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Spherically symmetric random walks. 1. Dimensionally dependent critical behavior
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A recently developed model of random walks oDadimensional hyperspherical lattice, whebeis not
restricted to integer values, is extended to include the possibility of creating and annihilating random walkers.
Steady-state distributions of random walkers are obtained for all dimengion@ by solving a discrete
eigenvalue problem. These distributions exhibit dimensionally dependent critical behavior as a function of the
birth rate. This remarkably simple model exhibits a second-order phase transition with a universal, nontrivial
critical exponent for all dimensior®>0.[S1063-651X96)05706-9

PACS numbes): 05.40+j, 05.20—y, 05.50+q

I. INTRODUCTION ideas to the study polymer growth D dimensions in the

. vicinity of a hyperspherical adsorbing bounda&m.
In previous papergl—3| we analyze a class of models of The random walks in Ref§1-3] take place on an infinite

D-_dlmenS|on§1I spher_lcally symmetric r_andom walks, Whereset of regions labeled by the integey n=1,2,3.... If the
D is not restricted to integer valuetn this paper we extend 5nqom walker is imegion nat timet, then at timet+ 1 the

these models to allow for the creation and annihilation ofy,5iker must move outward to region+ 1 with probability
random walkers. We demonstrate that these extended modqi%ut(n) or inward to regionn—1 with probability P;,(n),

exhibit critical behavior as a function of the birth rate of \yhere
walkers. The critical coefficients depend on the value of the
dimensionD. Universality for the critical properties of this

model has been demonstrated both analytically and numeri-
cally [3].

Random walks with sources and traps are widely used tso that probability is conservediWe take P, ,(1)=1 and
describe a variety of interesting physical phenomena such &,(1)=0 to enforce the requirement that a walker in the
chemical reactionf4] and diffusion in random medigb,6]. central region x=1) must move outward at the next step.
Our random-walk model on a hyperspherical lattice makes.et C, .., represent the probability that a random walker
the consideration of a free random walk in the neighborhoodvho begins in themth region att=0 will be in the nth
of an entrapping boundariy arbitrary dimensiongparticu-  region at timet. The probabilityC,, .., then satisfies the
larly simple. In the next paper in this series we apply thesalifference equation

Pouln) +Pip(n)=1 1y

c . Pin(n+1)Cn+1,t—1;m+Pout(n_l)cn—l,t—l;m (I’]?Z) (1 2)
M Pin(2)Cop-1m (N=1) '

and the initial condition the hyperspherical surface areas bounding regiorLet
Sp(R) represent the surface area oDadimensional hyper-
sphere
Ch.om= Onm- (1.3
. . D2
To formulate a model of spherically symmetric random _ D-1
: ; . X Sp(R) R~
walks in D-dimensional space we take regionto be the I'(D/2)

volume bounded by two concentrid-dimensional hyper-
spherical surfaces of radit,,_; andR,,. In Ref.[1] we take
the probabilities of moving out or in to be in proportion to Then, forn>1,
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So(R) RO-1 c _(2n+D-3)I'*D-1)I'(m)
POut(n)_ SD(Rn)+SD(Rn—1) - RE*l_F RE::E. (14) n.tm= 2D71F2(D/2)F(m+D_2)
and xfl dX(1— x2)(D- D2t (D= 112)
-1
SR R
P SR SRy RE e RE Y X7 HPTI(x), a8

As we discussed earlier, for the special casel we define
B B where 7 (¥(x) is a Gegenbauer polynomif8]. From the
Pou(1)=1, Pin(1)=0. (1.6 solution in Eq.(1.8) one can obtain closed-form expressions

The choices in Eqs(1.4—(1.6) satisfy the requirement that fOr Spatial and temporal moments of the random wak
probability be conserved because they obey Ed). In this paper we generalize the difference equatfib)
For dimensions other thab=1 and 2, when we substi- © include the possibility of creation and annihilation of ran-
tute Egs.(1.4—(1.6) into Eq. (1.2 and takeR,=n, we ob- dom walkers. We allow random walkers to give birth in re-
tain a difference equation that cannot be solved in closedion 1 with birth ratea and to die in all other regions with
form. Thus, in Ref[2] we proposed that the probabilities in uniform death rate. Birth rates and death rates are proper-
Egs. (1.4—(1.6) be replaced by bilinear functions af, ties of populations rather than of single individuals. Thus,
which are a uniformly good approximations By,(n) and  rather than solving Eq1.2) as an initial-value problem for a

P,(n) in the rangeD >0 whenR,=n: singlerandom walker vyho starts in region, we are going to
study a large population of random walkers, all of whom
n+D-2 n—-1 obey this difference equation. We represent this population

PolM) =553 Pn(MW=57p5=3- &7  of random walkers by a distributio, ,, which denotes the
number of random walkers in regionat timet. The distri-
Now, the difference equation initial-value problgmh2) and  bution G, ; satisfies the same recursion relation Gg;.,
(1.3 for the probabilitiesC,, ;.,, can be solved in closed form except for the factors od andz:

ZPin(rH'1)Gn+1,tfl+zpout(n_1)Gn71,t71 (n>3)
Gnt=9 ZPin(3)G3t-1taGyt— (n=2) (1.9
ZPh(2)Gai—1 (n=1)

