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A recently developed model of random walks on aD-dimensional hyperspherical lattice, whereD is not
restricted to integer values, is extended to include the possibility of creating and annihilating random walkers.
Steady-state distributions of random walkers are obtained for all dimensionsD.0 by solving a discrete
eigenvalue problem. These distributions exhibit dimensionally dependent critical behavior as a function of the
birth rate. This remarkably simple model exhibits a second-order phase transition with a universal, nontrivial
critical exponent for all dimensionsD.0. @S1063-651X~96!05706-6#

PACS number~s!: 05.40.1j, 05.20.2y, 05.50.1q

I. INTRODUCTION

In previous papers@1–3# we analyze a class of models of
D-dimensional spherically symmetric random walks, where
D is not restricted to integer values. In this paper we extend
these models to allow for the creation and annihilation of
random walkers. We demonstrate that these extended models
exhibit critical behavior as a function of the birth rate of
walkers. The critical coefficients depend on the value of the
dimensionD. Universality for the critical properties of this
model has been demonstrated both analytically and numeri-
cally @3#.

Random walks with sources and traps are widely used to
describe a variety of interesting physical phenomena such as
chemical reactions@4# and diffusion in random media@5,6#.
Our random-walk model on a hyperspherical lattice makes
the consideration of a free random walk in the neighborhood
of an entrapping boundaryin arbitrary dimensionsparticu-
larly simple. In the next paper in this series we apply these

ideas to the study polymer growth inD dimensions in the
vicinity of a hyperspherical adsorbing boundary@7#.

The random walks in Refs.@1–3# take place on an infinite
set of regions labeled by the integern, n51,2,3,.... If the
random walker is inregion nat timet, then at timet11 the
walker must move outward to regionn11 with probability
Pout(n) or inward to regionn21 with probability Pin(n),
where

Pout~n!1Pin~n!51 ~1.1!

so that probability is conserved.@We takePout~1!51 and
Pin~1!50 to enforce the requirement that a walker in the
central region (n51) must move outward at the next step.#
Let Cn,t;m represent the probability that a random walker
who begins in themth region att50 will be in the nth
region at timet. The probabilityCn,t;m then satisfies the
difference equation

Cn,t;m5H Pin~n11!Cn11,t21;m1Pout~n21!Cn21,t21;m ~n>2!

Pin~2!C2,t21;m ~n51!
~1.2!

and the initial condition

Cn,0;m5dn,m . ~1.3!

To formulate a model of spherically symmetric random
walks in D-dimensional space we take regionn to be the
volume bounded by two concentricD-dimensional hyper-
spherical surfaces of radiiRn21 andRn . In Ref. @1# we take
the probabilities of moving out or in to be in proportion to

the hyperspherical surface areas bounding regionn. Let
SD(R) represent the surface area of aD-dimensional hyper-
sphere

SD~R!5
2pD/2

G~D/2!
RD21.

Then, forn.1,
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Pout~n!5
SD~Rn!

SD~Rn!1SD~Rn21!
5

Rn
D21

Rn
D211Rn21

D21 ~1.4!

and

Pin~n!5
SD~Rn21!

SD~Rn!1SD~Rn21!
5

Rn21
D21

Rn
D211Rn21

D21 . ~1.5!

As we discussed earlier, for the special casen51 we define

Pout~1!51, Pin~1!50. ~1.6!

The choices in Eqs.~1.4!–~1.6! satisfy the requirement that
probability be conserved because they obey Eq.~1.1!.

For dimensions other thanD51 and 2, when we substi-
tute Eqs.~1.4!–~1.6! into Eq. ~1.2! and takeRn5n, we ob-
tain a difference equation that cannot be solved in closed
form. Thus, in Ref.@2# we proposed that the probabilities in
Eqs. ~1.4!–~1.6! be replaced by bilinear functions ofn,
which are a uniformly good approximations toPout(n) and
Pin(n) in the rangeD.0 whenRn5n:

Pout~n!5
n1D22

2n1D23
, Pin~n!5

n21

2n1D23
. ~1.7!

Now, the difference equation initial-value problem~1.2! and
~1.3! for the probabilitiesCn,t;m can be solved in closed form

Cn,t;m5
~2n1D23!G2~D21!G~m!

2D21G2~D/2!G~m1D22!

3E
21

1

dx~12x2!~D22!/2xtC n21
@~D21!/2#~x!

3C m21
@~D21!/2#~x!, ~1.8!

whereC n
(a)(x) is a Gegenbauer polynomial@8#. From the

solution in Eq.~1.8! one can obtain closed-form expressions
for spatial and temporal moments of the random walk@2#.

In this paper we generalize the difference equation~1.2!
to include the possibility of creation and annihilation of ran-
dom walkers. We allow random walkers to give birth in re-
gion 1 with birth ratea and to die in all other regions with
uniform death ratez. Birth rates and death rates are proper-
ties of populations rather than of single individuals. Thus,
rather than solving Eq.~1.2! as an initial-value problem for a
singlerandom walker who starts in regionm, we are going to
study a large population of random walkers, all of whom
obey this difference equation. We represent this population
of random walkers by a distributionGn,t , which denotes the
number of random walkers in regionn at time t. The distri-
bution Gn,t satisfies the same recursion relation asCn,t;m
except for the factors ofa andz:

Gn,t5H zPin~n11!Gn11,t211zPout~n21!Gn21,t21 ~n>3!

zPin~3!G3,t211aG1,t21 ~n52!

zPin~2!G2,t21 ~n51!

~1.9!

where we have setPout~1!51. Note that the functionGn,t
must be positive for alln and t. Aside from the requirement
thatGn,0, the initial distribution of random walkers, be nor-
malizable it is arbitrary. We are not concerned with the de-
tailed structure of the initial distribution; rather, we are in-
terested in the asymptotic behavior of distributions ast→`.
The specific choice of the initial distribution is unimportant
because a random walk is a diffusive~dissipative! process
and details ofGn,0 are irretrievably lost as time evolves; all
initial distributions lead to the same large-time behavior.
This behavior is determined by the details of the random
walk process itself@9#.

