also in the
present problem of polymer chains near curved boundaries.
In particular we discuss the polymer behavior arising both in
close proximity to the surface and in the limit in which the
particle has a ‘‘small’’ radius@17#.

We consider a geometry in which the volumeV,RD ac-
cessible to the polymers is the outer space

V5$r5~r' ,r i!PRd3RD2d;r'[ur'u.R% ~1.1!

of a generalized cylinder Kin @d1(D2d)#-dimensional
space with radiusR and is bounded by thesurface S5]K of
the generalized cylinder. For the time being we restrictD
andd to integer values 1,2,3, . . . with d<D. Special cases
of this geometry are the outer space of aD-dimensional
sphere with radiusR (d5D) and the outer space of a
D-dimensional cylinder with radiusR (d5D21), which is
a genuine cylinder forD53 ~see Fig. 1!. Note that for
d51 the generalized cylinderK is a plate of width 2R and
the volumeV consists of two disconnected half spaces so
that the geometry degenerates to thesemi-infinite geometry,
which has been studied in much detail~see, e.g., Ref.@4# for
a review!. While only the casesD52 andD53 are experi-
mentally relevant, the caseD54 is of theoretical interest
becauseD54 marks the upper critical dimension for the
relevance of EVI in the bulk@1,16#.

Within the continuum description@18# thepartition func-
tion @19# ZL(r ,r 8) of an ideal chain with a fixed monomer
number characterized byL @20# and fixed ends atr ,r 8PV is
symmetric inr ,r 8 and satisfies the diffusion-type equation

S ]

]L
2DDDZL~r ,r 8!50 ~1.2a!

with the ‘‘initial condition’’
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ZL50 ~r ,r 8!5d~D !~r2r 8! ~1.2b!

and the boundary condition

]nZL~r ,r 8!ur5rS
5cZL~r ,r 8!ur5rS

~1.2c!

at the surfaceS. HereDD is the Laplacian operator~which
acts on rPV) and d (D)(r ) is Dirac’s d distribution in
D-dimensional space;]n denotes the derivative normal to the
surface towards the interior ofV and rS is a point on the
surfaceS. The quantityc is an inverse extrapolation length
characterizing a short-ranged surface potential@1,2,4# ~see
Appendix A!, which acts only on monomers that are located
microscopically close to the surface; the more negative the
quantityc, the moreattractive the surface.

For the present Gaussian~ideal chain! model with the
geometry ~1.1! the parallel contributions of the partition
functionZL can be split off, i.e.,

ZL~r ,r 8![ZL~r ,r 8;c,R!5ZL
~' !~r' ,r'8 ;c,R!ZL,b

~d! ~ ur i2r i
8u!
~1.3!

where ZL,b
(d) is the Gaussian partition function in the

d[(D2d)-dimensional unbounded subspaceRD2d of the
parallel components ofV @19#.

It follows from Eq. ~1.2! that the Laplace transform

G~r ,r 8;t,c,R!5E
0

`

dLe2LtZL~r ,r 8;c,R! ~1.4!

is the two-point correlation function~or propagator!
^F(r )F(r 8)&HK of a Gaussian field theory with a statistical

weight exp(2HK$F%), whereHK$F% is a Ginzburg-Landau
type Hamiltonian@4#

HK$F%5E
V
dDr H 12 ~¹F!21

1

2
tF2J 1E

S
dSr

1

2
cF2

~1.5!

for a scalar order parameterF(r )PR. In this ‘‘magnetic’’
analogy, wheret}(T2Tc

b)/Tc
b measures the deviation of the

temperatureT from the bulk critical temperatureTc
b the

quantity2c is related to the surface-coupling enhancement
relative to the bulk couplings@21,22#. As above, the position
vector r covers the volumeV and its boundaryS.

For an ideal chain the mean fractiondDym(y) of mono-
mers that are located inside the volume elementdDy around
y under the constraint that the two chain ends are fixed atr
and r 8, respectively, is determined by@1,4#

m~y;r ,r 8;L,c,R!5
1

LE0
L

dL8ZL2L8~r ,y;c,R!

3ZL8~y,r 8;c,R!/ZL~r ,r 8;c,R!;

~1.6!

in particular one has*V d
Dym(y)51. In the context of the

adsorption-desorption transition a quantity of particular in-
terest is the mean fractiondy'ml of monomers in a~curved!
layer l of width dy' , which is concentric and in ‘‘close
proximity’’ to the surface. If the distancey'2R of the layer
from the surface is much smaller thanucu21, R, andL1/2 @23#
the continuum model for an ideal chain leads to a
y'-independent proximal behavior

ml ~r ,r 8;L,c,R!5E
S
dSy m~y;r ,r 8;L,c,R!

5
1

L F2
]

]c
ZL~r ,r 8;c,R!G YZL~r ,r 8;c,R!.

~1.7!

It follows from Eq.~1.7! thatc acts like a chemical potential
for monomers near the surface.

The remainder of this paper is arranged as follows. We
apply the result for the Gaussian propagatorG derived in
Appendix B @24# in order to obtain the partition function
ZL via an inverse Laplace transform according to Eq.~1.4!.
In Sec. II we consider a single ideal chain with one end fixed
and one end free and derive the phase diagram for polymer
adsorption. We discuss the behavior of the monomer fraction
layer densitym̂l , which is the counterpart ofml introduced
above for the case in which the chain is fixed with one end
only. Both an infinitely long chain in the adsorbed region and

FIG. 1. A sphere~a! and a cylinder~b! as examples of particles
with curved boundaries. The two spatial argumentsr andr 8 of the
partition functionZL in Eq. ~1.2! are also shown.
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a chain at the adsorption threshold are considered. For the
former case we also discuss the behavior of the thickness of
the adsorbed layer.

In Sec. III we consider a dilute solution of freely moving
chains near a purely repulsive surface for both ideal chains
and chains with EVI. We discuss the corresponding end den-
sity and monomer density profiles and derive the configura-
tional free energy for the immersion of a spherical or cylin-
drical particle. In Sec. IV we present analytic expressions for
these quantities if the radiusR of the particle is ‘‘small’’ and
address the problem of the interaction of a particle with a
planar wall. In Sec. V we present our conclusions.

Appendices A and B are devoted to a discussion of the
surface parameterc and the Gaussian propagatorG, respec-
tively, in the geometry~1.1!. In Appendix C we consider the
configurational free energy of polymers near weakly curved
repulsive surfaces of general shape.

II. SINGLE CHAIN WITH ONE END FIXED

In this section we consider a single ideal polymer chain
with one end fixed while the other end is moving freely.

A. Adsorption-desorption phase diagram

The partition function of a chain with one end fixed at
r5(r' ,r i)PV while the other end is free is given by

ẐL~r' ;c,R!5E
V
dDr 8ZL~r ,r 8;c,R!5Lt→L$x~r' ;t,c,R!%.

~2.1!

Here Lt→L denotes an inverse Laplace transform and the
local susceptibilityx of the magnetic analogue is given by
the integrated propagator

x~r' ;t,c,R!5E
V
dDr 8G~r ,r 8;t,c,R!

5E
R

`

dr'8 r'8
d21G̃l 50 ~r' ,r'8 ;m5t,c,R!,

~2.2!

whereG̃l 50 can be read off from Eqs.~B3c! and ~B3d! in
Appendix B. The second line follows from rotational invari-
ance around and translational invariance along the general-
ized cylinder. As indicated above, the local susceptibilityx
and thus the partition functionẐL depend only on theradial
componentr'5ur'u of the pointr5(r' ,r i). It follows from
Eq. ~1.3! and from the relation*Rdddr iZL,b

(d)51 @19# that the
form of this function doesnot depend ond5D2d but will
depend only ond. This is consistent with our result for
G̃l 50 derived in Appendix B.

We introduce dimensionless quantities expressed in terms
of the radiusR of the generalized cylinder:

r[r' /R, t[tR 2, z[cR, l[L/R 2. ~2.3!

Note thatẐL is already dimensionless and that the Gaussian
propagatorG has the same units asR 22D. We thus define
the dimensionless local susceptibility

X~r;t,z!5x~r' ;t,c,R!/R 2

5
1

t F12
zr2aKa~rAt!

AtKa11~At!1zKa~At!
G , ~2.4a!

where Eqs.~2.2!, ~B3c!, and ~B3d! have been used. Here
Ka andKa11 are modified Bessel functions@25,26# and

a5~d22!/2. ~2.4b!

In the limit r→` the local susceptibilityx approaches the
bulk susceptibilityxb51/t of the Ginzburg-Landau model.
In terms of the dimensionless variables the partition function
ẐL in Eq. ~2.1! reads

ẐL~r' ;c,R!5Ẑl~r;z!5Lt→l$X~r;t,z!%. ~2.5!

We also consider the monomer fraction layer densitym̂l

near the surface for the present case in which the chain is
fixed with one end only. This quantity is given by the last
expression in Eq.~1.7! with ZL replaced byẐL , i.e., by

m̂l ~r' ;L,c,R!52
1

Rl

]

]z
lnẐl~r;z!. ~2.6!