where we have se,,(1)=1. Note that the functiorG, of papers are similar to those used in R&f)] and references
must be positive for alh andt. Aside from the requirement therein.
that G, o, the initial distribution of random walkers, be nor-  In our model random walkers are created or destroyed at a
malizable it is arbitrary. We are not concerned with the de-given site inproportionto the number of walkers at that site,
tailed structure of the initial distribution; rather, we are in- wherea andz are the constants of proportionality. Techni-
terested in the asymptotic behavior of distributiong-as»~. cally speakinga acts as a birth rate &>1; if a<<l, it is
The specific choice of the initial distribution is unimportant really a death rate. A similar interpretation appliesztdVe
because a random walk is a diffusiyeissipative process are particularly interested in steady-state solutions of Eqg.
and details ofG, ; are irretrievably lost as time evolves; all (1.9); the existence of such solutions imposes a relationship
initial distributions lead to the same large-time behavior.between the birth rate and the death rate.
This behavior is determined by the details of the random In Sec. Il we perform numerical and analytical studies of
walk process itself9]. Eq. (1.9 for arbitrary choice ofP,,(n) and P,n). We
Differential equations similar to the difference equationsstudy two quantitiesN,, the total number of random walkers
in Eq. (1.9 arise in queuing theory10]. In the context of at timet, andF,, the fraction of random walkers in region 1
Ref. [10] the dependent variablg,, ; refers to the relative at timet. We show that thephysically relevant positive
probability ofn discrete objects existing at a continuous timequadrant of thed,z) plane is partitioned by two intersecting
t, rather than to a population of random walkers at a discreteritical curves into four regionéor phasescharacterized by
site n and discrete time as in our model. A crucial similar- the behavior ofN, andF; ast—«. (Some detailed asymp-
ity is that birth and death rates can in general change the totébtic studies of the large-behavior are given in Appendix
number of walkers from time step to time step in our model,B.) The intersection of these two critical curves is the critical
while birth and death rates can in general change the expepoint (a;,z;) for steady-state distributions of random walk-
tation value of the number of objects in queuing theory. Bothers. Although the location of this critical point is a function
models are naturally described by three-term recursion relasf the dimensionD, the qualitative features of this phase
tions. Hence the solution techniques employed in this seriediagram are generic.
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We obtain a solvable model of random walks for arbitrary
dimension D by using the uniform approximations for
Pou(n) and P,,(n) proposed in Ref[2] and given in Eq.
(1.7). In Sec. lll we analyze this model for the simple case
D=1. We analytically determine the features of the2)
phase diagram and verify that random-walk distributions ex-
hibit critical behavior. Then, in Sec. IV we use generating-
function methods to solve E@1.9) for arbitraryD. We can-
not perform a global analysis of tha,) phase diagram as
in the caseD =1, but we can perform a local analysis in the
vicinity of the critical point. From this local analysis we
show that a second-order phase transition occurs at the criti-
cal point.

Specifically, we show that near the critical birth rate,
the steady-state distribution fractiok(a)=Ilim,_.F, be-
haves like

(a,z)

a

+
Cc

(1.10

where the multiplicative constai@(D) depends on the di-
mensionD. The critical exponent also depends on the di-
mensionD:

F(a)~C(D)(a—a.)” (a—a D+#2,4),

FIG. 1. Generic phase diagram for tha,f) plane.(The dia-
gram was actually generated using data frlbm% random walks.
Shown on the diagram are the boundary culBeandB,. To the
left of B; and onB, the fraction of random walkers in regionH,,
approaches 0 as—; to the right ofB; this fraction approaches a
finite positive number as— . Above B, the total number of ran-
dom walkersN, diverges ag—; below B, the total number of
walkers approaches 0 &s-~. On B, the distribution of random
walkers approaches a steady statetasw. The critical point
(ac,z;) lies at the intersection d8, andB,.

(0<D<2),

(2<D<4), (113
D2
1

(D>4).

Ft:Gl,t/Nt (2.2)

There is no critical exponent for the special caBes 2,4;

instead, we find that as—aJ,

const

represent thdraction of all random walkers in region 1 at
timet.
Numerical[15] and analytical studies of the quantitids

a—a, e 2% (D=2) andF, ast—« reveal that, independent of the initial distri-
bution of random walkers, the asymptotic behaviorsNpf
F(a)~ a-ac (1.12  andF, are determined by the values afandz. Specifically,
(D=4). we obtain the generic result that for any value @fthe

121n a—a, positive quadrant of thea(z) plane is partitioned into four

In general, formulating simplifie® -dimensional statisti-

distinct regions by two boundary curves as shown in Fig. 1.
One of the boundary curves, which we have lab&edn

cal models is useful for understanding aspects of critical pheFig. 1, is a straight line passing through the origin. To the left
nomena exhibited actual physical systems. Indeed, any solaf B, we find thatF, vanishes as—o; to the right ofB; we

able statistical model that exhibits nontrivial critical behaviorfind thatF; approaches a positive finite value tas . For

is worthy of study[11]. In the next paper in this series we D=2 the equation for the boundary lir®, is z=a; asD
apply the results of this paper to the study of polymer growthincreases beyond 2 the boundary line remains straight, but
in D dimensions. There we extend to arbitrary dimension thehe slope oB; begins to decrease with increasibg As we
earlier results foD=1 [12] andD =2 [13,14. will see, the transition that occurs Bt=2 is a reflection of
Polya’s theorenj16], which states that wheld>2 the prob-
ability of an individual random walker visiting region 1 more
than once is less than unity.

In this section we discuss the general properties of the The second boundary curve shown in Fig. 1 is lab&8led
spherically symmetric random-walk model defined by Eq.This curve consists of two parts: The first part is a straight-
(1.9 in which random walkers may be created and annihidine segment= 1 extending from the axis to the boundary
lated. Let line B, . This line segment connects to the second part, which
is a curve that approaches-0 asa—o. The equation de-
scribing the second part depends®n[For D=1 this curve
is given byz=2a/(a’+1)(a=1), as we will show in Sec.
[ll.] Above the boundarB, we find thatN,—« ast—oo;

II. RANDOM WALKS WITH BIRTH AND DEATH

m=Z%Gm 2.0

be the total number of random walkers at timé&Ve restrict
our attention to initial distributions for whicNj, is finite so
that N, is finite for all t. Let

belowB, we find thatN,—0 ast—o [17]. On B, the total
number of walkers approaches a finite distributhd(e) as
t—oo. On the curved portion oB, the functionN(a) is



54 SPHERICALLY SYMMETRIC RANDOM WALKS. II. ... 115

positive; on the straight-line portion &, the functionN(a) 2
is positive forD>2, while N(a)=0 for D<2. This transi-
tion atD =2 is yet another manifestation of Polya’s theorem.