Differential equations similar to the difference equations
in Eq. ~1.9! arise in queuing theory@10#. In the context of
Ref. @10# the dependent variableGn,t refers to the relative
probability ofn discrete objects existing at a continuous time
t, rather than to a population of random walkers at a discrete
siten and discrete timet as in our model. A crucial similar-
ity is that birth and death rates can in general change the total
number of walkers from time step to time step in our model,
while birth and death rates can in general change the expec-
tation value of the number of objects in queuing theory. Both
models are naturally described by three-term recursion rela-
tions. Hence the solution techniques employed in this series

of papers are similar to those used in Ref.@10# and references
therein.

In our model random walkers are created or destroyed at a
given site inproportion to the number of walkers at that site,
wherea andz are the constants of proportionality. Techni-
cally speaking,a acts as a birth rate ifa.1; if a,1, it is
really a death rate. A similar interpretation applies toz. We
are particularly interested in steady-state solutions of Eq.
~1.9!; the existence of such solutions imposes a relationship
between the birth rate and the death rate.

In Sec. II we perform numerical and analytical studies of
Eq. ~1.9! for arbitrary choice ofPout(n) and Pout(n). We
study two quantities:Nt , the total number of random walkers
at timet, andFt , the fraction of random walkers in region 1
at time t. We show that the~physically relevant! positive
quadrant of the (a,z) plane is partitioned by two intersecting
critical curves into four regions~or phases! characterized by
the behavior ofNt andFt as t→`. ~Some detailed asymp-
totic studies of the large-t behavior are given in Appendix
B.! The intersection of these two critical curves is the critical
point (ac ,zc) for steady-state distributions of random walk-
ers. Although the location of this critical point is a function
of the dimensionD, the qualitative features of this phase
diagram are generic.
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We obtain a solvable model of random walks for arbitrary
dimension D by using the uniform approximations for
Pout(n) and Pin(n) proposed in Ref.@2# and given in Eq.
~1.7!. In Sec. III we analyze this model for the simple case
D51. We analytically determine the features of the (a,z)
phase diagram and verify that random-walk distributions ex-
hibit critical behavior. Then, in Sec. IV we use generating-
function methods to solve Eq.~1.9! for arbitraryD. We can-
not perform a global analysis of the (a,z) phase diagram as
in the caseD51, but we can perform a local analysis in the
vicinity of the critical point. From this local analysis we
show that a second-order phase transition occurs at the criti-
cal point.

Specifically, we show that near the critical birth rateac ,
the steady-state distribution fractionF(a)5limt→`Ft be-
haves like

F~a!;C~D !~a2ac!
n ~a→ac

1 , DÞ2,4!, ~1.10!

where the multiplicative constantC(D) depends on the di-
mensionD. The critical exponentn also depends on the di-
mensionD:

n55
D

22D
~0,D,2!,

2

D22
~2,D,4!,

1 ~D.4!.

~1.11!

There is no critical exponent for the special casesD52,4;
instead, we find that asa→a c

1,

F~a!;5
const

a2ac
e22/~a2ac! ~D52!

a2ac

12 lnS 1

a2ac
D ~D54!.

~1.12!

In general, formulating simplifiedD-dimensional statisti-
cal models is useful for understanding aspects of critical phe-
nomena exhibited actual physical systems. Indeed, any solv-
able statistical model that exhibits nontrivial critical behavior
is worthy of study@11#. In the next paper in this series we
apply the results of this paper to the study of polymer growth
in D dimensions. There we extend to arbitrary dimension the
earlier results forD51 @12# andD52 @13,14#.

II. RANDOM WALKS WITH BIRTH AND DEATH

In this section we discuss the general properties of the
spherically symmetric random-walk model defined by Eq.
~1.9! in which random walkers may be created and annihi-
lated. Let

Nt5 (
n51

`

Gn,t ~2.1!

be the total number of random walkers at timet. We restrict
our attention to initial distributions for whichN0 is finite so
thatNt is finite for all t. Let

Ft5G1,t /Nt ~2.2!

represent thefraction of all random walkers in region 1 at
time t.

Numerical@15# and analytical studies of the quantitiesNt
andFt as t→` reveal that, independent of the initial distri-
bution of random walkers, the asymptotic behaviors ofNt
andFt are determined by the values ofa andz. Specifically,
we obtain the generic result that for any value ofD the
positive quadrant of the (a,z) plane is partitioned into four
distinct regions by two boundary curves as shown in Fig. 1.

One of the boundary curves, which we have labeledB1 in
Fig. 1, is a straight line passing through the origin. To the left
of B1 we find thatFt vanishes ast→`; to the right ofB1 we
find thatFt approaches a positive finite value ast→`. For
D<2 the equation for the boundary lineB1 is z5a; asD
increases beyond 2 the boundary line remains straight, but
the slope ofB1 begins to decrease with increasingD. As we
will see, the transition that occurs atD52 is a reflection of
Polya’s theorem@16#, which states that whenD.2 the prob-
ability of an individual random walker visiting region 1 more
than once is less than unity.

The second boundary curve shown in Fig. 1 is labeledB2 .
This curve consists of two parts: The first part is a straight-
line segmentz51 extending from thez axis to the boundary
lineB1 . This line segment connects to the second part, which
is a curve that approachesz50 asa→`. The equation de-
scribing the second part depends onD. @ForD51 this curve
is given byz52a/(a211)(a>1), as we will show in Sec.
III. # Above the boundaryB2 we find thatNt→` as t→`;
belowB2 we find thatNt→0 ast→` @17#. OnB2 the total
number of walkers approaches a finite distributionN(a) as
t→`. On the curved portion ofB2 the functionN(a) is

FIG. 1. Generic phase diagram for the (a,z) plane. ~The dia-
gram was actually generated using data fromD5

1
2 random walks.!

Shown on the diagram are the boundary curvesB1 andB2 . To the
left of B1 and onB1 the fraction of random walkers in region 1,Ft ,
approaches 0 ast→`; to the right ofB1 this fraction approaches a
finite positive number ast→`. AboveB2 the total number of ran-
dom walkersNt diverges ast→`; below B2 the total number of
walkers approaches 0 ast→`. On B2 the distribution of random
walkers approaches a steady state ast→`. The critical point
(ac ,zc) lies at the intersection ofB1 andB2 .
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positive; on the straight-line portion ofB2 the functionN(a)
is positive forD.2, whileN(a)50 for D<2. This transi-
tion atD52 is yet another manifestation of Polya’s theorem.

