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We use the unstable periodic orbit expansion of the dynamicalz function to find the multifractal spectra
f (a) andg(L) for the Lorenz system at (r ,s,b)5(28,10,8/3) and also for an incomplete, generalized Baker’s
map with the topology of the Lorenz system.@S1063-651X~96!01908-3#

PACS number~s!: 05.45.1b, 02.50.Cw, 02.60.Cb

I. INTRODUCTION

The multifractal properties of a chaotic attractor are use-
fully quantified by its spectrum of singularitiesf (a) @1#.
HereaP@amin ,amax# is the pointwise dimension, or Ho¨lder
exponent, of the natural measurem at pointxi on the attrac-
tor and is defined by the relation

a~xi !5 lim
l i→0

lnm@S~ l i ,xi !#

lnl i
, ~1!

whereS( l i ,xi) denotes a segment in an optimal partition to
be specified below andl i is the diameter of the smallest ball
containingS. As the partition becomes infinitely refined,S
shrinks onto the pointxi . f (a) is then the Hausdorff dimen-
sion of the collection of all points with pointwise dimension
a.

Within a more general thermodynamical formalism, the
singularity spectrum is one of several ways in which the
attractor properties can be quantified and contains the infor-
mation in the generalized dimensionsDq @2#. A different
measure of complexity is the spectrum of dynamical scaling
indicesg(L), whereL i is the local Liapunov exponent at
point xi andg(L i) is the topological entropy of the collec-
tion of points with exponentL i @3#. This spectrum contains
the information in the set of Re´nyi ~generalized! entropies
@4#.

Recent implementations of this descriptive approach have
made imaginative use of the dynamicalz function and, in
particular, the way this function can be expressed through
the cycle expansions@5#. Here

1

z
5)

PC
~12tp!, ~2!

where the product is over a set of representative periodic
orbits, the prime cycles~PC!. The prime cycles are found
from the set of periodic orbits by removing the orbits that are
repetitions of lower-order orbits. The weighttp attached to
each prime cycle is determined by the quantities of interest,
as discussed in detail in@5#, and in Sec. II B below. The
leading zero of 1/z is then sought, which in turn determines
the required spectrum.

The strength of this approach is that the infinite product
~2! is often closely approximated by a finite expansion over a
set of low-order prime cycles—the fundamental cycles—

thereby reducing the computational problem of finding the
leading zero. This has far-reaching consequences for the de-
scription of chaotic systems: Even though trajectories them-
selves cannot be followed for long times, a class of quantities
can be found in an averaged sense. Specifically, we can find
the multifractal spectraf (a) andg(L). Numerically calcu-
lated trajectories are, via the shadowing theorem of Bowen
and Anosov, close to a ‘‘true’’ trajectory of the system, but
are of little use in a multifractal description, as we then must
describeany behavior the system might show, not just the
measure-one behavior.

The purpose of this article is to demonstrate the applica-
tion of this technique to a system of ordinary differential
equations. The results of similar studies for maps have ap-
peared in the literature, but to date application of the tech-
nique to flows has been restricted to determining the Haus-
dorff dimension and the Liapunov exponent@6,7#. Here we
compute the complete spectra using a formalism that shows
where in the spectra a given cycle contributes. Two aspects
will be investigated in detail.

~i! Although it will prove possible to encode each periodic
orbit with a binary label, the binary dynamics in our system
is incomplete, implying that not every string corresponds to
an allowed periodic orbit. This is denoted a ‘‘pruned’’ binary
dynamics, since not all branches of the complete binary tree
are covered. By utilizing the binary grammar, the symbolic
dynamics can be renormalized to a complete dynamics of
higher order. We can then find a special family of orbits
giving the main part of 1/z, while other orbits contribute
only through higher-order terms.

~ii ! In a more general case, we will not be able to renor-
malize the symbolic dynamics, i.e., the symbolic dynamics
will not be a finite shift. We will discuss how this affects the
expansion of 1/z.