While detailed studies of the largeasymptotic behavior
of N; andF, are given in Appendix B, many of the qualita-
tive features of Fig. 1 can be derived directly from an analy-
sis of EQ.(1.9). To determine the boundary lir®; we in-
troduce a change of variable in Ed..9):

Gn,t:ZIHn,t- (23)

The distributionH, , satisfies the recursion relation for a 0
D-dimensional spherically symmetric random walk with a 0 2
birth ratea/z in region 1 and no births or deaths occurring in

any other region: a

H FIG. 2. Phase diagram in tha,&) plane for the casB=1. For
nt this dimension the probabilitieB,(n) and P;,(n) for the hyper-
spherical surface area case given in Eds4—(1.6) and the uni-

Pin(N+DHni1i-1+ Pou(n=DHqg-1 (n=3) form approximation case given in Eq4..7) are the same. On this

a diagram the slope oB; is unity, a,=1, and the slope 0B, is
Pin(3)Hzi -1+ 7 Hit-1 (n=2) continuous.
Pin(2)H2; 1 (n=1).  (£is the Riemann Zeta functionin the random walk model

(2.4  discussed in Ref2], whereP,,(n) andP;,(n) are given in

Eq. (1.7), it was shown that
LetII,(D) denote the probability that a random walker in a- (1.7

region 1 will eventually return to region 1. Suppose a ran- I1,(D)=1(D-1) (D=2). (2.7
dom walk satisfying Eq(2.4) begins att=0. Of theH,

walkers who begin in region 1, only a fractidih,(D) of  Numerical computation confirms the slope of the boundary
them will eventually return to region 1 to give birth to new Jine B, for both modelgsee Figs. 2-9

walkers at the rat@/z. Of these new walkers, again only a  The shape of the curved part of the boundBgyin Fig. 1
fractionI1,(D) of them will return to region 1 to give birth  depends on the dimensidh and on the choice of the func-
again and so on. Hence, to find the total number of randonfions P,,(n) and P;,(n). It is not universal. However, the
walkers who are ever born we must sum a geometric seriesiraight-line portion of the boundaiB, is universal and is
whose geometric ratio is the quantigdl,(D)/z. If this  easy to understand for ary. Points @,z) such thata<a,
quantity is less than 1, the geometric series converges anghdz is near 1 lie to the left oB,. ThusF,, the fraction of
the total number of random walkers ever born is finite. Asrandom walkers in region 1, becomes vanishingly small as
time t increases, the random walkers diffuse away from ret— . Hence the effect of the birth rageon the total number
gion 1. Thus the ratio of walkers is negligible. The growth or decay of the total

Gy _ Hy
DY PR PY

Ft:

vanishes ast—o. On the other hand, if the quantity
all;(D)/zis greater than 1, botH,, and= |_oH, . diverge
at the same rate and the rafi¢ approaches a nonzero limit

(that lies between 0 and) hAst—ce. N1 T
The transition betweek;—0 andF,—(finite limit) oc-
curs on the line
z=all,(D). (2.5
0 .
This is the equation of the boundary lil . Polya’s theo- 0 1 2
rem states that for any random wdlk (D)=1 whenD=<2 a

andIl;(D)<1 whenD>2. This theorem explains the tran-
sition in the slope of the lin®, atD=2. In the spherically FIG. 3. Phase diagram in the,¢) plane for the cas® =2. For
symmetric random walk model discussed in Réf, where  this dimension the probabilitieB,,(n) and P;,(n) for the hyper-
Pou(n) and Pj,(n) are given in Eqs(1.4—(1.6), it was  spherical surface area case and the uniform approximation case are
shown that the same. On this diagram the slopeBfis unity, a,=1, and the
slope ofB, is continuous. Note that the slope Bf approaches 0
Im,(D)=1-1/,(D-1) (D=2) (2.6)  exponentially fast as— a, from above.
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FIG. 4. Phase diagram in the,g) plane for the cas® =3
using the probabilitie®,(n) andP;,(n) for the uniform approxi-
mation case in Eq$1.7). The slope 0B, is 3, a.=2, and the slope
of B, is continuous.

number of walkers only depends on the magnitude;af
z<1 thenN;,—0 ast—o and ifz>1 theN;—® ast—o,
On the straight-line portion of the cunB,, wherea<a,
andz=1, the limiting value ofN; depends on the dimension
D. If D=2 thena.=1. Thus, on this portion d8, a fraction
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a

FIG. 6. Phase diagram in tha,g) plane for the cas®=4
using the probabilitie®,(n) andP;,(n) for the uniform approxi-
mation case given in Eq$1.7). The slope ofB; is 3 anda,.=3.
The slope oB, is continuous; it vanishes logarithmically as-a,
from above[see Eq.(4.2])].

on this curve that a steady state is reached-as. Along
this boundary curve the limiting value d¢¥, undergoes a
second-order phase transition at the critical poiat,£.),
which is situated at the intersection Bf andB,. On the

1—a of random walkers who arrive in region 1 at a given curve B, when a<a, the limiting value ofF, is 0 (even
time step must die at the next time step. But by Polya’sthough the limiting value oN; may be 0 and whena>a,
theoremall random walkers visit region 1 repeatedly. Hencethe limiting values of botiN; andF, on the boundary curve

the total number of random walkel§ must vanish at— .
On the other hand, iD>2 we havell,(D)<1. Thus the
fraction 1-11,(D) of random walkers who originate in re-

B, arefinite positive numbers. The curved portionB is in
fact the locus of all points in the positive quadrant of the
(a,2) plane for which the limiting values of botN, andF,

gion 1 never return to region 1. Thus these random walkergst—o are finite and nonzero.

never die because=1. HenceN, approaches a finite posi-
tive number ag—oo.