While detailed studies of the large-t asymptotic behavior
of Nt andFt are given in Appendix B, many of the qualita-
tive features of Fig. 1 can be derived directly from an analy-
sis of Eq.~1.9!. To determine the boundary lineB1 we in-
troduce a change of variable in Eq.~1.9!:

Gn,t5ztHn,t . ~2.3!

The distributionHn,t satisfies the recursion relation for a
D-dimensional spherically symmetric random walk with a
birth ratea/z in region 1 and no births or deaths occurring in
any other region:

Hn,t

5H Pin~n11!Hn11,t211Pout~n21!Hn21,t21 ~n>3!

Pin~3!H3,t211
a

z
H1,t21 ~n52!

Pin~2!H2,t21 ~n51!.

~2.4!

LetP1(D) denote the probability that a random walker in
region 1 will eventually return to region 1. Suppose a ran-
dom walk satisfying Eq.~2.4! begins att50. Of theH1,0
walkers who begin in region 1, only a fractionP1(D) of
them will eventually return to region 1 to give birth to new
walkers at the ratea/z. Of these new walkers, again only a
fractionP1(D) of them will return to region 1 to give birth
again and so on. Hence, to find the total number of random
walkers who are ever born we must sum a geometric series
whose geometric ratio is the quantityaP1(D)/z. If this
quantity is less than 1, the geometric series converges and
the total number of random walkers ever born is finite. As
time t increases, the random walkers diffuse away from re-
gion 1. Thus the ratio

Ft5
G1,t

(n51
` Gn,t

5
H1,t

(n51
` Hn,t

vanishes ast→`. On the other hand, if the quantity
aP1(D)/z is greater than 1, bothH1,t and( n50

` Hn,t diverge
at the same rate and the ratioFt approaches a nonzero limit
~that lies between 0 and 1! as t→`.

The transition betweenFt→0 andFt→~finite limit! oc-
curs on the line

z5aP1~D !. ~2.5!

This is the equation of the boundary lineB1 . Polya’s theo-
rem states that for any random walkP1(D)51 whenD<2
andP1(D),1 whenD.2. This theorem explains the tran-
sition in the slope of the lineB1 atD52. In the spherically
symmetric random walk model discussed in Ref.@1#, where
Pout(n) and Pin(n) are given in Eqs.~1.4!–~1.6!, it was
shown that

P1~D !5121/z~D21! ~D>2! ~2.6!

~z is the Riemann Zeta function!; in the random walk model
discussed in Ref.@2#, wherePout(n) andPin(n) are given in
Eq. ~1.7!, it was shown that

P1~D !51/~D21! ~D>2!. ~2.7!

Numerical computation confirms the slope of the boundary
line B1 for both models~see Figs. 2–9!.

The shape of the curved part of the boundaryB2 in Fig. 1
depends on the dimensionD and on the choice of the func-
tions Pout(n) and Pin(n). It is not universal. However, the
straight-line portion of the boundaryB2 is universal and is
easy to understand for anyD. Points (a,z) such thata,ac
andz is near 1 lie to the left ofB1 . ThusFt , the fraction of
random walkers in region 1, becomes vanishingly small as
t→`. Hence the effect of the birth ratea on the total number
of walkers is negligible. The growth or decay of the total

FIG. 2. Phase diagram in the (a,z) plane for the caseD51. For
this dimension the probabilitiesPout(n) andPin(n) for the hyper-
spherical surface area case given in Eqs.~1.4!–~1.6! and the uni-
form approximation case given in Eqs.~1.7! are the same. On this
diagram the slope ofB1 is unity, ac51, and the slope ofB2 is
continuous.

FIG. 3. Phase diagram in the (a,z) plane for the caseD52. For
this dimension the probabilitiesPout(n) andPin(n) for the hyper-
spherical surface area case and the uniform approximation case are
the same. On this diagram the slope ofB1 is unity, ac51, and the
slope ofB2 is continuous. Note that the slope ofB2 approaches 0
exponentially fast asa→ac from above.
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number of walkers only depends on the magnitude ofz; if
z,1 thenNt→0 ast→` and if z.1 theNt→` as t→`.

On the straight-line portion of the curveB2 , wherea,ac
andz51, the limiting value ofNt depends on the dimension
D. If D<2 thenac51. Thus, on this portion ofB2 a fraction
12a of random walkers who arrive in region 1 at a given
time step must die at the next time step. But by Polya’s
theoremall random walkers visit region 1 repeatedly. Hence
the total number of random walkersNt must vanish att→`.
On the other hand, ifD.2 we haveP1(D),1. Thus the
fraction 12P1(D) of random walkers who originate in re-
gion 1 never return to region 1. Thus these random walkers
never die becausez51. HenceNt approaches a finite posi-
tive number ast→`.

We find numerically that as we cross the boundary line
B1 , the limiting value of the functionFt ast→` is continu-
ous. We are particularly interested in crossing from one side
of B1 to the other along the boundary curveB2 that divides
the upper region, whereNt→`, and the lower region, where
Nt→0 ast→`. We focus on this curveB2 because it is only

on this curve that a steady state is reached ast→`. Along
this boundary curve the limiting value ofFt undergoes a
second-order phase transition at the critical point (ac ,zc),
which is situated at the intersection ofB1 andB2 . On the
curve B2 when a,ac the limiting value ofFt is 0 ~even
though the limiting value ofNt may be 0! and whena.ac
the limiting values of bothNt andFt on the boundary curve
B2 arefinitepositive numbers. The curved portion ofB2 is in
fact the locus of all points in the positive quadrant of the
(a,z) plane for which the limiting values of bothNt andFt
as t→` are finite and nonzero.

The interpretation of limt→`Nt being finite and nonzero
is that the distributionGn,t approaches a steady state. In such
a steady-state there is a balance between random walkers
being created in region 1 and annihilated in all other regions.
This steady-state solution can be obtained by solving a dis-
crete eigenvalue problem.