In Sec. III we explore the Lorenz system@8#

ẋ5s~y2x!,

ẏ5x~r2z!2y, ~3!

ż5xy2bz

at parameter values (s,b,r )5(10,8/3,;28), i.e., r varies
over a small range near 28. To illustrate the technique and to
facilitate discussion of results presented in Sec. III, we look
first in Sec. II at a pruned generalized Baker’s map.
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II. A PRUNED, GENERALIZED BAKER’S MAP

Consider the mapf of the unit square given by

S xn11

yn11
D 55 S l0xn

e01L0yn
D , ynP@0,h#

S 12l1~12xn!

~yn2h!L1
D , ynP~h,1#.

~4!

Referring to Fig. 1, L05(12e0)/h and L15(1
2e1)/(12h) are the expansion factors in regions 0 and 1 and
l0 , l1 , h, e0 , ande1 are all in (0,1). The periodic orbits of
this map are first encoded with a binary label: here a 0 each
time an iterate lands iny,h, otherwise a 1. Each periodic
orbit is then uniquely represented by its appropriate binary
string. Next we prune, by requiring that no periodic orbit has
more thani 0 successive visits to region 0, nor more thani 1
successive visits to region 1. This restriction, called a block
pruning rule, can be effected through a particular choice of
the parameterse0 and e1 . When e0 and e1 are small,
i 0;2 lne0 /ln2 andi 1;2 lne1 /ln2. The complete binary dy-
namics is regained whene0 ande1 are set to 0.

A. Cycle expansions of the pruned Baker’s map

Calculating the product of~2! the direct way, we get the
expansion

1

z
512 (

pPPPC
tp ,

where PPC is the power set of PC, i.e., the set of all different
combinations of prime cycles. To facilitate the computation
of 1/z, it is useful to write it in the cycle expanded form of
@5#

1

z
512 (

fPFC
t f2 (

n.0
cn , ~5!

where FC denotes the fundamental cycles andcn is the re-
maining contribution from elements of PPC of lengthn, also
called thenth level curvature correction. The multinomial
structure of the pruned Baker’s map~4! ensures thatcn50
for all n, since the weighttp depends only on the number of
zeros and ones in the binary label of the orbitp. For the

Lorenz system, however, the multinomial structure is only
approximate and the low-order corrections must be taken
into consideration.

The pruning rule implies that whenever the itinerary of a
periodic orbit changes from 1 to 0, not more thani 0 zeros
follow, and if the symbol changes from 0 to 1, not more than
i 1 ones follow. We can use this to introduce a more efficient
symbolic dynamics, where the new symbols are thei 03 i 1
binary strings of the form 0k1l , for kP@1,i 0# and
lP@1,i 1#. Creating all combinations of these new symbols,
we can label all periodic orbits, without any unused strings,
showing that the binary dynamics pruned in this special way
is complete multinary, of orderi 03 i 1 .

The multinomial structure of the pruned Baker’s map
gives a weight of the formtp5an0bn1, where n0 and n1
denote the number of zeros and ones in the binary label of
the periodic orbitp, of symbolic lengthnp5n01n1 . The
fundamental cycles will then be the new symbols:
FC5$0k1l% with k andl as above. The expansion~5! is thus
readily evaluated to give

1

z
512

ab~12ai0!~12bi1!

~12a!~12b!
. ~6!

Introducing the ‘‘dressed’’ variablesA5a(12ai0)/(1
2ai011) andB5b(12bi1)/(12bi111), this can be written
1/z512AB/@(12A)(12B)#. Setting 1/z50 then yields
A1B51. For complete binary dynamics,i 0 and i 1→`,
A5a, andB5b. The choice fora andb now depends on
the particular thermodynamic aspect we wish to examine.
Some examples follow.