The interpretation of lim_,.N; being finite and nonzero
is that the distributiorG,, ; approaches a steady state. In such

We find numerically that as we cross the boundary linea steady-state there is a balance between random walkers

B,, the limiting value of the functiofr; ast—x is continu-

being created in region 1 and annihilated in all other regions.

ous. We are particularly interested in crossing from one siddhis steady-state solution can be obtained by solving a dis-

of B, to the other along the boundary curBg that divides
the upper region, whed,— <, and the lower region, where
N;— 0 ast—oo. We focus on this curvB, because it is only

2
N 1 4
0 T
0.000 2.551 5.102
a

FIG. 5. Phase diagram in the,g) plane for the cas® =3
using the probabilitied,,(n) and P;,(n) for the hyperspherical
surface area case given in Eq4.4)—(1.6). The slope ofB; is
1—1/4“(2):1—6/712, a.=2.551.., and theslope ofB, is continu-
ous.

crete eigenvalue problem.
Steady-state distributions are special cases of shape-

2
N ] A
0 .
0.000 5.949 11.898
a

FIG. 7. Phase diagram in tha,) plane for the cas®=4
using the probabilitied, (n) and P;,(n) for the hyperspherical
surface area case given in Eq4.49—(1.6). The slope ofB; is
1-1/¢(3) anda,=5.949... . Universality arguments lead us to be-
lieve that the slope dB, is continuous and vanishes logarithmically
asa—a,. from above, as in Fig. 6.
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random walkers for which the birth rate balances the death

2 rate(so that the total number of walkers is constant in lime
we must setA=1 in Eq. (2.9. We solve this eigenvalue
equation for the casB=1 in Sec. lll and for the case of
arbitraryD in Sec. IV.

N1 11l. ONE-DIMENSIONAL RANDOM WALKS
WITH BIRTH AND DEATH
In this section we consider the one-dimensioraH1)
version of the discrete eigenvalue problem EZj9). When

0 D=1, Egs.(1.4—(1.6) and(1.7) reduce to

0 8 ) 1 (n=2)
Poul(n)=
> 1 (n=1)
FIG. 8. Phase diagram in the,g) plane for the cas® =5 and

using the probabilitie®,,(n) andP;,(n) for the uniform approxi-
mation case given in Eq$1.7). The slope ofB, is 7 anda.=4. 1 (n=2)
The slope ofB, is not continuous; there is an elbowat a.. Pin(n)= 0 (n=1)
n=1).

independent distributions; that is, distributions that do not ) o : ,
change shape as they evolve in time. For such distributionE°" thls case the st_ea_dy-state distribution obtained by setting
G /G, is independent of for all n andm so that the =1 in EQ.(2.9 satisfies

relative number of walkers in regiamis a time-independent
fraction of the total number of walkers. The time dependence
of such distributions is very simple:

320041+ 3201 (N=3)
gn=1{ 22%:+ag (n=2) (3.1)
Gn,t:gnht- (2.9 %Zgz (n=1).

The distributiong,, satisfies the discrete eigenvalue problem ;g easy to solve the difference equati¢hl) because it

is a linear constant-coefficient equation. Its general solution

Pin(n+1)Zgn+l+ Pout(n_ 1)Zgn—1 (n>3) has the form

Ag,=1 Pin(3)zg;+ag; (n=2), . .
= =
Pin(2)2g, (n=1) gn=Arl “+Bri = (n=2), (3.2
(2.9 where

which is obtained by substitutinG, . in Eq. (2.8) into Eq. 2
(1.9. Here the eigenvalua represents the multiplicative ri—— r.+1=0 3.3
growth or decay of the total number of walkers that occurs at z

each time step. Since we are interested in distributions OgmdA and B are arbitrary constants. The solutions to the

guadratic equatiof3.3) are

2
1
re=- (1+\1-2%). (3.9
Observe that
N1 ror,=1. (3.5
Since the total number of random walkers is finite, the
sumZX _,g, exists. From the existence of this sum and Eq.
(3.5 we may conclude that. are real; ifr. were complex
0 : then, since they are complex conjugates, we would have
0.000 13.147 26.294 [r.|=1 and the sum would diverge. Furthermore, since

r,>1, it follows thatB=0.
If we substitute the solutiofB.2) with B=0 into the spe-
FIG. 9. Phase diagram in th@,g) plane for the cas®=5 cial cases{n=1_ and 3 of Eq. (3.1), we obtain a relationship

using the probabilitie,,(n) and P;,(n) for the hyperspherical Detween the birth rate and the death rate:

surface area cas4e gizj/en iggE&SLf)_(%r.r?). 'Il'he iéc;pg OftBl is 1

1-1/{(4)=1-90/7" anda,=13. ... . The slope is not con- —r — / 2

tinuoﬂ(s;)there is an elbow ai— a. be e asry=; (1+y1-29

a

2a
or z= 52_’_—1 (36)
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This is the equation for the curved part®$, the boundary
curve between the upper region whé&tg— and the lower
region whereN;,—0 whena=1 [18].

As a function of the birth rate, the fractionF(a) of

random walkers in region 1 for the steady-state distributio

g, is given by

_ a—1
ala+tl)’

J1

E;legn

F(a)= 3.7

(Note that the overall multiplicative constaht drops out
from this result and is unimportaptEquation(3.7) is only

valid for a>1; if a<1 then no nontrivial steady-state solu-

tion exists; the limiting value of, ast—x is 0. Indeed, it is
shown in Appendix B that as—o the fractionF, vanishes
like 1/\/t along the lineB, and like 1t everywhere to the left
of B;.

We observe a second-order phase transition
F(a)=lim ,_.F:(a) as a function of the birth rata; below

BENDER, BOETTCHER, AND MEISINGER

54
0 1-2za)
F(a)=—= a—za) 4.3

r]\Iote that the result in Eq4.3) is valid on the curved part of

B,, where the sum exists and is nonzero; it is also valid on
the straight-line portion oB, whenD>2. On the curveB,
we must treatz as a function ofa. We emphasize this de-
pendence by writing(a) and by treating the fractioR as a
function ofa only.

In Appendix A we derive an eigenvalue condition from
the eigenvalue problem in EG4.1), which yields an implicit
equation that determines the cumg in the (a,z) plane:

1 D+1
zﬂ

1= FI

4.9

1ZF
al 21

iHowever, such a higher transcendental equation cannot be

solved forz as a function ofa in closed form. Thus we

the critical birth ratea,=1 this fraction vanishes and just perform an asymptotic analysis of this condition fanear 1.
above the critical point the fraction rises linearly with slope[As in the Sec. Ill, we find that for—1— along B, there is

2.