Steady-state distributions are special cases of shape-

FIG. 4. Phase diagram in the (a,z) plane for the caseD53
using the probabilitiesPout(n) andPin(n) for the uniform approxi-
mation case in Eqs.~1.7!. The slope ofB1 is

1
2, ac52, and the slope

of B2 is continuous.

FIG. 5. Phase diagram in the (a,z) plane for the caseD53
using the probabilitiesPout(n) and Pin(n) for the hyperspherical
surface area case given in Eqs.~1.4!–~1.6!. The slope ofB1 is
121/z~2!5126/p2, ac52.551..., and theslope ofB2 is continu-
ous.

FIG. 6. Phase diagram in the (a,z) plane for the caseD54
using the probabilitiesPout(n) andPin(n) for the uniform approxi-
mation case given in Eqs.~1.7!. The slope ofB1 is

1
3 andac53.

The slope ofB2 is continuous; it vanishes logarithmically asa→ac
from above@see Eq.~4.21!#.

FIG. 7. Phase diagram in the (a,z) plane for the caseD54
using the probabilitiesPout(n) and Pin(n) for the hyperspherical
surface area case given in Eqs.~1.4!–~1.6!. The slope ofB1 is
121/z~3! andac55.949... . Universality arguments lead us to be-
lieve that the slope ofB2 is continuous and vanishes logarithmically
asa→ac from above, as in Fig. 6.
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independent distributions; that is, distributions that do not
change shape as they evolve in time. For such distributions
Gn,t/Gm,t is independent oft for all n andm so that the
relative number of walkers in regionn is a time-independent
fraction of the total number of walkers. The time dependence
of such distributions is very simple:

Gn,t5gnl
t. ~2.8!

The distributiongn satisfies the discrete eigenvalue problem

lgn5H Pin~n11!zgn111Pout~n21!zgn21 ~n>3!

Pin~3!zg31ag1 ~n52!

Pin~2!zg2 ~n51!

,

~2.9!

which is obtained by substitutingGn,t in Eq. ~2.8! into Eq.
~1.9!. Here the eigenvaluel represents the multiplicative
growth or decay of the total number of walkers that occurs at
each time step. Since we are interested in distributions of

random walkers for which the birth rate balances the death
rate~so that the total number of walkers is constant in time!,
we must setl51 in Eq. ~2.9!. We solve this eigenvalue
equation for the caseD51 in Sec. III and for the case of
arbitraryD in Sec. IV.

III. ONE-DIMENSIONAL RANDOM WALKS
WITH BIRTH AND DEATH

In this section we consider the one-dimensional (D51)
version of the discrete eigenvalue problem Eq.~2.9!. When
D51, Eqs.~1.4!–~1.6! and ~1.7! reduce to

Pout~n!5H 1
2 ~n>2!

1 ~n51!

and

Pin~n!5H 1
2 ~n>2!

0 ~n51!.

For this case the steady-state distribution obtained by setting
l51 in Eq. ~2.9! satisfies

gn5H 1
2zgn111

1
2zgn21 ~n>3!

1
2zg31ag1 ~n52!

1
2zg2 ~n51!.

~3.1!

It is easy to solve the difference equation~3.1! because it
is a linear constant-coefficient equation. Its general solution
has the form

gn5Ar2
n221Br1

n22 ~n>2!, ~3.2!

where

r6
2 2

2

z
r61150 ~3.3!

and A and B are arbitrary constants. The solutions to the
quadratic equation~3.3! are

r65
1

z
~16A12z2!. ~3.4!

Observe that

r2r151. ~3.5!

Since the total number of random walkers is finite, the
sum( n51

` gn exists. From the existence of this sum and Eq.
~3.5! we may conclude thatr6 are real; ifr6 were complex
then, since they are complex conjugates, we would have
ur6u51 and the sum would diverge. Furthermore, since
r1.1, it follows thatB50.

If we substitute the solution~3.2! with B50 into the spe-
cial cases~n51 and 2! of Eq. ~3.1!, we obtain a relationship
between the birth ratea and the death ratez:

a5r15
1

z
~11A12z2! or z5

2a

a211
. ~3.6!

FIG. 8. Phase diagram in the (a,z) plane for the caseD55
using the probabilitiesPout(n) andPin(n) for the uniform approxi-
mation case given in Eqs.~1.7!. The slope ofB1 is

1
4 andac54.

The slope ofB2 is not continuous; there is an elbow ata5ac.

FIG. 9. Phase diagram in the (a,z) plane for the caseD55
using the probabilitiesPout(n) and Pin(n) for the hyperspherical
surface area case given in Eqs.~1.4!–~1.6!. The slope ofB1 is
121/z~4!51290/p4 andac513.147... . The slope ofB2 is not con-
tinuous; there is an elbow ata5ac.
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This is the equation for the curved part ofB2 , the boundary
curve between the upper region whereNt→` and the lower
region whereNt→0 whena>1 @18#.

As a function of the birth ratea, the fractionF(a) of
random walkers in region 1 for the steady-state distribution
gn is given by

F~a!5
g1

(n51
` gn

5
a21

a~a11!
. ~3.7!

~Note that the overall multiplicative constantA drops out
from this result and is unimportant.! Equation~3.7! is only
valid for a.1; if a<1 then no nontrivial steady-state solu-
tion exists; the limiting value ofFt ast→` is 0. Indeed, it is
shown in Appendix B that ast→` the fractionFt vanishes
like 1/At along the lineB1 and like 1/t everywhere to the left
of B1 .

We observe a second-order phase transition in
F(a)5lim t→`Ft(a) as a function of the birth ratea; below
the critical birth rateac51 this fraction vanishes and just
above the critical point the fraction rises linearly with slope
1
2:

F~a!; 1
2 ~a2ac! ~a→11 !. ~3.8!

Hence, atD51 the critical exponentn in Eq. ~1.10! is 1 and
the constantC(1)5 1

2 .

IV. D-DIMENSIONAL RANDOM WALKS
WITH BIRTH AND DEATH

In this section we generalize the analysis of the preceding
section to arbitrary dimensionD. WhenDÞ1 the difference
equation~2.9! is no longer a constant-coefficient difference
equation and it cannot be solved in closed form. Hence we
use the method of generating functions to study steady-state
~l51! solutions of this difference equation.