Note that the last expression in Eq.~2.4a! is well defined
even if a5(d22)/2 is variedcontinuouslyover the range
a>21/2, i.e.,d>1, which we have assumed in the forego-
ing discussion. This allows us to study the dependence of the
partition function and related quantities on the spatial dimen-
siond of the radial subspace.

The expression for the local susceptibilityX(r;t,z) as
given in Eq.~2.4a! is valid only for t.t0(z) with

t0~z!5H 0, z>z*

pa~z!, z,z* .
~2.7!

The corresponding phase diagram of the Gaussian field
theory is shown in Fig. 2~a!. The functionpa(z) is positive
and decreasing~with increasingz), and follows implicitly
from the zero of the denominator of the second term in
brackets in Eq.~2.4a! @27#, i.e.,

Apa~z!Ka11„Apa~z!…1zKa„Apa~z!…50 ~2.8!

while z*5z* (d) follows from limz↗z* pa(z)50. We find

z* ~d!5H 0, d<2

2~d22!, d.2,
~2.9a!

and the form

uDzu5
Apa

Ka~Apa!
3HKa11~Apa!, d<2

Ka21~Apa!, d.2,
~2.9b!

from whichpa can be determined as a function of the devia-
tion Dz5z2z*,0. For a cylinder (d52) one hasc*50
while for a sphere (d53) one hasc*521/R @28#. For the
planar cased51 and for d53 Eq. ~2.9b! is solved by
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pa(z)5(Dz)2 @26#. For d52 andd54 Eq. ~2.9b! can be
solved analytically forpa only in the limit z↗z* for which
we find

pa50 ~z↗z* !.4e22Ce22/uDzu, d52, ~2.10!

whereC50.5772••• denotes Euler’s constant, and

pa51 ~z↗z* !.2
2uDzu
ln~ uDzu!

, d54, ~2.11!

with z* (d52)50 andz* (d54)522. For d.4 we infer
the behaviorpa(z↗z* ).(d24)uDzu.

If z is more negative thanz* ~i.e., if the attractive surface
potential is sufficiently large! the local susceptibility
X(r;t,z) diverges for t↘pa(z). In this case the direct
transform

X~r;t,z!5E
0

`

dle2ltẐl~r;z! ~2.12!

corresponding to Eq. ~2.5! yields a behavior Ẑl

;exp@lpa(z)# for l→`, which impliesm̂l R;l0 according
to Eq. ~2.6! and thus afinite asymptotic fraction density

P~c,R![ lim
L→`

m̂l ~r' ;L,c,R! ~2.13!

of adsorbed monomers forz,z* . SinceP(c,R) has the di-
mension of an inverse length we define the corresponding
dimensionless quantity asP(z)[RP(c,R).

For z.z* , however,Ẑl does not increase exponentially
as a function ofl so that one hasm̂l R;l21 for l→` and
P(c,R) vanishes in this limit. This will be verified in detail
in the next subsection@c.f. the discussion corresponding to
Eq. ~2.16!#. Thus the ‘‘magnetic’’ phase diagram of Fig. 2~a!
translates into a phase diagram for polymer adsorption in the
(l21, 2z) plane@Fig. 2~b!# with a nonvanishing~vanishing!
asymptotic fraction densityP(z) of monomers adsorbed on
the surface forz,z* (z.z* ).

Here we note that for anattractive surface of asphere
~which is completely finite! and chains with excluded-
volume interaction the above results will be strongly modi-
fied ~see the discussion in Ref.@10# and in Sec. V below!. In
particular, for a chain with EVI, we expect a nonzero asymp-
totic adsorbed fraction densityP(z) only for d<D21
which includes a cylindrical surface for whichD53 and
d52.

Finally we note that ford51 and ford53 the expression
for the local susceptibility in Eq.~2.4a! reduces to@26#

X~r;t,z!5
1

t F12v
ze2At~r21!

At1Dz
G , d51,3, ~2.14!

wherev51 for d51 andv5r21 for d53, respectively,
andDz has been defined below Eq.~2.9b!. Accordingly the
inverse Laplace transform in Eq.~2.5! can be performed ex-
plicitly @29# with the result@30#

Ẑl~r;z!511v
z

Dz
$exp@~Dz!2l12Dzl1/2g#

3 erfc~Dzl1/21g!2 erfcg%, d51,3,

~2.15a!

where

g[~r'2R!/~2L1/2!5~r21!/~2l1/2!; ~2.15b!

erfc denotes the complementary error function@25#.

B. Fraction density and layer thickness„c<c* …

By using transfer matrix techniques Boettcher and Moshe
@11# studied a one-dimensional lattice model in order to de-
rive the finite adsorbed fraction in the limitL→` of an ideal
polymer chain positioned near a cylindrical boundary. In the
following we derive the corresponding quantityP(c,R) in
the continuum description. We first note that forzÞz* the
inverse Laplace transform@4,16# in Eq. ~2.5! can be per-
formed for generald up to a one-dimensional integral:

FIG. 2. ~a! Phase diagram of the Gaussian field theory
@Eqs. ~1.5! and ~2.3!# for several dimensionsd of the radial sub-
space. The only stable region is the left and upper part, which is
bounded by the linest0(z) and which corresponds to a bulk disor-
dered and surface disordered magnetic phase@21,22#. The curved
lines are plots of the functionpa(z) in Eq. ~2.7!; the pointsCd are
multicritical points.~b! Corresponding adsorption-desorption phase
diagram of an ideal polymer chain in terms ofl215R 2/L and
z5cR. In the limit of an infinite chain length (l2150) a finite
fraction of the chain is adsorbed on the surface forz,z* whereas
this fraction vanishes forz.z* . The corresponding transition at
z5z* is the so-called adsorption-desorption transition. The basic
mechanism that relates these behaviors of the field theory and the
polymer system is discussed near Eqs.~2.12! and ~2.13!.
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Ẑl~r;z!5
2a1z~12r22a!

2a1z
Q~a!1r2a@Ka„rApa~z!…/Ka„Apa~z!…#

2uzuelpa~z!

z~z12a!2pa~z!
Q~z*2z!

1
2z

p E
0

`

dx
e2lx2

x
ImF r2aHa

~1!~rx!

xHa11
~1! ~x!1zHa

~1!~x!
G , zÞz* , ~2.16!

whereHa
(1) denotes a Hankel function@25# andQ(x) is the

Heaviside step function. The second term on the right-hand
side ~rhs! increases exponentially as a function ofl and
arises from a pole att5pa(z) appearing inX(r;t,z) for
z,z* @see the discussion corresponding to Eq.~2.12!#. In
the long chain limitl→` and for z,z* this term is the
dominating one and Eqs.~2.6!, ~2.13!, and~2.16! lead to@31#

RP~c,R!5P~z!52
d

dz
pa~z!5

2pa~z!

z~z12a!2pa~z!
.

~2.17!

Equation~2.17! is to be compared with Eq.~9! in Ref.
@11~a!#. The expression~2.17! for P(c,R) doesexhibit a
manifestscalingform for which dimensional analysis tells us
thatRP(c,R) depends only on theproductof the two vari-
ablesc andR.

In order to facilitate the comparison of our results with
those of Ref.@11# we use the original~unscaled! variables
c and R and the adsorption fraction densityP(c,R). For
d51 and d53 we obtain @26# for arbitrary Dc5
c2c*,0

P~c,R!52uDcu, d51,3, ~2.18!

where c* (d51)50 and c* (d53)521/R. For d52 and
d54 Eqs.~2.10! and ~2.11! lead to@32#

P~c↗c* ,R!.
8

R 3uDcu2
e22Ce22/~ uDcuR!, d52,

~2.19!

and

P~c↗c* ,R!.2
2

Rln~ uDcuR!
, d54, ~2.20!

wherec* (d52)50 andc* (d54)522/R.
In Refs.@11~a!,~b!# results ford52 have been reported in

which the dependences on the radiusR in the prefactors of
the exponential terms aredifferent ~by a factorR 2 for large
R on a microscopic scale@18,23#! from those in Eqs.~2.10!
and ~2.19!. This difference can be traced back to a slight
error in Refs.@11~a!,~b!#, which we examine in Ref.@33#.
Within the continuum approach the power laws forR follow
already from dimensional analysis. For 1<d,4, dÞ2, we
find in agreement with Ref.@11# that the fraction density
scales asRP(c↗c* ,R);(uDcuR)k with an exponent
k5(22ud22u)/ud22u while for d.4 it approaches a finite
value,RP(c↗c* ,R).d24. Thus in this case the adsorbed
fraction density is a discontinuous function ofc. ~However,
this first-order transition is not realized in physical systems
with d<3.! Mathematically the exceptional asymptotic be-

haviors ofP(c↗c* ,R) for d52 and 4 are due to the as-
ymptotic behavior of the modified Bessel function
K0(z→0).2 lnz.