F(a)~3(a—a,) (a—1+). (3.9

Hence, aD =1 the critical exponent in Eq.(1.10 is 1 and
the constanC(1)=3

IV. D-DIMENSIONAL RANDOM WALKS
WITH BIRTH AND DEATH

In this section we generalize the analysis of the preceding

section to arbitrary dimensio. WhenD # 1 the difference

equation(2.9) is no longer a constant-coefficient difference

a transition az=1 from nontrivial steady-state solutions to
trivial solutions of the walk equatiofd.1).]

To perform this analysis we let=1— 7. We then use the
following formula for the analytic continuation of a hyper-
geometric function:

I'(c)I'(c—a—hb)
I'(c—a)l'(c—b)

X,Fqi(a,b;a+tb—c+1;1-9)

I'ic)I'(a+b—c)
I'(a)l'(b)

oFi(a,b;c; )=

+(1=-peaP

equation and it cannot be solved in closed form. Hence we

use the method of generating functions to study steady-state

(N=1) solutions of this difference equation.
We seek a solution to tHe-dimensional generalization of
Eqg. (3.1

( n n+D-3

e — —— n=3
2n+0-1 %17 2n7p-5 2%-1 (=3
2
gn:< D+3 Zg3+agl (n:2)
1
= n=1),
| Dr1°% (=1
(4.1

which is obtained by substituting the uniform approxima-

tions to P,,(n) andP;,(n) given in Eq.(1.7) into Eg. (2.9
and setting\=1.

X ,F;(c—a,c—b;c—a—-b+1;1-7).
(4.9

Next, we substitute the first few terms in the Taylor series of
a hypergeometric function

For a steady-state solution having a finite number of ranyhere

dom walkers the surk ;_,g, exists. We may therefore sum

both sides of Eq(4.1) from n=1 to « and simplify the
result:

o

2 On=

(a—z)glJrzn}::1 On- (4.2

Assuming that the su® ;_,g,, is nonzero we may immedi-
ately conclude that

oo O & T@tnrben)
Fi(a,b;c;0)= T'(a)l'(b) 2 n'T'(c+n)
(4.6
to obtain
. -1 a-a, D-1 L 2
~ ac ag D 2 +7]4 D
K
D/2—1
t7 2—0} @7
2D/2F D+1 r D
K‘ﬁ ) 2_E , (4.8

which is valid near the critical pointai,z.=1). Note that
the value ofa, depends o® and must be determined by Eq.
4.7.

Our results are as follows. Leading-order asymptotic
analysis for smally gives the location of the critical point
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(ac,z¢); the critical point lies at(1,1) for 0<D<2 and at The special casé8 =0, 2, and 4 need to be treated sepa-
(D—1,1) forD=2. A next-order asymptotic analysis of Eq. rately. ForD=0 the eigenvalue condition EdA14) be-
(4.7) for the case &xD<2 yields comes very simple because we can use the identity
220 Fi(a,b;a;0)=(1-0"
Z(a)"’l_ ﬁ) (a_aC)Z/(ZfD) (a_)a;r) 21
(4.9 Elementary algebra then yields
1
and z(a)= a (4.17
K \2(2-D)
D/(2-D +
Fla)~| 5= D) (a—ay)®"* P (a—a]). for all a. Thus the boundarB, is a hyperbola for alk; the
(4.10 straight-line portion ofB, for a<1 disappears. To under-
stand this result observe that wher= 0, Eq.(4.1) states that
Equation(4.10 reduces to Eq(3.8) whenD=1. random walkers in region 2 cannot move outward. The ap-
For the case  D<4 a next-order asymptotic analysis of pearance of this restriction is an artifact of the uniform ap-
Eq. (4.7) gives proximation in Eq.(1.7). Thus a steady-state solution has
0,=0 for n>2 and consists of random walkers oscillating
z(a)~1-[(D—2)K]#P~2(a—a,)#P~2 (a—a]) between region 1 and region 2. In this case, the fradfita)
4.11) of walkers in region 1 is exactly
and E 1 il
@=1r7 (4.18

F(a)~[(D—2)K]¥P"?(a—a)?P"? (a—a]).

(4.12  For this degenerate case there is no critical point and no
phase transition. We emphasize that the disappearance of a
phase transition is an artifact; the uniform approximation in
Eq. (1.7) is only valid whenD>0.

WhenD >4 we find that

2(a)~1— m (a—a,) (a—a)) (4.13 For D=2 we find that
z(a)~1—conste 2@~ (a—al)  (4.19
and
B and
F(a)~ W (a—ay) (a—ag). (4149 const
Fla~—e % (a—a)). (420

The special cas® =3 can be solved exactly in closed

form For D=4 we have
182 a2 41 2”8
2Q)=1- "y (8%2=2) (4.19 2a)~1-——° _ (a—a)) (421
61In
and a—a.
(a—2)2 and
F(a)= a3 (a=aymc=2). (4.16
—a
_ _ F(a)~ ° (a—ay). (4.22
Indeed, the difference equatiqd.1) can be solved exactly 121In
and in closed form fomll odd-integerD; the solution that a—ag

vanishes am—« is given by
The results in Eqs4.9—(4.22 confirm the formulas given

gn:r’l;’%(D,D,z(n), in Egs.(1.10—(1.12. Numerical calculations verify the uni-
versality of the scaling coefficients given h¢ad.
whereZ(n) is a polynomial in the variable of degreek. The limiting caseD —« is interesting because, like the

WhenD is an odd integer the hypergeometric series in EqcaseD=1, we can find the exact equation for the curved
(Al4) truncates forD=5. Unfortunately, except for the portion of B,. To treat this case we perform a larBeas-
casesD=1 and 3 we do not obtain simpleform for the = ymptotic expansion of the integral in the eigenvalue condi-
solution for z(a) and F(a). An implicit solution for z(a) tion given in Eq.(A13). Using Laplace’s method we obtain
whenD =5, for example, is given by an asymptotic expansion of this condition as a formal series
in powers of 1D. We recover from this condition an expres-
(9a%+64)z°—56az°— (8a%+48)z+48a=0. sion forz as a function of/a,:
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F(a)—0 for all a. o _ APPENDIX A: DERIVATION
Equationg4.11) and(4.13 indicate that there is a change OF THE EIGENVALUE CONDITION
in the form of the transition a =4. WhenD <4 the slope
of the boundary curvé, is continuous and the critical ex-  To obtain the dependence pfon a alongB, in the ei-
ponent depends oB. However, wherD>4 an elbow ap- genvalue condition Eq(4.4), we use generating function
pears inB, at the critical valuea,=D—1 and the critical methods. To begin, we simplify E¢4.1) by setting
exponent is independent &f. Specifically, wherD>4 the
slope ofB, is 0 for 0O<a<D—1; just abovea=D —1 the

slope abruptly becomes (D—4)/D(D—1). o . .
We conclude this section by presenting a quick heuristicSUbStItUtIng Eq(Al) into Eq.(4.1) we obtain

a, 2
Z(a)’vgﬁ-—

5 +0(D7?) (D—).