We seek a solution to theD-dimensional generalization of
Eq. ~3.1!

gn55
n

2n1D21
zgn111

n1D23

2n1D25
zgn21 ~n>3!

2

D13
zg31ag1 ~n52!

1

D11
zg2 ~n51!,

~4.1!

which is obtained by substituting the uniform approxima-
tions toPout(n) andPin(n) given in Eq.~1.7! into Eq. ~2.9!
and settingl51.

For a steady-state solution having a finite number of ran-
dom walkers the sum( n51

` gn exists. We may therefore sum
both sides of Eq.~4.1! from n51 to ` and simplify the
result:

(
n51

`

gn5~a2z!g11z(
n51

`

gn . ~4.2!

Assuming that the sum( n51
` gn is nonzero we may immedi-

ately conclude that

F~a!5
g1

(
n51

`

gn

5
12z~a!

a2z~a!
. ~4.3!

Note that the result in Eq.~4.3! is valid on the curved part of
B2 , where the sum exists and is nonzero; it is also valid on
the straight-line portion ofB2 whenD.2. On the curveB2
we must treatz as a function ofa. We emphasize this de-
pendence by writingz(a) and by treating the fractionF as a
function ofa only.

In Appendix A we derive an eigenvalue condition from
the eigenvalue problem in Eq.~4.1!, which yields an implicit
equation that determines the curveB2 in the (a,z) plane:

15S 12
z

aD 2F1S 12,1;D11

2
;z2D . ~4.4!

However, such a higher transcendental equation cannot be
solved for z as a function ofa in closed form. Thus we
perform an asymptotic analysis of this condition forz near 1.
@As in the Sec. III, we find that forz→12 alongB2 there is
a transition atz51 from nontrivial steady-state solutions to
trivial solutions of the walk equation~4.1!.#

To perform this analysis we letz512h. We then use the
following formula for the analytic continuation of a hyper-
geometric function:

2F1~a,b;c;z!5
G~c!G~c2a2b!

G~c2a!G~c2b!

32F1~a,b;a1b2c11;12z!

1~12z!c2a2b
G~c!G~a1b2c!

G~a!G~b!

3 2F1~c2a,c2b;c2a2b11;12z!.

~4.5!

Next, we substitute the first few terms in the Taylor series of
a hypergeometric function

2F1~a,b;c;z!5
G~c!

G~a!G~b! (
n50

`
G~a1n!G~b1n!

n!G~c1n!
zn

~4.6!

to obtain

1;Fac21

ac
1
a2ac
ac
2 1

h

ac
GFD21

D22 S 11h
2

42D D
1hD/221

K

22DG , ~4.7!

where

K5
2D/2

Ap
GSD11

2 DGS 22
D

2 D , ~4.8!

which is valid near the critical point (ac ,zc51). Note that
the value ofac depends onD and must be determined by Eq.
~4.7!.

Our results are as follows. Leading-order asymptotic
analysis for smallh gives the location of the critical point
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(ac ,zc); the critical point lies at~1,1! for 0,D<2 and at
(D21,1) forD>2. A next-order asymptotic analysis of Eq.
~4.7! for the case 0,D,2 yields

z~a!;12S K

22D D 2/~22D !

~a2ac!
2/~22D ! ~a→ac

1!

~4.9!

and

F~a!;S K

22D D 2/~22D !

~a2ac!
D/~22D ! ~a→ac

1!.

~4.10!

Equation~4.10! reduces to Eq.~3.8! whenD51.
For the case 2,D,4 a next-order asymptotic analysis of

Eq. ~4.7! gives

z~a!;12@~D22!K#2/~D22!~a2ac!
2/~D22! ~a→ac

1!

~4.11!

and

F~a!;@~D22!K#2/~D22!~a2ac!
2/~D22! ~a→ac

1!.

~4.12!

WhenD.4 we find that

z~a!;12
D24

D~D21!
~a2ac! ~a→ac

1! ~4.13!

and

F~a!;
D24

D~D21!~D22!
~a2ac! ~a→ac

1!. ~4.14!

The special caseD53 can be solved exactly in closed
form

z~a!512
~a22!2

a214
~a>ac52! ~4.15!

and

F~a!5
~a22!2

a3
~a>armc52!. ~4.16!

Indeed, the difference equation~4.1! can be solved exactly
and in closed form forall odd-integerD; the solution that
vanishes asn→` is given by

gn5r2
n
P ~D21!/2~n!,

whereP k(n) is a polynomial in the variablen of degreek.
WhenD is an odd integer the hypergeometric series in Eq.
~A14! truncates forD>5. Unfortunately, except for the
casesD51 and 3 we do not obtain asimple form for the
solution for z(a) and F(a). An implicit solution for z(a)
whenD55, for example, is given by

~9a2164!z3256az22~8a2148!z148a50.

The special casesD50, 2, and 4 need to be treated sepa-
rately. ForD50 the eigenvalue condition Eq.~A14! be-
comes very simple because we can use the identity

2F1~a,b;a;z!5~12z!2b.

Elementary algebra then yields

z~a!5
1

a
~4.17!

for all a. Thus the boundaryB2 is a hyperbola for alla; the
straight-line portion ofB2 for a,1 disappears. To under-
stand this result observe that whenD50, Eq.~4.1! states that
random walkers in region 2 cannot move outward. The ap-
pearance of this restriction is an artifact of the uniform ap-
proximation in Eq.~1.7!. Thus a steady-state solution has
gn50 for n.2 and consists of random walkers oscillating
between region 1 and region 2. In this case, the fractionF(a)
of walkers in region 1 is exactly

F~a!5
1

11a
. ~4.18!

For this degenerate case there is no critical point and no
phase transition. We emphasize that the disappearance of a
phase transition is an artifact; the uniform approximation in
Eq. ~1.7! is only valid whenD.0.

For D52 we find that

z~a!;12conste22/~a2ac! ~a→ac
1! ~4.19!

and

F~a!;
const

a2ac
e22/~a2ac! ~a→ac

1!. ~4.20!