Figure 3~a! shows the behavior of the scaling function
P(z) for arbitraryz,z* and for several dimensionsd of the
radial subspace. Ford52 and d54 we have solved Eq.
~2.9b! numerically. Note that the behavior ofP(z↗z* ) de-
pends strongly ond. In particular ford52 the fraction van-
ishes exponentially@11,32#. On the other hand one has, for
all d, P(z→2`).2uzu. This is plausible since in this limit
the thickness of the adsorption layer is much smaller than the
radiusR and the surface is effectively planar.

FIG. 3. Crossover scaling functionsP(z) of the adsorbed mono-
mer fraction density~a! andR/a'(z) of the inverse decay length
characterizing the thickness of the adsorption layer~b!, respec-
tively, for an ideal chain in the adsorbed limitL→`, c,c* and for
several dimensionsd of the radial subspace. Ford52 the fraction
densityP(z↗z* ) vanishes exponentially, which corresponds to an
exponential divergence of the lengtha' . Note that ford55 the
fraction densityP(z↗z* ) approaches a finite value.
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A quantitative measure for the thickness of the adsorption
layer is provided by the exponential decay length
a'[R/Apa(z) governing the second term on the rhs of Eq.
~2.16!. The behavior ofR/a'(z)5Apa(z) for several di-
mensionsd of the radial subspace is shown in Fig. 3~b!. In
particular ford52 the lengtha' diverges exponentially as
(R/2)eCe 1/(ucuR) for c↗0 @34#. For c→2` one has, for all
d, a'.1/ucu as for a planar surface.

C. Number of adsorbed monomers forc5c*

Apart from the behavior of the adsorbed fraction density
m̂l along the adsorption line (z,z* , l5`) as considered
above it is of interest how this quantity behaves upon ap-
proaching the special point (z5z* ,l5`) by increasingl if
z is fixed atz* . Here we consider the related dimensionless
quantity l̂S(r;l,z)5m̂l L/R, which is proportional to the
numbernS of monomers microscopically close to the surface
@23#. For z5z* the dimensionless local susceptibility in Eq.
~2.4a! takes the form

X~r;t,z* !5
1

t F11
2ar2aKa~rAt!

AtKa21~At!
Q~a!G

~2.21a!

while in view of Eq.~2.6!

2
]

]z
X~r;t,z!uz5z*5

r2a

t 3/2Ka~rAt!

3H 1/Ka11~At!, d<2

Ka11~At!/@Ka21~At!# 2, d.2.
~2.21b!

Using Eqs.~2.5! and ~2.6! we find the following asymptotic
behavior forl→`:

l̂S~r;l→`,z* !.5
~2/Ap!l1/2, d51,

~1/2!ln~4e2CL/r'
2!, d52,

~Ap/2!l1/2, d53,

l/ lnl, d54.
~2.22!

We note that ford52 ~cylinder! the leading asymptotic be-
havior for L→` does not depend on the cylinder radiusR
but does depend on the radial componentr' of the point
where one end of the chain is fixed. The expressions for
d51 and 3 and arbitrary (r,l) follow from Eq. ~2.15a!. The
result for the planar cased51 is also given in Ref.@4#.

For 1<d,4, dÞ2, we find that l̂S(r;l,z* ) scales
as l uau with uau5ud22u/2 while for d.4 we infer the
behavior l̂S.(a21)l. This implies that ford.4 and
l→` the dimensionless adsorbed fraction density
m̂l R5l̂S(r;l,z* )/l approaches the finite value (d24)/2,
which differs from the valued24, which follows upon ap-
proaching the special point (z5z* ,l5`) along the adsorp-
tion line ~see Sec. II B!. This means that ford.4 the ad-
sorbed fraction density at the special point (z5z* ,l5`)
depends on thepath in the phase diagram

along which this point is approached; this is in accordance
with the fact that ford.4 the adsorption-desorption transi-
tion is first order.

Figure 4 shows the behavior ofl̂S(r;l,z* ) for the special
caser5r' /R51 and for several dimensionsd of the radial
subspace in terms of the function

LS~l![ 1
2Apl̂S~r51;l,z* ! ~2.23!

so thatLS(l)5l1/2 for d51. The curves clearly show the
crossover from the planar limitl5L/R 2!1 to the long-
chain limit l@1 of Eq. ~2.22!.

Figures 3 and 4 show thatl̂S(r;l→`,z) is smallest for
d52. The decrease inl̂S for d increasing between 1 and 2 is
plausible since more free space and entropic gain is available
for an unbinding chain around a cylinder than near a planar
wall. To understand the increase inl̂S asd increases beyond
2 one has to take into account that in this case2z* , which
is related to the attractive surface potential at the threshold,
increases withd, too @see Eq.~2.9a!#. For example, the
curves for d53 would be locatedbelow the curves for
d52 if 2z instead of2Dz was used as the abscissa in Fig.
3.

III. DILUTE SOLUTION OF FREE CHAINS
NEAR A PURELY REPULSIVE SURFACE

In this section we discuss a dilute solution of freely mov-
ing polymer chains near a purely repulsive surface.

A. End density

The density of chain ends at the pointr in a dilute solu-
tion of freely moving chains without mutual interaction ex-
hibits a dependence onr that is proportional to that of the
Boltzmann-weighted number of configurations of a single
chain with one end fixed atr . For ideal chains moving in the
volumeV introduced in Eq.~1.1! the density of chain ends is
thus proportional to the partition functionẐL in Eq. ~2.1!. In

FIG. 4. Crossover scaling functionLS(l) for the mean number
of adsorbed monomers of an ideal chain atz5z* for several di-
mensionsd of the radial subspace. The curves clearly show the
crossover from the planar limitl!1 to the long chain limit
l@1.
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the following we assume that the surface is purely repulsive,
which is described by the Dirichlet boundary condition
c51`. It is convenient to normalize the end density with
respect to its bulk value@19# and to introduce the quantity
@35# @see Eq.~2.5!#

ME~r;l![Ẑl~r;z5`!/Ẑl,b
~D ! . ~3.1!

For d51 andd53 Eq. ~2.15a! leads to@30#

ME~r;l!512v erfcg ~3.2!

with g defined in Eq. ~2.15b!, v51 for d51, and
v5r215(112l1/2g)21 for d53.

Figure 5~a! shows howME as a function of the scaled
distanceg depends on the shape of the boundary, which is
characterized by the dimensiond of the radial subspace. For
d52 and 4 we have performed the inverse Laplace trans-
form in Eq. ~2.5! numerically. Figure 5~a! shows both the
situation in which the unperturbed polymer size@20# R is
much smaller (2l1/250.2) and that in which it is much

larger (2l1/255) than the radiusR of the generalized cylin-
der. As expected from Eq.~2.4a!, the end density increases
linearly for small distancesr215(r'2R)/R!1 and ap-
proaches the bulk value forg@1 because in this limit the
chain is unlikely to reach the surface. For smalll5L/R 2 it
is plausible that the surface curvature is negligible and that
the curves ford52, 3, and 4 should be close to the curve for
d51, which corresponds to the planar boundary@36#. How-
ever, if l is large, the relative reduction 12ME of possible
configurations due to the presence of the surface depends on
d as expected intuitively; it is most pronounced for an infi-
nite planar surface (d51), less for a cylindrical (d52), and
even less for a spherical (d53) surface. For this reason
ME approaches its bulk value more rapidly for largerd.

This is in line with the limit ofME for l→` with r.1
fixed, which equals zero ford<2 and 12r2(d22) for
d.2, respectively@see Eq. ~2.16!#. For d52 ~cylinder!
ME vanishes logarithmically asME.(2lnr)/(lnl) @37#.
These results forR,r'!R are complemented by those for
R!r' ,R, which we shall obtain within a more general
framework in Sec. IV.

B. Monomer density

The monomer density at the pointy5(y' ,yi)PV for a
solution of freely moving ideal chains is proportional@1,4# to
the numerator of the rhs of Eq.~1.6! integrated over the
positionsr andr 8 of the two chain ends. Considering again a
purely repulsive surface one finds for the bulk-normalized
monomer density for ideal chains the expression~recall that

Ẑl,b
(D)51)

MM~c;l!5
1

lE0
l

dl8Ẑl2l8~c;z5`!Ẑl8~c;z5`!,

~3.3!

in whichc[y' /R denotes the scaled distance from the axis
of the generalized cylinder where the density is monitored.

For d51 andd53 we obtain the explicit results@26#

MM~c;l!511
4b

Ap
@vexp~2b2!2v2exp~24b2!#

22v~112b2! erfcb1v2~118b2! erfc2b,

~3.4!

where b[(c21)/(2l1/2), v51 for d51, and
v5c215(112l1/2b)21 for d53. For the planar case
d51 Eq. ~3.4! reduces to Eq.~3.91! of Ref. @4#.

Figure 5~b! shows the behavior ofMM as a function of the
scaled distanceb for the special cases 2l1/250.2 and 5 and
for several dimensionsd of the radial subspace. The mono-
mer densityMM increases quadratically for small distances
c21!1 and approaches the bulk value forb@1 @compare
the corresponding behavior of the end densityME discussed
above in Fig. 5~a!#.