a

gh,=(2n+D-3)h,. (A1)

argument that reproduces the results in Egs1l3 and nzh,,+(n+D—3)zh,_; (n=3)

(4.14). For the cas® >4 we showed in Ref2] thatT,(D),

the expected time for a random walker who originates in (2n+D—3)h,=1 2zhs+(D—1)ah, (n=2)

region 1 to return to region 1, is given by zh, (n=1).
_ (A2)

Tl(D)zzm. (4.24 Next, we define a generating function

In a steady state af]; random walkers in region 1 leave this H(x)= 2 X"Ni1. (A3)

region and in az=1 model only the fractiodl,(D) ever n=0

return. The random walkers who return to region 1 do so iq\lote that

T,(D) steps on average. These returning random walkers

experience a death razdor T,(D) — 1 of theseT (D) steps. o d

Thus the expected number of random walkers who actually G(X)= 2, X"gy.1= ( 2% — + D—1) H(x). (A4)

return to region 1 is decreased by the faatbf®) 1. Hence, n=0 dx

after T,(D) steps we expect to finall;(D)z"(®)~1g, ran-
dom walkers in region 1. The condition that there be a stead}/
state is therefore given by ro

Multiplying Eq. (A2) by x"~! and summing both sides
m n=3 to «, we obtain a first-order inhomogeneous lin-
ear differential equation foi (x):

ally(D)z"®™=1. (4.2 (22— 2x+2)H' () +(D—1)(zx— 1)H(x)

Using the expressions fdi;(D) and T4(D) in Egs. (2.7) =(z—a)(D—1)xh,. (A5)
and(4.24), we obtain an approximate relation betweeand

a that is valid near the critical point; that is, wheaesD—1  To solve Eq.(A5) we multiply both sides by the integrating
+6, z=1—¢€ as 5,e—0+. To first order ind and € this  factor (x°z—2x+2)(®~3"2 The differential equation then
approximate relation is simplifies to

D—4 d _
e~5m, (4.26) d—)([(zx2—2x+z)(D V2H(x)]

oy 2, (D-3)/2
which is precisely the result in Ed4.13. We obtain the =(z2-a)gix(x°z—=2x+2) - (AB)

result in Eq.(4.14) by substituting Eq(4.13 into Eq. (4.3.
Note that this argument is valid only fa==a,=D — 1.

While the above argument is only valid in the neighbor-
hood ofa,, we can also use the above reasoning to deriveH (x)=(zx*—2x+z)1"P)2
the entire curve(a) in the limit D—oo. In this limit, T;=2.

The general solution to EGA6) is

X
C+(z—a)glf ds s°z—2s
0

Hence, from Eq(4.25 we have
+ Z)(DS)/Z}, (A7)
aC
z=—, (4.27 ) _
a whereC is an arbitrary constant.

To determine the constantC we observe that
the leading behavior in Ed4.23. H(0)=h;=g4/(D—1), from which it follows that



J1 _
_ (D-1)/2
C D_1 y4 .

Thus
X
H(x):gl<x2—22+1

X s
xf ds § s*—2-+1
0 Z

Finally, we use Eq(A4) to obtain the generating function
G(x):

1-Diy q .
D-1

(D—3)/2

a
1__)
4

(A8)

X —(D+1)/2
G(x)=0; (x2—22+1 (1-x%)|1+(D-1)
a\ rx s (D—-23)/2
X 1——>f ds{32—2—+1 }
z 0 z
a
2x2 1——)
Z
—_. (A9)
2 X
xc—2-+1
Z

Assuming thaiG(x) exists for all 0=<x<1, we formally re-
cover Eq.(4.3) when we sek=1.

Recall the quantities.. defined in Eq.(3.4) and rewrite
Eq. (A9) as

G(X)=g1 | [(rs—x)(r-—x)]"CTVH1-x%

a
1__)
V4

a
2x2( 1- —)
z

(ry =X)(r-—x)

1+(D—-1)

X

fXdS S(r+_S)(D—a)/z(r__s)(n—s)/z}
0

(A10)

For z<1 the generating functioG(x) may be singular at
x=r_<1, in which case the representation @{1) as a

series will not exist. To preclude the possibility of such a
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a\l [r_—e
1+(D-1)[1— f dsgr,—s)P732(r_—g)(D-3)/2
0

a
~—=2(1—=Ir_(r.—r_ (D-3)/2_(D-1)/2
( Z) (ry ) €

(e—0+). (A12)

Substituting this asymptotic result into EGA10), we see
that the last term, which is of ordef %, exactly cancels.

The eigenvalue condition in E¢A11) expresses the rela-
tion betweena and z that we seek. We can rewrite this
condition more compactly by rescaling the integration vari-
able. Lets=r_u, so that

a 1
(D—l)rz(z—l)f du u(l_u)(D—3)/2(l_rgu)(D—3)/2
0

=1. (A13)

This integral converges only iD>1. We can analytically
continue to values @D <1 [recall that the region of validity

of the uniform approximation in Eq1.7) is D>0] by rec-
ognizing that this expression contains the standard integral
representation for a hypergeometric funct{@&j

4r?
D+1

a
z

. 3—D2_D-|—3_2 1
2 17,, 2 r =1.

Using the transformation formulagespecially 15.3.26,
15.2.18, and 15.2.20 in Ref8]) for hypergeometric func-
tions, this form of the eigenvalue condition can be simplified
to obtain Eq.(4.4).