B. Multifractality of the pruned Baker’s map

We now examine some thermodynamic properties of the
map, beginning with the spectrum of singularitiesf (a). In
principle @1#, this is computed from the partition function

G~q,t!5 lim
n→`

(
sn~q!

pi
ql i

2t , ~7!

wheresn(q) is an optimal partition fromZn , the set of all
partitions with n segments, the optimalization given by a
supremum whenq.1, and an infimum whenq<1. The size
l i of a segment is the diameter of the smallest ball containing
the segment, whereas the measure contained in the segment
is pi . For a givenqPR, t(q) is found as the uniquet,
whereG(q,t) flips from 0 to`. The pointwise dimension is
then found from the definitiona5dt/dq and a Legendre
transform determines the spectrum of singularities:
f (a)5qa2t(q).
There are two practical difficulties with the partition func-

tion in ~7!: first of all, the optimal partition has to be found
and second, we need appropriate quantities representing the
distribution of visitation frequencies$pi% and the lengths
$ l i%. For the first problem it is usually argued@9# that one can
use the Kolmogorov-Sinai theorem of ergodic theory and
that the Shannon entropy(spi lnpi thus takes its supremum
value when the partitions is generating. However, this theo-
rem is not automatically applicable to a partition function of

FIG. 1. First coarse graining of the pruned, generalized Baker’s
map f of Eq. ~4!. The part marked 0 is mapped ontoL, whereas the
region 1 is mapped ontoR.
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the form ~7!, since the proof@10# uses the properties of the
Shannon entropy, quite different from the properties of~7!.

A generalization of the Kolmogorov-Sinai theorem can be
found @11# in the case of the Re´nyi entropy, showing that

sup
jPZn

S ln(jpi
q

12q D 5
ln(gpi

q

12q
~8!

wheng is a generating partition for the system. For expan-
sive homeomorphisms, a uniform partition is generating
when the mesh is finer than the expansive constant@12#. The
sum in ~7! can then be writtenl n

2t(spi
q , wheres is the

optimal partition. The split optimum definings in ~7! can be
formulated as a supremum, since

ln(spi
q

12q
5 sup

jPZn
S ln(jpi

q

12q D ,
and ~8! applies, showing that a generating partition is opti-
mal also for~7!.

For the Baker’s map, and for a suitable Poincare´ map of
the Lorenz equations, we can find a generating partition con-
sistent with a binary symbolic dynamics. To each point there
is then a unique semi-infinite binary string, or itinerary, gen-
erated by the trajectory from that point. On thenth level of
coarse graining each segment is a collection of the points
with identicaln itinerary and this can be used to label each
segment uniquely.

Each segment contains a periodic orbit whose symbolic
representation is just infinite repetitions of the binary label of
the segment, and the visitation frequency and size of the
segment can be represented by the properties of this periodic
orbit. In this way Grebogi, Ott, and Yorke@13# argue that for
Markov partitions,~7! can be written

G~q,t!5 lim
n→`

(
jPFn

L j
2ql j

q2t21 , ~9!

whereFn is the set of all fixed points off n, whereasL j and
l j are the absolute values of the unstable and stable eigen-
values~Floquet multipliers! of the fixed pointj . The parti-
tion defined above is Markovian since, by construction, the
boundaries of the (n11)th partition maps to the boundaries
of thenth partition.

Though simplified, it is still a difficult and suboptimal
task to calculate this sum accurately. We will see that use of
the z function incorporates the fact that the properties of
periodic orbits are given in finite time, but persist forever,
enabling an efficient resummation.