For D54 we have

z~a!;12
a2ac

6 lnS 1

a2ac
D ~a→ac

1! ~4.21!

and

F~a!;
a2ac

12 lnS 1

a2ac
D ~a→ac

1!. ~4.22!

The results in Eqs.~4.9!–~4.22! confirm the formulas given
in Eqs.~1.10!–~1.12!. Numerical calculations verify the uni-
versality of the scaling coefficients given here@3#.

The limiting caseD→` is interesting because, like the
caseD51, we can find the exact equation for the curved
portion of B2 . To treat this case we perform a large-D as-
ymptotic expansion of the integral in the eigenvalue condi-
tion given in Eq.~A13!. Using Laplace’s method we obtain
an asymptotic expansion of this condition as a formal series
in powers of 1/D. We recover from this condition an expres-
sion for z as a function ofa/ac :
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z~a!;
ac
a

1
2

D Faca2S aca D 3G1O ~D22! ~D→`!.

~4.23!

As one can see from Eq.~4.14!, in the limit D→` the tran-
sition ata5ac5D21 is still second order. However, in this
limit the discontinuity in the slope ofF(a) disappears and
F(a)→0 for all a.

Equations~4.11! and~4.13! indicate that there is a change
in the form of the transition atD54. WhenD,4 the slope
of the boundary curveB2 is continuous and the critical ex-
ponent depends onD. However, whenD.4 an elbow ap-
pears inB2 at the critical valueac5D21 and the critical
exponent is independent ofD. Specifically, whenD.4 the
slope ofB2 is 0 for 0<a,D21; just abovea5D21 the
slope abruptly becomes2(D24)/D(D21).

We conclude this section by presenting a quick heuristic
argument that reproduces the results in Eqs.~4.13! and
~4.14!. For the caseD.4 we showed in Ref.@2# thatT1(D),
the expected time for a random walker who originates in
region 1 to return to region 1, is given by

T1~D !52
D22

D24
. ~4.24!

In a steady state allg1 random walkers in region 1 leave this
region and in az51 model only the fractionP1(D) ever
return. The random walkers who return to region 1 do so in
T1(D) steps on average. These returning random walkers
experience a death ratez for T1(D)21 of theseT1(D) steps.
Thus the expected number of random walkers who actually
return to region 1 is decreased by the factorzT1(D)21. Hence,
afterT1(D) steps we expect to findaP1(D)z

T1(D)21g1 ran-
dom walkers in region 1. The condition that there be a steady
state is therefore given by

aP1~D !zT1~D !2151. ~4.25!

Using the expressions forP1(D) and T1(D) in Eqs. ~2.7!
and~4.24!, we obtain an approximate relation betweenz and
a that is valid near the critical point; that is, wherea5D21
1d, z512e as d,e→01. To first order ind and e this
approximate relation is

e;d
D24

D~D21!
, ~4.26!

which is precisely the result in Eq.~4.13!. We obtain the
result in Eq.~4.14! by substituting Eq.~4.13! into Eq. ~4.3!.
Note that this argument is valid only fora>ac5D21.

While the above argument is only valid in the neighbor-
hood ofac , we can also use the above reasoning to derive
the entire curvez(a) in the limit D→`. In this limit, T152.
Hence, from Eq.~4.25! we have

z5
ac
a
, ~4.27!

the leading behavior in Eq.~4.23!.
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APPENDIX A: DERIVATION
OF THE EIGENVALUE CONDITION

To obtain the dependence ofz on a alongB2 in the ei-
genvalue condition Eq.~4.4!, we use generating function
methods. To begin, we simplify Eq.~4.1! by setting

gn5~2n1D23!hn . ~A1!

Substituting Eq.~A1! into Eq. ~4.1! we obtain

~2n1D23!hn5H nzhn111~n1D23!zhn21 ~n>3!

2zh31~D21!ah1 ~n52!

zh2 ~n51!.

~A2!

Next, we define a generating function

H~x!5 (
n50

`

xnhn11 . ~A3!

Note that

G~x!5 (
n50

`

xngn115S 2x d

dx
1D21DH~x!. ~A4!

Multiplying Eq. ~A2! by xn21 and summing both sides
from n53 to `, we obtain a first-order inhomogeneous lin-
ear differential equation forH(x):

~zx222x1z!H8~x!1~D21!~zx21!H~x!

5~z2a!~D21!xh1 . ~A5!

To solve Eq.~A5! we multiply both sides by the integrating
factor (x2z22x1z)(D23)/2. The differential equation then
simplifies to

d

dx
@~zx222x1z!~D21!/2H~x!#

5~z2a!g1x~x2z22x1z!~D23!/2. ~A6!

The general solution to Eq.~A6! is

H~x!5~zx222x1z!~12D !/2FC1~z2a!g1E
0

x

ds s~s2z22s

1z!~D23!/2G , ~A7!

whereC is an arbitrary constant.
To determine the constantC we observe that

H(0)5h15g1/(D21), from which it follows that
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C5
g1

D21
z~D21!/2.

Thus

H~x!5g1S x222
x

z
11D ~12D !/2F 1

D21
1S 12

a

zD
3E

0

x

ds sS s222
s

z
11D ~D23!/2G . ~A8!

Finally, we use Eq.~A4! to obtain the generating function
G(x):

G~x!5g1H S x222
x

z
11D 2~D11!/2

~12x2!F11~D21!

3S 12
a

zD E0xds sS s222
s

z
11D ~D23!/2G

1

2x2S 12
a

zD
x222

x

z
11

J . ~A9!

Assuming thatG(x) exists for all 0<x<1, we formally re-
cover Eq.~4.3! when we setx51.

Recall the quantitiesr6 defined in Eq.~3.4! and rewrite
Eq. ~A9! as

G~x!5g1H @~r12x!~r22x!#2~D11!/2~12x2!F11~D21!

3S 12
a

zD E0xds s~r12s!~D23!/2~r22s!~D23!/2G
1

2x2S 12
a

zD
~r12x!~r22x!

J . ~A10!