(A14)

APPENDIX B: LARGE-TIME ASYMPTOTIC BEHAVIOR

In this appendix we analyze the largdsehavior of the
distributionG,, ; of random walkers for the uniform approxi-
mation of the probabilitie®,,,andP;, given in Eq.(1.7). To
this end we solve the set of equations(in9 for the Kro-
necker delta initial conditiorG, =&, ;. As discussed ear-
lier, the larget behavior of a dissipative process is indepen-
dent of the specific choice of initial condition.

First, we derive a formal solution fd@g,, ; that is valid for
generalP,, andP;,. We define

singularity it is necessary and sufficient to impose the eigen-

value condition

a r_
1+(D—1)(1—E)f ds gr —s)P732(r_—s)(P737
0

=0. (A11)

This condition is clearly necessary. We can verify that it is

sufficient by showing thaG(r_—¢€) exists in the limit as
e—0+. To leading order ire the eigenvalue condition in Eq.
(A11) becomes

n—-1
az"? Poui) |Gny (N=2)
= ( 11 Pau )) nt -
Gyt (n=1)
and rewrite Eqs(1.9) as
Qndns1i-1+tdn_14-1 (N=2)
dn,t: _ (B2)
Q1041 (n=1),
where we let
Z?Po(N)Pip(n+1) (n=2)
n— (B3)
azpout(l) Pin(z) (ﬂ=1).

Next, we define the generating function
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> pared with probabilities given in Eq$l.4—(1.6)] is that
en(y)=2, dny! (B4)  they simplify the expression foG, ; in Eq. (B10) for all
t=0 D>0. [The probabilities in Eqs(1.4—(1.6)] lead to a trac-
table result only foD =0, 1, and 2}
and obtain from EqsB2) We simplify the expression foB, , in Eq. (B10) by re-
calling the continued-fraction representation for a hypergeo-

YyQuen (V) +yen a(y) (n=2) metric function[19]:

en(y)= _ (BS)
1+yQies(y) (n=1), JFi(ab+1:cH1:0)
where we have applied the Kronecker delta initial condition. 2F1(a,b;c:0)
Let us define a continued fraction by the recursion rela-
tion =AU+ LA+, 1+152/(1+---)]}), (B1Y

where

1
)= n=1). B6
sn(y ) 1_y2QnSﬁ+1(y2) ( ) ( ) . .
B (i+b)(i+c—a)
It is easy to show that fon=3 the recursion relation in Eq. 27 (2i+c)(2i+c-1)’

(B5) is satisfied by

B (i+a)(i+c—a)
faiv1=— (2i+c)(2i+c+1)

. (B12)
en<y)=Ay“*1i:H2 S(y3) (n=2). (B7)

Substituting the uniform approximation fét,, and Py, in

[Sincee, (y) obeys a second-order difference equation, ther&d- (1.7) into Eq. (B3) gives

is a linearly independent solution that can be determined

using the technique of variation of parameters. This solution o n(n+D-2)

does not contribute; apparently, it fails to obey the appropri- n=? (2n+D-3)(2n+D+1)
ate boundary conditions at=«.] We determinee; and the
constantA by solving simultaneously the special casesl
and 2 of Egs(B5):

(n=2), (B13

which can be rewritten as

n+D-2 n
AYS(y) = AQY*S,(y2)Ss(y?) + yeu(y), ( i T) i+ z)
ew(y)=1+Ay*Q;S,(y?). 2i+n+T)(2i+n+T)
Solving the above equations leads to a surprisingly compact i
(n=2,=1),

expression for ale,(y):

(B14)
n . n+tD-1\/ n+1
en(y)=y" Il sy (n=1). (89) , T2
=1 Qn+2i+l:Z . D_l . D+1
2|+n+T 2|+n+T
Using a contour integral to project out the coefficients in the
generating function we obtain
(n=2,i=0)
| 1% -1 dy n
Gn,t=(z) |];[1 ZPo(i) jgc 2y ynftfliﬂl S(y»),  The continued fractions in E4B6) can thus be identified as
(B10)
nn+l b-1 .,
where empty products are defined to be unity. The cor@our 2F1 5T Nty
encircles the pole at the origin in the compigxplane but Sn(y?) = 1 D3 (n=2).
excludes all other singularities of the integrand. Zpl(n,n_;n_'_ ;22y2>
This rather strange expressi¢éa contour integral over a 2" 2 2
product of continued fractionss of little use, even in an (B1Y

asymptotic analysis for large valuestofOnly for particular
choices forP,; and P;, is progress possible. A significant Hypergeometric functions are symmetric in their first two
advantage of the uniform approximation in E§.7) [com-  arguments. Therefore,



n n+l D-1 5 2
n 2F1 51 Nty
11 siy?)= T BT (n=2).
i=2
oFi1l 5.1 ;2%y?
2" 2
(B16)

Substituting this last result into E¢B10), we finally obtain

(D+1)
I'|——|T(n+D-2)
. 2

G $ dy
nt=2 D-3| Jc 2miy
2"2I(D)T N+ ——
AR e(nntl D-1,
al 2Mlz Mt
Xynftfl

1+

z e 1 1_D+1_ )
3 tlehph Ty

(B17)
Recalling Eq.(2.1), we obtain an expression for the total

number of walkers at timé by summing Eqgs(1.9) over all
positive integers:

t—1
a
N,=2| 1+ 2—1)2 zTGlyT]. (B19)
7=0
Next we insertG,; from Eq.(B17) and sum ovetr
([ a
z  (2-D)?

Tl
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N=7| 1+(1- 2 fﬁ—dyyt
t=2 al Je2mi(1-y)
o (1,D+1
21 E! ’ 2 1y
X (B19)

z 1) . 11.D+l. ’ '
5 2 151 !?!y

where we have eliminated terms in the integrand that are
regular at the origin in the complexplane. FronG,, in Eq.
(B17) andN; in Eq. (B19) we obtain the large-behavior of
the fractionF, in Eq. (2.2). Note the similarity of the de-
nominator in both integrals with the eigenvalue condition in
(4.4) for steady-state solutions. The asymptotic behavior of
the integrals for larged is dominated by the poles of the
integrands and the steady-state solution is merely the special
case where the asymptotic behavior is independerit inf
leading order.