To get from Eq.~9! to the z function in Eq. ~2!, first
introduce the level-n partition sum Gn(q,t), so that
G5Gn→` . Then introduce the generating function
V(z;q,t)5(n.0z

nGn(q,t). After judicious rearrangement
of the terms@5#, V can be expressed in the form

V~z;q,t!52z
d

dz
ln )
pPPC

@12znptp~q,t!#,

where np is the length of the prime cyclep and
tp5Lp

2qlp
q2t21 . With z51, the requirementG(q,t)51

corresponds to finding the leading zero of 1/z.
Consider the pruned baker’s map of Eq.~4!: Any periodic

orbit p of lengthnp , containingn0 zeros andn1 ones, has
the multipliers Lp5L0

n0L1
n1 and lp5l0

n0l1
n1 , where

L0 ,L1 ,l0 andl1 are as in~4!. With the orbitp, we now
associate the weighttp5Lp

2qlp
q2t21 , which on using the

above equations becomestp5an0bn1, if a5L0
2ql0

q2t21 and
b5L1

2ql1
q2t21 .

Having identifieda andb, Eq. ~6! applies and the leading
zero of 1/z determines the requiredt(q). A comparison be-
tween this formalism and the finite partition sum~9! shows
that we now include all orbits found and that each orbit is
infinitely recycled; i.e., an infinite resummation of each pe-
riodic orbit is done.

It is instructive to evaluatea(q) formally through a varia-
tion of Eq. ~5! with respect to q and t:
dq]qz

211dt]tz
2150, and then usea(q)5dt/dq to find

a~q!512
^ lnL&

^ lnl&
. ~10!

Here and throughout this article, the angular brackets are
used to denote an ensemble average, which we will call the
escort average, which in this case takes the form

^Q&[ (
fPFC

t fQf , ~11!

with weights t f5L f
2ql f

q2t(q)21 . In general, this average
will have to be taken over the power set of the prime cycles
PPC.

In the f (a) formalisma(1)5D1 , the information dimen-
sion. Whenq51, the escort average is an average over a
special measure called the repeller measure:t f uq5151/L f .
Seeing the escort averaged lnL and lnl as characteristic ex-
ponents, Eq.~10! takes the form of the Liapunov dimension
DL in two dimensions, showing that the Kaplan-Yorke con-
jecture DL5D1 holds in a generalized form for two-
dimensional hyperbolic systems.

For chosen values of the pruning parametersi 0 andi 1 , all
fundamental orbits are first identified and then the smallest
root of the z function ~6! yields t(q). The weights in the
escort average~11! are then found and thusa(q) from ~10!.
The spectrum f (a) is found as a parametric plot of
f (q)5qa(q)2t(q) versusa(q).
In Fig. 2 we show the singularity spectrum thus obtained,

with the choice of parameters quoted in the caption. The
value forL1 is found from the normalization, i.e., by solving
~6! whenq51 andt50. To interpret this, and to see the role
played by particular periodic orbits, it is instructive to asso-
ciate a pointwise dimensiona f to a single fundamental orbit
0k1l . From the escort average expression fora, Eq. ~10!,
this isakl512 lnLkl /lnlkl , so

akl512
xlnL01 lnL1

xlnl01 lnl1
, ~12!

wherex5k/ l is the fraction of zeros to ones in the cycle.
With complete dynamics the asymptotes for Eq.~12! are

12 lnL0 /lnl0 and 12 lnL1 /lnl1 asx→` andx→0, respec-
tively. In Fig. 2 we have plottedakl and f (a) to get a picture
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of which orbits predominantly explore which parts of the
attractor. In particular (amax,amin) are given by (01i1,0i01),
explaining why f (amin)5f(amax)51. We will compare this
with the result for the Lorenz system in Sec. III.

The escort distribution$t f% can be used in a direct manner
to see where an orbit contributes. In Fig. 3 we have plotted
lntf(q) for the fundamental cycles of our example system.

We now apply a similar treatment to the spectrum of dy-
namical scaling indices. The appropriate partition function is

G~q,g!5 lim
n→`

sup
sPZn

eng(
iPs

pi
q , ~13!

corresponding to the following choice fora andb in the z
function ~6!:

a5L0
2qeg~q!, b5L1

2qeg~q!. ~14!