C. Free energy for immersing a particle

Upon immersing a single particleK into a dilute polymer
solution the free energy of the system changes by an amount

FIG. 5. End density profileME(r;l) as a function of
g5(r21)/(2l1/2) ~a! and monomer density profileMM(c;l) as a
function of b5(c21)/(2l1/2) ~b! of an ideal chain for
2l1/250.2 ~lower set of lines! and 2l1/255 ~upper set of lines!. For
d51 there is no dependence onl. Note that both densities ap-
proach their bulk values more rapidly asd increases. For the small
value forl the curves ford5 2, 3, and 4 are close to the curve for
d51, which corresponds to the planar boundary.
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FK52kBTln@~ZL,V1dZL,V
~K!!/ZL,V#

N. ~3.5!

Here we consider a particleK of finite size andN polymer
chains inside a finite volumeV. The quantityZL,V is the
partition function of a single free polymer chain in the ab-
sence of the particleK anddZL,V

(K) its change due to the pres-
ence ofK. Consider now a particleK with the form of the
sectional volumeKùV between the generalized cylinderK
and the finite volumeV5ViV' ~whereVi and V' are the
volumes of the parallel and perpendicular subspaces ofV,
respectively! so thatK will approachK asVi→` @38#. In the
limits Vi ,V'→` the ratios

ZL,V /V→ẐL,b
~D ! ~3.6a!

and

dZL,V
~K! /Vi→dZL

~K !5E
Rd
ddr'@ ẐL~r'!2ẐL,b

~D !# ~3.6b!

are independent ofV. ẐL(r') is the partition function intro-
duced in Eq.~2.1!, which vanishes forr',R. Thus in the
thermodynamic limit~with a finite number densityN/V of
polymer chains in the bulk! one has

FK /Vi→p0~2dZL
~K !!/ẐL,b

~D ![p0d f K , ~3.6c!

wherep05kBTN/V is the~ideal gas! pressure in the system
without the particle and

d f K5Rd
Vd

d
1RdVdE

1

`

drrd21@12ME~r;R/R!#;

~3.7!

Vd52pd/2/G(d/2) is the surface area of thed-dimensional
unit sphere. The first term in Eq.~3.7! arises from the region
0,r',R in Eq. ~3.6b! whereẐL(r') does not contribute.

Equations~3.6! and ~3.7! apply both for a dilute solution
of ideal chains and for chains with excluded volume interac-
tion @35#. This is indicated in Eq.~3.7! by using the argument
R/R in ME instead ofl as in Eq.~3.1!. For ideal chains one
can use the explicit expression~2.4a! for X and finds

E
1

`

drrd21@12ME~r;l!#5Lt→lH Ka11~At!

t 3/2Ka~At!
J .

~3.8!

For short ideal chains, i.e.,l5L/R 2!1 this leads to

d f K5Rd
Vd

d
1Rd21VdH 2

Ap
L1/21

d21

2

L

R
1

~d21!~d23!

6Ap

L3/2

R 2 1•••J . ~3.9!

We note thatp0(2/Ap)L1/2 is the surface free energy per unit surface area for an ideal polymer solution in a half space with
aplanarboundary@38# caused by the depletion layer. While this is reflected@39# by the first term in curly brackets in Eq.~3.9!,
the second term in curly brackets is the first-order correction due to the surfacecurvatureand represents an additionalpositive
@40# contribution to the free energy for the exterior of a cylinder (d52) and a sphere (d53) in three-dimensional space. In
Appendix C we generalize the small-curvature expansion~3.9! to more general particle shapes.

The result~3.9! can be compared with an approximation in which the interaction between the particleK and the polymer
chain is as if the polymer chain would be a pointlike hard sphere~PHS! @41# of radiusR̃[(2/Ap)L1/2; otherwise the chains
are treated as pointlike objects without mutual interaction. Within this PHS approximation the counterpart ofd f K is given by

d f K
~PHS!5~R1R̃!d

Vd

d
5Rd

Vd

d
1Rd21VdH R̃1

d21

2

R̃2

R
1

~d21!~d22!

6

R̃3

R 21 . . .1
1

d

R̃d

Rd21 J . ~3.10!

This series terminates for integer values ofd. Note that the
prefactor in the relation betweenR̃ andL1/2 has been chosen
such that for a plate (d51) @38# one hasd f K

(PHS)5d f K .
Thus, apart from a numerical prefactor of order unity in front
of the third term, Eq.~3.10! reproduces correctly the three
leading terms in Eq.~3.9!. However, it does not reproduce
the dependence}(d23) of the fourth term in Eq.~3.9!,
which is quadratic in the curvature.

In the opposite limitL/R 2@1 the phs approximation fails
completely. In order to demonstrate this we consider a
sphere(D5d53) for which Eqs.~3.7! and~3.8! lead to@38#

d f sphere54pR3H 131
2

Ap

L1/2

R
1

L

R2 J , ~3.11!

which applies for arbitraryl5L/R 2 and is consistent with
Eq. ~3.9!. Thus, forl@1 one hasd f sphere;l, which is much
smaller than the phs approximation (;l3/2) would predict
@42#. This is expected because the chain will deform and coil
around the spherical particle and its partition function will be
less reduced than in the phs approximation.

Meijer and Frenkel@14# have introduced an effective
polymer radiusR̃eff(R,R) which follows from equating
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d f sphere
(PHS) with d f sphere. Figure 6 shows a comparison between

their simulation data and our analytical result~3.11!. We
choose their variables

x5R/L1/25A6R/R5R/Rgyr ~3.12a!

and

y5R̃eff /L
1/25A6R̃eff /R5R̃eff /Rgyr , ~3.12b!

whereRgyr is the radius of gyration@16#. The deviation is
only about 5% and is expected to disappear if the number of
links of the chain and the sphere radius in the simulation are
sufficiently large. One should note the crossover from the
behavior R̃eff.R̃5(2/Ap)L1/2 ~i.e., y.2/Ap) for short
chains x@1 to the behavior R̃eff.(3RL)1/3 @i.e.,
y.(3x)1/3] for long chainsx!1. Both limits of the cross-
over follow immediately from Eqs.~3.10! and ~3.11!.

Figure 7 shows the behavior ofd f K for several dimen-
sionsd of the radial subspace in terms of the function

S~l![
1

2
Ap F d f K

RdVd
2
1

dG . ~3.13!

The prefactor has been chosen such thatS(l)5l1/2 for
d51. According to Eqs.~3.13! and ~3.7! the functionS(l)
is essentially given by the integral in Eq.~3.8! over the rela-
tive reduction 12ME(r) of chain configurations with one
end fixed. Note that although 12ME is largest for a planar
boundary (d51) and decreases for largerd52, 3, and 4
@compare Fig. 5~a!#, the behavior ofS(l) is opposite@43#:
S is smallest for the planar boundary cased51 and in-
creasesfor d52, 3, and 4. This effect is caused by the pre-
factorrd21 in the integrand on the left-hand side~lhs! of Eq.
~3.8!, i.e., the relevant integration volume, which becomes
larger asd increases. Compare also the explicit behavior of
S(l→`) for d.2 presented at the end of Sec. IV C below.

IV. EXPANSION FOR SMALL RADII

In the limit for which the radiusR of the generalized
cylinderK is much smaller@44# than the length scales set by
the polymer end-to-end distanceR and the distances
r'2R or y'2R from the surface for which the densities
ME or MM are monitored, one may use an expansion intro-
duced in Ref.@17#. There it was argued that for a field theory
such as~1.5! the statistical weighte2DHK, which describes
the presence ofK can, forc51`, be replaced by

e2DHK } 11AKR
xK3H E

Rd
ddyi F2~y'50,yi!1•••, d.0,

F2~y50!1•••, d50.

~4.1!

FIG. 6. Comparison of our result ford f spherewith simulation
data obtained by Meijer and Frenkel@14#. The figure displays the
function R̃eff(R,R) defined by d f sphere

(PHS)(R;R̃[R̃eff)
5d f sphere(R;L5R2/6) whered f sphere

(PHS) andd f sphereare given by Eq.
~3.10! with d53 and by Eq.~3.11!, respectively, using the reduced
variables x5R/Rgyr and y5R̃eff /Rgyr ~see the main
text!. Our result ~3.11! implies the explicit form
x2(y22p21/2)1x(y221)1y3/350, which is shown as the solid
line. The open circles are taken from Fig. 2 of Ref.@14#. Note the
strong deviation for long chains (x!1) from the behavior
y.2p21/2 ~dashed line! valid for short chains (x@1).