For z,1 the generating functionG(x) may be singular at
x5r2,1, in which case the representation ofG(1) as a
series will not exist. To preclude the possibility of such a
singularity it is necessary and sufficient to impose the eigen-
value condition

11~D21!S 12
a

zD E0r2

ds s~r12s!~D23!/2~r22s!~D23!/2

50. ~A11!

This condition is clearly necessary. We can verify that it is
sufficient by showing thatG(r22e) exists in the limit as
e→01. To leading order ine the eigenvalue condition in Eq.
~A11! becomes

11~D21!S 12
a

zD E0r22e

ds s~r12s!~D23!/2~r22s!~D23!/2

;22S 12
a

zD r2~r12r2!~D23!/2e~D21!/2

~e→01 !. ~A12!

Substituting this asymptotic result into Eq.~A10!, we see
that the last term, which is of ordere21, exactly cancels.

The eigenvalue condition in Eq.~A11! expresses the rela-
tion betweena and z that we seek. We can rewrite this
condition more compactly by rescaling the integration vari-
able. Lets5r2u, so that

~D21!r2
2 S az21D E

0

1

du u~12u!~D23!/2~12r2
2 u!~D23!/2

51. ~A13!

This integral converges only ifD.1. We can analytically
continue to values 0,D<1 @recall that the region of validity
of the uniform approximation in Eq.~1.7! is D.0# by rec-
ognizing that this expression contains the standard integral
representation for a hypergeometric function@8#

4r2
2

D11 S az21D 2F1S 32D

2
,2;

D13

2
;r2

2 D51. ~A14!

Using the transformation formulas~especially 15.3.26,
15.2.18, and 15.2.20 in Ref.@8#! for hypergeometric func-
tions, this form of the eigenvalue condition can be simplified
to obtain Eq.~4.4!.

APPENDIX B: LARGE-TIME ASYMPTOTIC BEHAVIOR

In this appendix we analyze the large-t behavior of the
distributionGn,t of random walkers for the uniform approxi-
mation of the probabilitiesPout andPin given in Eq.~1.7!. To
this end we solve the set of equations in~1.9! for the Kro-
necker delta initial conditionGn,05dn,1. As discussed ear-
lier, the large-t behavior of a dissipative process is indepen-
dent of the specific choice of initial condition.

First, we derive a formal solution forGn,t that is valid for
generalPout andPin . We define

dn,t5H azn22S )
i51

n21

Pout~ i !DGn,t ~n>2!

G1,t ~n51!

~B1!

and rewrite Eqs.~1.9! as

dn,t5HQndn11,t211dn21,t21 ~n>2!

Q1d2,t21 ~n51!,
~B2!

where we let

Qn5H z2Pout~n!Pin~n11! ~n>2!

azPout~1!Pin~2! ~n51!.
~B3!

Next, we define the generating function
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en~y!5(
t50

`

dn,ty
t ~B4!

and obtain from Eqs.~B2!

en~y!5H yQnen11~y!1yen21~y! ~n>2!

11yQ1e2~y! ~n51!,
~B5!

where we have applied the Kronecker delta initial condition.
Let us define a continued fraction by the recursion rela-

tion

Sn~y
2!5

1

12y2QnSn11~y
2!

~n>1!. ~B6!

It is easy to show that forn>3 the recursion relation in Eq.
~B5! is satisfied by

en~y!5Ayn21)
i52

n

Si~y
2! ~n>2!. ~B7!

@Sinceen(y) obeys a second-order difference equation, there
is a linearly independent solution that can be determined
using the technique of variation of parameters. This solution
does not contribute; apparently, it fails to obey the appropri-
ate boundary conditions atn5`.# We determinee1 and the
constantA by solving simultaneously the special casesn51
and 2 of Eqs.~B5!:

AyS2~y
2!5AQ2y

3S2~y
2!S3~y

2!1ye1~y!,
~B8!

e1~y!511Ay2Q1S2~y
2!.

Solving the above equations leads to a surprisingly compact
expression for allen(y):

en~y!5yn21)
i51

n

Si~y
2! ~n>1!. ~B9!

Using a contour integral to project out the coefficients in the
generating function we obtain

Gn,t5S azD 12d1,nF )
i51

n21

zPout~ i !G R
C

dy

2p iy
yn2t21)

i51

n

Si~y
2!,

~B10!

where empty products are defined to be unity. The contourC
encircles the pole at the origin in the complex-y plane but
excludes all other singularities of the integrand.

This rather strange expression~a contour integral over a
product of continued fractions! is of little use, even in an
asymptotic analysis for large values oft. Only for particular
choices forPout and Pin is progress possible. A significant
advantage of the uniform approximation in Eq.~1.7! @com-

pared with probabilities given in Eqs.~1.4!–~1.6!# is that
they simplify the expression forGn,t in Eq. ~B10! for all
D.0. @The probabilities in Eqs.~1.4!–~1.6!# lead to a trac-
table result only forD50, 1, and 2.#

We simplify the expression forGn,t in Eq. ~B10! by re-
calling the continued-fraction representation for a hypergeo-
metric function@19#:

2F1~a,b11;c11;z!

2F1~a,b;c;z!

51/„11 f 1z/$11 f 2z/@11 f 3z/~11••• !#%…, ~B11!

where

f 2i52
~ i1b!~ i1c2a!

~2i1c!~2i1c21!
,

f 2i1152
~ i1a!~ i1c2a!

~2i1c!~2i1c11!
. ~B12!

Substituting the uniform approximation forPout and Pin in
Eq. ~1.7! into Eq. ~B3! gives

Qn5z2
n~n1D22!

~2n1D23!~2n1D11!
~n>2!, ~B13!

which can be rewritten as

Qn12i5z2
S i1 n1D22

2 D S i1 n

2D
S 2i1n1

D23

2 D S 2i1n1
D21

2 D
~n>2,i>1!,

~B14!

Qn12i115z2
S i1 n1D21

2 D S i1 n11

2 D
S 2i1n1

D21

2 D S 2i1n1
D11

2 D
~n>2,i>0!.

The continued fractions in Eq.~B6! can thus be identified as

Sn~y
2!5

2F1S n2 , n11

2
;n1

D21

2
;z2y2D

2F1S n2 , n21

2
;n1

D23

2
;z2y2D ~n>2!.