To extract the largé-behavior ofN; andF,, we conduct
a saddle-point analysis of the contour integrals &y, and
N, in Egs.(B17) and(B19). Both expressions, aside from the
prefactor ', only depend on the rati@/z. Saddle-point
analysis requires that we consider three distinct cases: values
of a/z such that(i) (a,z) lies to the left of the lineB, (ii)
(a,z) isonB;, and(iii) (a,z) lies to the right oB; (see Fig.
1). For all cases the integrands for bd#h, andN, have a
pole aty=y, on the real positive axis. For caégy,>1, for
case(i) y,=1, and for casiii) y,<1.

For case(i) we find, to leading order, that ds-o

1+

ZtP?72  (0<D<?2)

Gy~ (B20)
' D-1
_* D
o, 2EAD-2 r( _ )Zttm -
a 2 Jr
\<1_<D—1u
and
([ a
Za (2_3) ZttD/2—1 (O<D<2)
NPT
z 2
N;~ ¢ a (B21)
(D_:;)Z (D22 (D>2),
\ 1_(D—1)z

whereK is given in Eq.(4.8). Hence
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For case(ii) we find, to leading order, that ds-~

and

Hence,

. D
E -1
— t7t (0<D<2)
1__
A
D_
1 2D’2‘2(D—2)F(—)
t~ P2 (D>2).
o N ( )
(D-1)z
( t+ —D/2
i D zt (0<D<2)
2
D-1
_ t;D/2—2
Gri~ k(P zt (2<D<4)
2
D—4
7 (D>4)
( 2(D-2)
[z (0<D<2)
b-1 AtDl2-1
- D (2<D<4)
Nt~< E
D-4
5 2t (D>4).
\
( D-1 DR
- D (0<D<2)
2
Fi) >t (2<D<4)
_r (D>4)
| (D-2)t '

(B22)

(B23)

(B24)

(B25)

The analysis of caséii) is somewhat more complicated. The saddle point in cagemd (ii) is very neary=1 for large
t, but in caseiii ) the integrands have poles at§=y,(a/z) <1 and the saddle point is now located nggr An asymptotic
analysis of this case for largeis possible only if we consider a small neighborhood to the right of theBineApproaching
B, we find thaty,—1—. We use the Andaea/z=a/z.+ € andy,(a/z)=1— 5(¢), wheree<1 and <1, but wheret5>1.
We find that ag—

K 12(2-D)
2(2=D)f — 0<D<?2
aof K] 0<0<2)
S(e)~{ €?P~I[K(D-2)]"#P~2 (2<D<4) (B26)
D-4
(D>4),

€2(b-1)(D-2)

leading to



54 SPHERICALLY SYMMETRIC RANDOM WALKS. II. ... 125
r 2/(2-D) t
£D/(2-D) 2 K z (0<D<?2)
2-D|2—-d Yp(a/2)
2(D—-1) t
- (4-D)/(D-2) =~ _ —-2(D-2) 2<D<4
Gy~ 55 [K(D-2)] @) ¢ ) (B27)
D-4 z |
(D>4)
\ 2(D—2) |yp(a/z)
and
(2 [ 2] 0<D<2
<D<
2—-D |yp(alz) ( )
t
N~¢ e 2(D—-1 (2<D<4), B28
t
e (D-1)(D-2 (D>4).
\ ( )( )yp(a/z)
Hence
r K 12(2-D)
b/i(2-D)| — 0<D<?2
ora-o] X ] 0<0<2)
K(D-2 —2/(D-2)
Fi~ ¢ 62’“3—2)[ ( )l (2<D<4) (B29)
D-2
b-4 (D>4)
[ “2(D-1)(D-2) '

From the previous formula we can recover the asymptotiz=y,(a/z) in Egs.(B28). Again, we letz=1— 7 for 7—0+
results in Egs.(4.10, (4.12, and (4.14), which are valid and find that ~d&(e). Then, usingz,=1, we find that
on the lineB, asa—ag andz—z_. The particular path e~(a—a.)+a,»n. From Eq.(B26) for D<4, we havee> 7
B, is distinguished merely by the fact that the total numberand we merely need to identify=a—a. in Eq. (B29) to
of walkersN, approaches a nonzero constantase. Thus  recover our earlier results. F&>4 we recall thate=0(7)
the portion of B, to the right of B; is obtained for to recover Eq(4.14).
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even and the other with sites wheme-t is odd. Hence nu- [18] D. ben-Avraham, S. Redner, and Z. ChdRef.[5]) consider
merical studies oF, andN; with arbitrary initial conditions in three one-dimensional geometries on a lattii@:a single
general yield oscillatory time evolution. To avoid ambiguities source or trap(ii) a source-trap dipole separated by an arbi-
one must focus on just one system. To do so one stidies trary distance, andii) a periodic set of sources with traps in

a given time only for even values af+t or only for odd
values ofn+t. One must be equally careful about numerical
studies ofF;. (In principle, one can couple the two distinct
systems by allowing walkers to have a small probabiétio
stayat their current site at each time step. This coupling would
enable the systems to thermalize. Once this has happened, one
can sete=0 and ignore the distinctions arising from the check-
erboard parity.

between. The traps may be partial traps in all cases, that is,
z+#0 necessarily. They also develop a steady-state balance cri-
terion defining the line B2, the line separating growth and
decay, for the second and third geometry. They discuss the
limit where the separation between periodic sources goes to
infinity. This limit is equivalent to our model in one dimen-
sion, since thépartia) traps in between now extend to infinity.
[16] G. Polya, Math. Ann84, 149 (1922. Their steady-state condition in this limit is exactly the same as

[17] Redner and Kanf#] consider birth and death rates for random ours for one dimension. Critical behavior is not mentioned.

walkers in the context of molecular reactions. They generatd19 C- M. Bender and S. A. Orszaghdvanced Mathematical
phase diagrams that have a line like $B& line in Fig. 1, Methods for Scientists and Engineef§lcGraw-Hill, New

separating growth from decay. However, they consider only ~ YOrk, 1978, p. 396.