FIG. 7. Crossover functionS(l) for the configurational free
energy for immersing a particle for several dimensionsd of the
radial subspace. The linear behaviorS(l→`).@(d22)/2#p1/2l
valid for d53,4 corresponds to the expansion~4.14! for small par-
ticle radii.
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In the upper line the integration over the cylinder axis in Ref.
@17~b!# has been generalized to ad5(D2d)-dimensional
integration over the ‘‘axis’’ of the generalized cylinderK.
The quantityAK is an amplitude~see below!. The leading
nontrivial dependence onR is determined by the exponent

xK5xF22d, ~4.2a!

wherexF2 is thebulk scaling dimension of the ‘‘energy den-
sity’’ F2. The ellipses in Eq.~4.1! denote contributions that
are of higher order inR. For the Gaussian model
xF25D22 and thus in this case

xK5d2252a ~4.2b!

depends ond but not onD. The expansion~4.1! makes sense
only for xK.0, i.e., in the case of the Gaussian model for
d.2 @see, however, Eq.~4.10! below#. This has important
consequences for the polymer statistics near a purely repul-
sive generalized cylinder as we shall demonstrate in the fol-
lowing.

A. End density

Using Eq.~4.1! together with the definition ofME in Eq.
~3.1! one finds

ME.11AKR
xK2LgE~r' ,L !, ~4.3a!

where

gE~r' ,L !5H E
Rd
ddyi m̂b~y'50,yi ;r ;L !, d.0,

m̂b~y50;r ;L !, d50.
~4.3b!

TheR-independent quantity

m̂b~y;r ;L !5m̂b~ uy2r u;L !

5
1

L
Lt→LE

RD
dDr 8^F~r !F~r 8! 12F2~y!&b

3FLt→LE
RD
dDr 8^F~r !F~r 8!&bG21

,

~4.3c!

with ^&b denoting thermal averages in the unbounded bulk
space, is the monomer fraction density aty5(y' ,yi)PRD

for a single chain in the unbounded bulk with one end fixed
at rPRD and the other end free. Similarly asm(y) in Eq.
~1.6! it is normalized:*RDd

Dym̂b(uy2r u)51.
For an ideal chain~i.e., within a Gaussian model forF)

we obtain

gE~r' ,L !5
1

LE0
L

dL8ZL8,b
~d!

~r'!5
1

4pd/2

r'
22a

L
G~a,h2!

~4.4a!

with

h5r' /~2L1/2!, ~4.4b!

where ZL,b
(d) is the Gaussian partition function in the

d-dimensional bulk space@19#, andG(a,x) the incomplete
G function @25#. Here we have used the relation

E
Rd
ddyi ZL,b

~D !~ ur2yu!5ZL,b
~d! ~ ur'2y'u!, ~4.5!

which implies that for an ideal chaingE depends ond but not
on D. SinceME has the same property, this must also hold
for the amplitudeAK in Eq. ~4.3a! so that we can use the
results forD5d from Ref. @17~b!# in order to obtain

AK522pd/2/G~a!. ~4.6!

Due to Eqs.~4.3!, ~4.4!, and ~4.6! one thus has for ideal
chains

ME.12S Rr'D d22

G~a,h2!/G~a!. ~4.7!

This result can be verified directly by using the explicit ex-
pression~2.4a! for X in the casez51` and its behavior for
R→0.

We expect that the relationship~4.3! is valid also for
chains with EVI @45#. However, in this case one has
xK5d2n21 with the Flory exponentn5n(D) @1# and one is
led to consider an amplitudeÃK defined by

AK5ÃK~D,d!R1/n/~2LD !, ~4.8!

whereR is the root-mean-square end-to-end distance of a
single chain with EVI in the unbounded bulk~compare Refs.
@20# and@35#!. While due ton21Þ2 the amplitudeAK is not
dimensionless and depends upon details of EVI, the ampli-
tudeÃK is dimensionless and universal@46#. We note that in
the presence of EVI the universal function@18#

RDm̂b~ uy2r u;L ![Mb~ uy2r u/R! ~4.9a!

depends onD while ÃK and

RdgE~r' ,L ![GE~r' /R! ~4.9b!

in general depend on bothD andd. Furthermore we expect
that forD53 and in the presence of EVI the behaviors~4.1!
and ~4.3! apply not only for a sphere (d53) but also for a
cylinder (d52) because the exponent@47~b!#

xK~D53,d52!522n21~D53!'0.30 ~4.10!

is positive in this case@whereasxK(d52)50 for an ideal
chain#.

A simple and general result follows forR!r'!R in
which case the behavior ofm̂b(uy2r u) in Eq. ~4.3c! is deter-
mined by the leading term in the short distance expansion in
the unbounded bulk@47# :

F~r !F2~y!5
Bb

ur2yuD2~1/n! F~r !1•••, ~4.11a!

where
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Bb5B̃b~D !2LD/R1/n, ~4.11b!

with a dimensionless and universal@46# bulk amplitude
B̃b , which depends onD. Inserting Eq.~4.11! into Eq.~4.3c!
leads to@48#

ME21.ÃK~D,d!B̃b~D !CKS Rr'D xK, ~4.12a!

where

CK5H pd/2G~xK /2!/GSD2n21

2 D , d.0

1, d50.

~4.12b!

The first line in Eq. ~4.12b! follows from the integral
*Rdddyi(r'

21yi
2)2(D2n21)/2, which is convergent for

xK.0. The rhs of Eq.~4.12a! does not depend onR and
suggests that in the presence of EVIME remains nonzero for
R→` not only for a sphere but also for a cylinder in
D53. This should be compared with the ideal chain behav-
ior for d52 whereME→0 forR→` as discussed in the last
paragraph in Sec. III A.

B. Monomer density

The expansion~4.1! can be used to express the behavior
of the monomer densityMM for small R in terms of the
monomer density correlation function of a single chain in the
unbounded bulk@which is related to the ‘‘magnetic’’ corre-
lation function ^F(r )F(r 8)F2(y)F2(y8)&b#. Here we only
present the explicit result for ideal chains. We find from
Eqs.~3.3! and ~2.4a! for d.2

MM.12S Ry'
D d22 2

G~a!
fa21

3exp~2f2/2!Wa/223/2,a/2~f2!, ~4.13a!

where f5y' /(2L1/2) and Wb,m is Whittaker’s function
@25#. For d53 it reduces to

MM.12
R

y'

@2~112f2! erfcf2~4/Ap!f exp~2f2!#,

d53, ~4.13b!

and ford54 to

MM.12S Ry'
D 22E2~f2!, d54, ~4.13c!

whereE2 is the exponential integral@25#.

C. Free energy for the immersion of a particle

The expansion~4.1! can also be used to evaluate the be-
havior of the free energyFK for smallR upon immersing a
particleK[K into a dilute polymer solution as discussed in
Sec. III C. ForR!R the integral in Eq.~3.7! is dominated
by the regionR!r'5O(R) where Eq.~4.3! holds. Since

*Rdd
dr'gE51 one finds with Eq.~4.8! that the quantity

d f K in Eq. ~3.7! for R!R tends to

d f K→d f̃ K52AK2LR
xK52Rd

ÃK

D SRRD 1/n. ~4.14!

This relation applies for both ideal chains and chains with
EVI as long asxK.0. For ideal chains andd.2 it can be
verified by using Eqs.~3.8! and ~4.6!. For the function
S(l) in Eq. ~3.13! it leads to the asymptotic behavior
S(l→`).@(d22)/2#Apl, which increases withd in ac-
cordance with Fig. 7.

D. Effective interaction of a particle with a planar wall

In the following we consider a particleK immersed in a
dilute polymer solution that fills a half space~HS! bounded
by a planar wallW. The effective interaction of this particle
with the wallW is given by the difference of the free energy
for immersing a particle at a finite and an infinite distance,
respectively, from the wall:

dFK,W5~FK,W2FW!2FK . ~4.15!

If K approaches a generalized cylinderK with its axis par-
allel to and a distancea apart from the planar wall the inter-
action free energy per ‘‘unit axis length’’@38# dFK,W /Vi
remains finite.FK /Vi approaches the rhs of Eq.~3.6c!; the
thermodynamic limit of (FK,W2FW)/Vi has the same form
as the rhs of Eq.~3.6c! with dZL

(K) replaced by

dZL
~K,W!5E

Rd
ddr i E

HS0

ddr'E
HS0

ddr'8 @ZL
~K,W!~r ,r 8!

2ZL
~W!~r ,r 8!#. ~4.16!

HereZL
(K,W) andZL

(W) denote partition functions of a chain
with two ends fixed, which coils in the half space

HS5$r5~r'1 ,r'2 , . . . ,r'd ;r i!PRd3Rd;r'1.2a%
~4.17a!

bounded by the wallW at r'152a in the presence and
absence, respectively, of the generalized cylinderK with axis
at r'50 and radiusR. The integrations overr' and r'8 in
Eq. ~4.16! are over the subspace HS0 of HS wherer i50 in
Eq. ~4.17a!. It is understood thata>R and thatZL

(K,W)

vanishes forr',R or r'8 ,R. In Eq. ~4.16! there is no inte-
gration overr i

8 since bothZL
(K,W) andZL

(W) depend onr i and
r i
8 only in the formur i2r i

8u and becauseVi has been factored
out. For later use we introduce another coordinate represen-
tation

HS5$x5~z,s!PR3RD21;z.0% ~4.17b!

for the HS in Eq.~4.17a! where

z5r'11a ~4.17c!

is the distance from the boundary wallW and

s5~r'2 , . . . ,r'd ;r i! ~4.17d!

comprises theD21 components parallel toW.
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The finite limit d f K,W of dFK,W /(Vip0) asK→K @38# is
the counterpart ofd f K in Eq. ~3.6c! and depends only on the
radiusR, the polymer end-to-end distanceR, and the dis-
tancea of the axis of the generalized cylinder from the wall
@18#. While the full functiond f K,W is not known exactly in
general even for a Gaussian chain, one finds a simple explicit
form in the limit R!R,a. In this case the expansion~4.1!
can be used to evaluate Eq.~4.16!, which leads to a depen-
dence ofd f K,W on a proportional to the bulk-normalized
monomer densityMM

(W) in a half space, which has the form
@4#

MM
~W!~a/R!}Lt→LE

HS
dDxE

HS
dDx8

3 K F~x!F~x8!
1

2
F2~a,s50!L

hs

. ~4.18!