~B15!

Hypergeometric functions are symmetric in their first two
arguments. Therefore,
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)
i52

n

Si~y
2!5

2F1S n2 , n11

2
;n1

D21

2
;z2y2D

2F1S 12,1;D11

2
;z2y2D ~n>2!.

~B16!

Substituting this last result into Eq.~B10!, we finally obtain

Gn,t5zt
GSD11

2 DG~n1D22!

2n22G~D !GS n1
D23

2 D R
C

dy

2p iy

3yn2t21
S zaD

d1, n

2F1S n2 , n11

2
;n1

D21

2
;y2D

11S za21D 2F1S 12,1;D11

2
;y2D .

~B17!

Recalling Eq.~2.1!, we obtain an expression for the total
number of walkers at timet by summing Eqs.~1.9! over all
positive integersn:

Nt5ztF11S az21D (
t50

t21

z2tG1,tG . ~B18!

Next we insertG1,t from Eq. ~B17! and sum overt:

Nt5ztF 11S 12
z

aD R
C

dy y2t

2p i ~12y!

3

2F1S 12,1;D11

2
;y2D

11S za21D 2F1S 12,1;D11

2
;y2D G , ~B19!

where we have eliminated terms in the integrand that are
regular at the origin in the complex-y plane. FromG1,t in Eq.
~B17! andNt in Eq. ~B19! we obtain the large-t behavior of
the fractionFt in Eq. ~2.2!. Note the similarity of the de-
nominator in both integrals with the eigenvalue condition in
~4.4! for steady-state solutions. The asymptotic behavior of
the integrals for larget is dominated by the poles of the
integrands and the steady-state solution is merely the special
case where the asymptotic behavior is independent oft in
leading order.

To extract the large-t behavior ofNt andFt , we conduct
a saddle-point analysis of the contour integrals forG1,t and
Nt in Eqs.~B17! and~B19!. Both expressions, aside from the
prefactor zt, only depend on the ratioa/z. Saddle-point
analysis requires that we consider three distinct cases: values
of a/z such that~i! (a,z) lies to the left of the lineB1 , ~ii !
(a,z) is onB1 , and~iii ! (a,z) lies to the right ofB1 ~see Fig.
1!. For all cases the integrands for bothG1,t andNt have a
pole aty5yp on the real positive axis. For case~i! yp.1, for
case~ii ! yp51, and for case~iii ! yp,1.

For case~i! we find, to leading order, that ast→`

G1,t;5
a

z

S 12
a

zD
2

~22D !2

2KGSD2 D zttD/222 ~0,D,2!

a

~D21!z

S 12
a

~D21!zD
2

2D/222~D22!2GSD21

2 D
Ap

ztt2D/2 ~D.2!

~B20!

and

Nt;5
a

z

S 12
a

zD
~22D !

KGSD2 D zttD/221 ~0,D,2!

a

~D21!z

12
a

~D21!z

~D22!zt ~D.2!,

~B21!

whereK is given in Eq.~4.8!. Hence
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Ft;5
12

D

2

12
a

z

t21 ~0,D,2!

1

12
a

~D21!z

2D/222~D22!GSD21

2 D
Ap

t2D/2 ~D.2!.

~B22!

For case~ii ! we find, to leading order, that ast→`

G1,t;5
K

2GS 22
D

2 D ztt2D/2

~0,D,2!

D21

2KGSD2 D zttD/222

~2,D,4!

D24

2~D22!
zt ~D.4!

~B23!

and

Nt;5
zt ~0,D,2!

D21

KGSD2 D zttD/221

~2,D,4!

D24

2
ztt ~D.4!.

~B24!

Hence,

Ft;5
D21

KGSD2 D t2D/2

~0,D,2!

1

2t
~2,D,4!

1

~D22!t
~D.4!.

~B25!

The analysis of case~iii ! is somewhat more complicated. The saddle point in cases~i! and~ii ! is very neary51 for large
t, but in case~iii ! the integrands have poles at 0,y5yp(a/z),1 and the saddle point is now located nearyp . An asymptotic
analysis of this case for larget is possible only if we consider a small neighborhood to the right of the lineB1 . Approaching
B1 we find thatyp→12. We use the Ansa¨tzea/z5ac/zc1e andyp(a/z)512d(e), wheree!1 andd!1, but wheretd@1.
We find that ast→`

d~e!;5
e2/~22D !F K

22D G2/~22D !

~0,D,2!

e2/~D22!@K~D22!#22/~D22! ~2,D,4!

e
D24

2~D21!~D22!
~D.4!,

~B26!

leading to
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G1,t;5
eD/~22D !

2

22D F K

22dG2/~22D !F z

yp~a/z!G
t

~0,D,2!

e~42D !/~D22!
2~D21!

D22
@K~D22!#22/~D22!F z

yp~a/z!G
t

~2,D,4!

D24

2~D22! F z

yp~a/z!G
t

~D.4!

~B27!

and

Nt;5
2

22D F z

yp~a/z!G
t

~0,D,2!

e212~D21!F z

yp~a/z!G
t

~2,D,4!

e21~D21!~D22!F z

yp~a/z!G
t

~D.4!.

. ~B28!

Hence

Ft;5
eD/~22D !F K

22DG2/~22D !

~0,D,2!

e2/~D22!
@K~D22!#22/~D22!

D22
~2,D,4!

e
D24

2~D21!~D22!2
~D.4!.

~B29!

From the previous formula we can recover the asymptotic
results in Eqs.~4.10!, ~4.12!, and ~4.14!, which are valid
on the lineB2 as a→a c

1 and z→zc
2. The particular path

B2 is distinguished merely by the fact that the total number
of walkersNt approaches a nonzero constant ast→`. Thus
the portion of B2 to the right of B1 is obtained for

z5yp(a/z) in Eqs.~B28!. Again, we letz512h for h→01
and find thath;d~e!. Then, usingzc51, we find that
e;(a2ac)1ach. From Eq.~B26! for D,4, we havee@h
and we merely need to identifye5a2ac in Eq. ~B29! to
recover our earlier results. ForD.4 we recall thate5O~h!
to recover Eq.~4.14!.
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