Here^&hs denotes the thermal average for the half space@49#
with the wall atz50 @see Eq.~4.17b!#. Since the contribu-
tion to d f K,W from 2FK in Eq. ~4.15! is given by2d f K and
since d f K,W must vanish in the limita→` we obtain for
R!R,a,

d f K,W.d f̃ K@MM
~W!~a/R!21#, ~4.19!

with d f̃ K defined in Eq.~4.14!. This means that the presence
of the polymer chains leads to anincreaseof d f K,W for in-
creasinga and thus to anattractive force between the wall
and the particle. In the particular caseR!a!R one has
d f K,W.2d f̃ K because in this limitMM

(W) vanishes@1# as
(a/R)1/n. Equations~4.18! and ~4.19! hold for both ideal
chains and chains with EVI. For ideal chainsMM

(W) corre-
sponds to the quantity in Eq.~3.4! for d51.

The general mechanism for the attractive depletion inter-
action has first been pointed out by Asakura and Oosawa
@41#. This interaction is relevant for colloids~see, e.g., the
classic experiments of Sperry, Hopfenberg, and Thomas
@50#, the recent reviews in Ref.@51#, and the references cited
therein!. While approximate expressions for the interaction
exist for the caseR!R @6,7# and forR of the order ofR
@14#, to our knowledge Eq.~4.19! is the first quantitative
result for the caseR@R.

Similar results can be obtained for the solvation force
between two spherical particles or between a sphere and a
cylinder in unbounded space with radii that are much smaller
than bothR and their mutual distancea. In these cases the
dependence ona/R is determined by the monomer density
correlation function of a single chain in unbounded bulk. For
three or more spherical particles with small radii the expan-
sion ~4.1! leads to higher monomer correlation functions of a
single chain and to a polymer-induced interaction that is not
pairwise additive@14# ~compare the discussion in Ref.@17#
for the corresponding situation of binary liquid mixtures at
criticality!.

V. CONCLUDING REMARKS AND SUMMARY

We have investigated the interaction of a long flexible
polymer chain with rigid particles of spherical or cylindrical
shape@52#. Possible applications include colloidal particles
of spherical or rodlike shape@7,8,50,51# immersed into a
dilute polymer solution. We have studied both the case in
which the surface of the particles is purely repulsive for the
chain monomers~depletion case! and the case of a surface
with a short-ranged attraction, which leads to the possibility
of an adsorption-desorption transition. While for the latter
case explicit results have been obtained only foridealchains,
for the depletion case we have considered both ideal chains
and chains with an EVI.

We have used the polymer-magnet analogy~PMA!
@1,16,4#, which relates the chain problem to properties of a
field theory. As discussed in Sec. I, the field theory corre-
sponding to an ideal chain is characterized by the Hamil-
tonian ~1.5!. In the presence of EVI one may use a similar
field theory in which, however, the order parameter
F[(F1 , . . . ,FN) hasN components andHK in Eq. ~1.5! is
to be supplemented by an interaction}*Vd

Dr uFu4.
The PMA is already useful for an ideal chain. The propa-

gatorG of the Gaussian field theory~1.5! is known explicitly
~Appendix B! for an arbitrary value of the surface parameter
c. The chain partition functionZL follows by a Laplace
transform@see Eq.~1.4! and Sec. II A#. This approach allows
one to obtain thefull partition function for an ideal chain
near the adsorption-desorption transition, which contains
contributions from both the ground state@53# and excited
states. The renormalization-group approach, which is well
advanced for such local field theories, leads via the PMA to
an explanation of universality and scaling in polymer statis-
tics @1,4,16#. In combination with perturbative methods such
as the« expansion@16# the influence of EVI can be studied
systematically and quantitatively.

In addition short-distance expansions@1,4,16,47# ~SDE!
for such field theories offer important nonperturbative in-
sights into the polymer statistics. Interesting features of poly-
mer solutions that are exposed to immersed spherical or cy-
lindrical objects of finite extension~i.e., particle radiusR)
can be inferred from the special type@17# of SDE discussed
in Sec. IV. We have shown how to use this expansion in
order to obtain results for polymers in the depletion case if
the particle radiusR is much smaller than the~root-mean-
square! end-to-end distanceR of a chain in the bulk polymer
solution.

Still another type of SDE applies for a ‘‘small’’ distance
from a planar surface@22#. This is modified in an interesting
way if the surface is curved. Consider, e.g., the Gaussian
model~1.5! for c51`. In this case Eq.~B3! implies that the
propagatorG5G(r' ,r'8 ,q, ur i2r i

8u;t,c5`,R) reduces to

G~r'↘R!5D
]G

]r'
ur'5R1O„~r'2R!3… ~5.1a!

if the other variables are kept fixed and

D~r'!5~r'2R!F12
d21

2

r'2R

R G ; ~5.1b!
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the term}(r'2R)2, which is of second order in the small
distance from the surface, is due to the curvature and drops
out for 1/R→0 @54#. The short-distance dependenceD is
proliferated to the partition functionZL in Eq. ~1.4! and to
integrated quantities such asx in Eq. ~2.2! and ẐL in Eq.
~2.1!:

x~r'↘R!5D
]x

]r'
ur'5R2

1

2
~r'2R!21O„~r'2R!3…

~5.2!

and

ẐL~r'↘R!5D
]ẐL
]r'

ur'5R1O„~r'2R!3…. ~5.3!

The second term on the rhs of Eq.~5.2! appears already for a
planar surface and arises from those contributions to the in-
tegral in Eq.~2.2! where r'8 is close to the surfacer'8 5R
@55#. Since it does not depend ont it drops out from the
inverse Laplace transform and is absent in Eq.~5.3!.

In the following we summarize our main results, starting
with the depletion phenomena in which a dilute polymer
solution is in contact with one~or more! purely repulsive
particles.

~1! For a single sphere or cylinder both the density of
chain endsME and the monomer number densityMM in the
surrounding polymer solution have been considered as a
function of the distancer'2R from the particle surface and
of the ratioR/R of the polymer end-to-end distanceR and
the particle radiusR. For ideal chains the explicit results are
shown in Figs. 5~a! and 5~b!. We have found analytic expres-
sions @see Eqs.~4.7! and ~4.13!# for R!r' ,R with r' /R
arbitrary and forR, r'!R with arbitraryR/r',1 ~see the
last paragraph in Sec. III A!. If the shape of the boundary
changes from a plane via a cylinder to a sphere the depletion
hole in ME andMM becomes less and less pronounced if
R@R while for R!R the profiles are close to those for a
planar boundary. The quantitative behavior ofME for
R→` is given for these three cases in the first line of Table
I. For chains with EVI we have obtained the behavior of
ME for spheres and cylinders in the regionR!r'!R @see
Eq. ~4.12!#. This is shown in the second line of Table I. We
emphasize that the EVI weakens the repulsive character of
the boundaries. In particular for the cylinder it leads to a
finite limit of ME for R→`.

~2! The free energy from conformation changes upon im-
mersing a single particle into a dilute polymer solution can

be expressed in terms ofME @see Eq.~3.7!# and depends on
R/R. For ideal chains we have evaluated the complete de-
pendence for spheres and cylinders~see Fig. 7!. Recent
simulation data for a sphere@14# are very close to our exact
asymptotic result~see Fig. 6!. In the limit R@R we have
found a general expression for this free energy difference
@see Eq.~4.14!#, which is also valid in the presence of EVI.
Bounding surfaces of more general shapes such as those of
flexible membranes with a small but spatially varying local
curvature have also been addressed~see Appendix C!.

~3! If a particle is positioned near the planar container
wall of a dilute polymer solution the interference between
the depletion in front of the wall and around the particle
leads to an effective interaction between the wall and the
particle. In the particular case in which the radiusR of the
particle is much smaller than both the distancea of the par-
ticle from the wall and the end-to-end distanceR in the
polymer solution the interaction free energy is determined by
the monomer densityMM

(W) in the half space and is given by
Eq. ~4.19!. Such effective interactions are experimentally rel-
evant@50,51#.

We now summarize our results for a single ideal polymer
chain, which is fixed with one end near a curved boundary
endowed with anattractiveshort-ranged surface potential.

~4! The ‘‘magnetic’’ phase diagram and the correspond-
ing phase diagram for polymer adsorption have been dis-
cussed for the Gaussian~ideal chain! case. Figure 2~a! shows
the ‘‘magnetic’’ phase diagram as a function of the param-
etersz5cR and t5tR 2, which occur in the Hamiltonian
~1.5! of the Gaussian field theory. The quantityc is an in-
verse extrapolation length and characterizes the short-ranged
surface potential@compare Eq.~1.2c! and Appendix A#. The
‘‘magnetic’’ phase diagram translates into a phase diagram
for polymer adsorption shown in Fig. 2~b! in which the pa-
rametert is replaced byl215R 2/L and the ‘‘chain length’’
L is related to the end-to-end distanceR viaR252LD @20#.
In the limit of an infinite chain length (l2150) important
properties change nonanalytically asz passesz* . In particu-
lar the fraction of chain monomers in a layer of finite width
around the surface vanishes forz.z* ~nonadsorbed state!
while it is finite for z,z* ~adsorbed state!. ~The effects of
EVI on the results obtained for an ideal chain will be ad-
dressed below.!

~5! For an infinite ideal chain in the adsorbed state
(l2150,z,z* ) the layer densityP(c,R) of the monomer
fraction near the surface and the ‘‘decay length’’a' , which
is a quantitative measure of the thickness of the adsorption
layer, are shown in Figs. 3~a! and 3~b! as a function of the

TABLE I. End densityME for R→` and various geometries inD53 spatial dimensions. While the
result for a sphere and a cylinder in the first line apply forR,r'!R with arbitraryR/r',1, those in the
second line apply only forR!r'!R. The variablez for the half space denotes the distance from the planar
wall. The exponents 1.30 and 0.30 equald2n21 with d53 andd52, respectively, and withn21'1.70
@47~b!#. The exponent 0.82 for the half space is a critical surface exponent;a andb are universal amplitudes.
For a small distance from the surface of a sphere and a cylinder (r'2R!R,R) we expect a power-law
dependenceME;(r'2R)0.82 with the same surface exponent as for a planar surface.

Free space Sphere Cylinder Half space

Ideal chains 1 12R/r' ; ln(r' /R)/ln(R/R) ;z/R
Chains with EVI 1 12a(R/r')

1.30 12b(R/r')
0.30 ;(z/R)0.82
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scaled incrementuz2z* u of the surface parameterc. In par-
ticular for d52 ~cylinder! the fraction densityP vanishes
exponentially@11,33# for z↗z* , which corresponds to an
exponential divergence of the lengtha' @34#. In the limit
uz2z* u@1 the thickness of the adsorption layer is much
smaller thanR and both the fraction densityP and the length
a' exhibit in all cases the limiting behaviorP.2ucu and
a'.1/ucu known from a planar surface. This crossover scal-
ing behavior for an ideal chain near the adsorbing general-
ized cylinder is expected to be universal, i.e., to apply quan-
titatively also for the asymptotic~large scale! behavior of
lattice models@23#. It turns out that the universal asymptotic
scaling functions are easily accessible within the present con-
tinuum approach.

~6! The behavior of the number of adsorbed monomers at
the adsorption thresholdz5z* as a function ofl5L/R 2 is
shown in Fig. 4 for an ideal chain in terms of the scaling
function LS defined in Eq.~2.23!. The curves display the
crossover from the planar limitL/R 2!1 to the long-chain
limit L/R 2@1 for which we have obtained analytical results
@see Eq.~2.22!#.

We conclude by discussing in which cases in the presence
of EVI the adsorption-desorption transition, i.e., the forma-
tion of a finite adsorbed monomer fraction asR diverges,
survives for an attractive surface withc,c* . As long as
d<D21 ~planar or cylindrical boundary inD53 and
straight line boundary inD52) @10#, we expect that the
transition always occurs because the chain has the possibility
to grow along the remainingd5D2d>1 infinitely ex-
tended dimensions, thus effectively avoiding contact with it-
self. For the phase diagram in Fig. 2~a! of the Gaussian field
theory this means that the linepa(z) for d52 is the Gauss-
ian approximation of an experimentally accessible phase
transition line, which in the presence of EVI corresponds to
the limit N→0 of theN-component field theory in the outer
space of a cylinder inD53 with d51 @56#. In particular the
existence of the transition has been proven rigorously@57#
for the planar caseD52, d51 with d51. However, for
d5D excluded volume effects will become so severe@10#
that a finite limit of the adsorbed monomer fraction is not
possible and a true phase transition will not occur.

Note added in proof.Recently we received a copy of un-
published work by Ch. Hiergeist and R. Lipowsky~HL!
@Max-Planck-Institut fu¨r Kolloid- und Grenzfla¨chenfors-
chung, Teltow-Seehof, Germany report~1996!# in which
polymers are considered that are anchored with one end to a
repulsive surface. In a small curvature expansion fro the
mushroom regime not only the spontaneous curvature term
~see Ref. @40#! but also the rigidity terms}1/Rm

2 and
}1/~R1R2! have signs that are different from those in the free
polymer case considered in the present paper, compare Eq.
~32! of HL with our Eq. ~C1!. For the convenience of the
reader we note the formME

lin5~r21!@~pl!21/21~d21!/
21~l/p!1/2~d21!~d23!/41•••# of ME in the linear region
@compare Fig. 5~a!# which determines the partition function
of an ideal chain that is anchored close to the surface of a
weakly curved generalized cylinder. Ford51, 2, and 3 this
leads to the partition function given in HL for a half sapce
~HS!, cylinder, and sphere, respectively, and to the corre-
sponding free energy differenceskBT ln@ME

lin/(ME
lin)HS# in

which r21 drops out.
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APPENDIX A: SURFACE POTENTIAL
AND EXTRAPOLATION LENGTH

We are interested either in a purely repulsive surface of
the generalized cylinderK in Eq. ~1.1! so thatZL vanishes at
the boundary~which may formally be described by the limit
c51`) or in the neighborhood of the adsorption threshold
where the extrapolation length 1/c @1,2# is much larger than
microscopic lengths such as the rangeb of the attractive part
of the surface potential@18#.

In an effort to analyze explicitly the origin ofc near the
adsorption threshold for the geometry~1.1! we add a short-
ranged attractive surface potentialW(r') inside the bracket
of the diffusion equation~1.2a!:

W~r'!5H 1`, r',R2b

2w, R2b,r',R

0, R,r' ,

~A1!

with w.0. This leads to a Laplace transformG of ZL ,
which has the form given by Eq.~B3! of Appendix B. How-
ever, forR2b,r'

(,),R the quantity

~r'
~, !!2a @ I a1l ~Amr'

~, !!2Al
~a!Ka1l ~Amr'

~, !!#

on the rhs of Eq.~B.3c! has to be replaced by a dependence
on r'

(,) proportional to

Q~r'
~, !!5

1

2i
~r'

~, !!2aH Ha1l
~1! ~Ambr'

~, !!

Ha1l
~1! @Amb~R2b!#

2
Ha1l

~2! ~Ambr'
~, !!

Ha1l
~2! @Amb~R2b!#

J , ~A2!

wheremb[w2p22t andHa
(1) , Ha

(2) denote Hankel func-
tions @25#. The logarithmic derivative ofQ with respect to
r'
(,) at r'

(,)5R definesc. Since near the threshold one has
for R/b large @18#

AmbR.pR/~2b! ~A3!

the Hankel functions attain their asymptotic form for which
the dependence ona1l drops out. There remains, however,
a dependence ond from the prefactor (r'

(,))2a on the rhs of
Eq. ~A2! so that

c.
p

2 S p

2b
2AwD2

d21

2R
~A4!

apart from a negligible contribution}b(p21t).
Using the threshold valuesc* , which follow from Eq.

~2.9a! one finds
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p

2 S p

2b
2Aw* D .H ~d21!/~2R!, d<2

~32d!/~2R!, d.2,
~A5!

so that the threshold valuew* of w in W(r') depends on
d. In particular w*5w* (d) is smallest for d52 and
w* (3)5w* (1), which is consistent with the results of Ball,
Blunt, and Barford@58#.

Equation~A4! shows that the description of the surface of
K ~which has a constant curvature! by means of a logarith-
mic derivative or inverse extrapolation lengthc also encom-
passes the asymptotic behavior near the adsorption threshold
of the particular model~A1!. The quantityc enters into mea-
surable quantities in a much more direct and universal way
than potential distributions in a continuum model~or energy
gains in surface layers of a lattice model!. In this work we
assume thatc has a given value and thus we avoid the com-
plicated task of calculatingc for a particular curved surface
exposed to a specific polymer system.

APPENDIX B: THE GAUSSIAN PROPAGATOR

The Gaussian two-point correlation function in the vol-
umeV as introduced in Eq.~1.1! satisfies the Schro¨dinger-
type equation@22#

~2DD1t !G~r ,r 8;t,c,R!5d~D !~r2r 8! ~B1a!

with the boundary condition

]nG~r ,r 8;t,c,R!ur5rS
5cG~r ,r 8;t,c,R!ur5rS

, ~B1b!

whererS is a point on the surface ofK. In order to solve Eq.
~B1! we first note that the Laplacian operatorDD in coordi-
nates adapted to our specific problem has the form (D and
d are integers!

DD5Dd1(
i51

d
]2

]r i ,i
2 , ~B2a!

whered5D2d and

Dd5
]2

]r'
21

d21

r'

]

]r'
1

1

r'
2 F ]2

]q2 1~d22!cotq
]

]q G
~B2b!

is the Laplacian operator in thed-dimensional subspace
$r'PRd;r'.R% in spherical coordinates. Hereq denotes
the angle of the coordinater' with respect to a fixed direc-
tion in the radial subspace~see Fig. 1!. ~For d51 there is no
angleq so that in this case the term in square brackets must
be omitted.!

Using a well-known technique@59# for solving Eq.~B1!
we eventually arrive at

G~r ,r 8;t,c,R![G~r' ,r'8 ,q,ur i2r i8u;t,c,R!5 (
l 50

`

Wl
~a!~q!E

Rd

ddp

~2p!d exp@ ip~r i2r i8!#G̃l ~r' ,r'8 ;m,c,R!, d,D,

5 (
l 50

`

Wl
~a!~q!G̃l ~r' ,r'8 ;t,c,R!, d5D, ~B3a!

wherea[(d22)/2 andm[p21t. The last line holds because ford5D there is no parallel componentr i2r i
8 and hence no

Fourier variablep. The functionWl
(a)(q) is given by

Wl
~a!~q!5H ~2pd/2!21G~a!~ l 1a!Cl

a~cosq!, dÞ2,

~2p!21~22d l ,0!cos~ l q!, d52,
~B3b!

where G is the G function, Cl
a denote Gegenbauer polynomials@25#, and d l ,051 for l 50 and zero otherwise. Here

Wl
(a)(q) is normalized so that*dVdWl

(a)5d l ,0 . The second line of Eq.~B3b! is the limit d→2 of the first line. The
propagatorG̃l takes the form

G̃l ~r' ,r'8 ;m,c,R!5~r'
~, !r'

~. !!2aKa1l ~Amr'
~. !!@ I a1l ~Amr'

~, !!2Al
~a!~m,c,R!Ka1l ~Amr'

~, !!#, ~B3c!

wherer'
(,)[min(r' ,r'8 ) and r'

(.)[max(r' ,r'8 ). For d5D the variablem is to be replaced byt. I a andKa denote modified
Bessel functions@25# and

Al
~a!~m,c,R!5

AmRIa1l 11~AmR!1~ l 2cR!I a1l ~AmR!

2AmRKa1l 11~AmR!1~ l 2cR!Ka1l ~AmR!
~B3d!

~see also Refs.@60#, @24#, and@28#!.
We note that in the cased51 only the terms withl 50 and 1 appear on the rhs of Eq.~B3a! and yield the well-known

Gaussian propagator for the semi-infinite spacer'.R @4,22,61#

G~r' ,r'8 ,ur i2r i8u;t,c!5E
RD21

dD21p

~2p!D21 exp@ ip~r i2r i
8!#

1

2Am
Fe2Amur'2r'

8 u2
c2Am

c1Am
e2Am~r'1r'

8 22R!G . ~B4!
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Finally we note that the usual Gaussian propagatorGb in theD-dimensional unbounded bulk space is given by Eq.~B3! with
Al
(a)(m,c,R)50. In this case the summation overl and the integration overp can be carried out explicitly yielding the

well-known result

Gb~ ur2r 8u;t !5~2p!2D/2t ~D22!/4
K ~D22!/2~Atur2r 8u!

ur2r 8u~D22!/2 . ~B5!

APPENDIX C: SMALL-CURVATURE EXPANSION
FOR A REPULSIVE SURFACE OF GENERAL SHAPE

A small-curvature expansion such as~3.9! is also ex-
pected for a particleK of more general shapeprovided its
surfaceS is smooth and all principal radii of curvature are
much larger than the chain end-to-end distanceR @20# ~com-
pare the related discussions in Refs.@62# and @12#~c!#!.

We consider a particleK in D53 with finite volumevK
and with a purely repulsive boundary surfaceS5]K im-
mersed in a dilute solution of ideal chains. Due to general
arguments@63# the expressionFK /p02vK corresponding to
Eqs.~3.6c! and ~3.9! is expected to take the usual form of a
surface integral over the local surface free energy density
and the first- and second-order local curvature energy densi-
ties, i.e.,

FK /p02vK5E
S
dSH 2

Ap
L1/21

L

Rm
2
2L3/2

3Ap
F 1

Rm
22

1

R1R2
G

1•••J , ~C1!

whereR1, R2 are the two principal local radii of curvature,

1

Rm
5
1

2 S 1R1
1

1

R2
D ~C2!

is the mean local curvature, and 1/(R1R2) is the local Gauss-
ian curvature.~We use the convention thatR1 ,R2.0 means
that the boundary surface is bentaway from the polymer
solution located in the exterior ofK.! We note that

1

Rm
22

1

R1R2
5
1

4 S 1R1
2

1

R2
D 2>0. ~C3!

The prefactors~curvature energies! of the terms 1/Rm ,
1/Rm

2 and 1/(R1R2) on the rhs of Eq.~C1! are uniquely
determined by the special cases thatK is a sphere
(R15R25R) and thatK is a cylinder (R15R, R25`) and
follow by the comparison with Eq.~3.9! for d53 and
d52, respectively.

The rhs of Eq.~C1! determines also the change in surface
free energy and in the first- and second-order curvature en-
ergies of aflexiblesurface such as amembraneupon expos-
ing one side of it to a solution of ideal polymers@62~d!,~e!#,
which are repelled by the surface. Thus the addition of poly-
mers favors a bending of the membrane surfacetowardsthe
solution@40# and leads to aweakeningof its surface rigidity.
The sign of the Gaussian curvature energy will generally
favor surfaces with higher genuses and thus the formation of
handles.

These predictions are opposite to some of the conclusions
in Refs. @62~d!,~e!# @see in particular Eq.~12! and the text
below Eq.~13! in Ref. @62~d!##. For an examination and ex-
planation of this discrepancy see Ref.@64#.
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from Eq. ~3.6! by puttingVi51.

@39# For the plate geometry (d51) @38# the factorVd5152 in
front of the curly bracket in Eq.~3.9! accounts for thetwo
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@42# As will be shown in Eq.~4.14!, for systems with a positive
exponentd2n21 ~such as a cylinder inD53 in case of EVI
or a sphere! one has generallyd f K;R1/nRd2(1/n) for R→0.
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sity P(z) in the adsorbed limit@11#. On the other hand, it is
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z5z* and its crossover behavior with increasingl5L/R 2, or
for the density profilesME and MM for a purely repulsive

surfacec51`. In Ref. @9# the full partition functionẐL is
considered for the special case of a purely repulsive sphere.

@54# In general, SDEs can be written in ‘‘operator form.’’ In the
planar cased51 Eq. ~5.1! corresponds to the operator expan-
sion@22# F(z,s)5(kAkz

aksk(s) with z5r'2R and for which
the lowest surface operators1(s)5]zF(z,s)z50 has a scaling
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2F)z50 ands2,B5(DsF)z50 vanish
for a planar surface with Dirichlet conditions. This is obvious
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operator form that corresponds to Eq.~5.1!. We expect that
these arguments can be appropriately generalized to a theory
including auFu4 interaction.
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Phys. A15, 539 ~1982!.
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@61# Analogous to Ref.@60# one can derive the Gaussian propagator
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@22#.
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@63# See, e.g., F. David, inStatistical Mechanics of Membranes and
Surfaces, edited by D. Nelson, T. Piran, and S. Weinberg
~World Scientific, Singapore, 1988!.

@64# We examine the reason for the disagreement using notations
from Ref. @62~d!#. First, we note that the expression forJ(s)
on the rhs of Eq.~11! in Ref. @62~d!# with the definition of
U in Eq. ~10! ~with k51`) and the definition ofJ0(s) be-
low Eq. ~6! is completely consistentwith our Eq.~C1! in Ap-
pendix C. However, one has to take into account that the spa-
tial integrations **d3Rd3R8 in Ref. @62~d!# have to be
performed only over the half-spaceV1 occupied by the poly-
mer solution while the other sideV2 of the boundary surface
has to be excluded from the integration. It seems that in
the step that leads from Eq.~11! to Eq. ~12! the quan-
tity B(s)[(1/s)V12J0(s)5*V1

*V2
d3Rd3R8G0(R,R8;s),

which contributes to the zeroth- and second-order curvature
term, has been neglected. We also note that for the quantity
Rv in Refs. @62~d!,~e!# and our quantityRm in Eq. ~C2! an
opposite sign convention has been used so thatRv52Rm

@compare Fig. 1 and Eq.~21! in Ref. @62~e!##.
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