The leading zero of thez function fixesg(q) as fort(q) in
the f (a) formalism and the generalized exponent is obtained
from L(q)5dg/dq. The spectrum of scaling indices then
follows from a Legendre transform:g(L)5qL2g(q). The
g(L) spectrum of our example system is shown in Fig. 4.

It is instructive to express the local Liapunov exponent
L(q) in the escort average formulation. A variation of
1/z50, with respect toq andg, yields

L~q!5
^ lnL&

^n&
, ~15!

wheren is the length of the symbolic string of the periodic
orbits. The escort average now takes the form
^Q&5(FCL f

2qenfgQf . Following the earlier discussion con-
cerningakl , we now consider the local Liapunov exponent
of a solitary fundamental cycleLkl , finding

Lkl5
x lnL01 lnL1

11x
, ~16!

with x5k/ l as the ratio of zeros to ones as before. In Fig. 4,
Lkl for the fundamental cycles is plotted against their~res-
caled! lengthk1 l . Note the reversal of which orbits contrib-
ute to which part of the spectrum from the case off (a) in
Fig. 2.

The above results are all based on an exact block pruning
rule. This is only true for special choices ofe0 ande1 in Fig.
1. We will here examine what happens at other values. As
e0 ande1 vary, periodic orbits are removed in a well-ordered
manner determined by the ordering of their binary value in
relation to the kneading sequence@14#. Supposee1 is held
fixed ande0 varied. There is a range of values ofe0 , say,
de0 , over which orbits withi 0 successive zeros are removed.
The kneading sequence determines that, ase0 increases to
ē 0 say, 0

i01 is the first to be removed, 0i01i1 the last to be
removed.

For any intermediate choice ofe0 , we may not be able to
redefine the symbolic dynamics in a manner giving a finite

FIG. 2. f (a) spectrum of the pruned Baker’s mapl050.1,
l150.5, L053, andL151.463 . . . , under the pruningi 055 and
i 157. Here the points showa f of the 35 fundamental cycles (x
axis! versus a scaled orbit length (y axis!. The extreme orbits are
labeled by their binary itinerary.

FIG. 3. Logarithm of the escort distribution$t f% versusq, show-
ing the relative importance of fundamental cycles asq is varied.
Note the well-arranged transition from five bands of seven weights
into seven bands of five weights.

FIG. 4. Spectrum of scaling indicesg(L), and the local Li-
apunov exponent associated with each of the fundamental cycles
Lkl , again plotted against orbit length.
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number of fundamental cycles. We will then, in addition to
the fundamental cycles of type 0k1l , have an additional set
contributing in an unshadowed way to 1/z. However, these
orbits necessarily contribute values fora in the range
(amin ,amax) and the weights associated with such orbits will
be small.

It is our contention that these contributions to thez func-
tion will not alter f (a) significantly @nor g(L)#. We defer
further discussion of this point until Sec. III, where the same
situation arises in the topology of the Lorenz system, but
with more interesting results.

C. Correspondence with Bernoulli trials

We conclude this section with a somewhat quirky appli-
cation of thez formalism—more to demonstrate the scope of
the technique than anything else—where we associate the
dynamics of the map~4! with a sequence of Bernoulli trials
where 0 denotes ‘‘success’’ and 1 denotes ‘‘failure’’ and
assume that these two possible outcomes occur with prob-
abilities p andq512p, respectively. For simplicity we let
the pruning be symmetric:i 05 i 15 i .

We are interested in the probability of doingn trials,
without i successive successes ori successive failures,given
that the series containsm failures. Knowing this probability,
sayum(p), we can rewrite the partition function~7! as a sum
over the number of zeros in the string:

G~q,t!5 lim
n→`

(
mP@0,n#

S nmD um~p!ambn2m

5 lim
n→`

bnV~a/b!, ~17!

where the last expression follows on introducing the gener-
ating function

V~s!5 (
mP@0,n#

S nmD um~p!sm. ~18!

Using standard techniques of probability theory@15#, we can
find the probability of not seeingi successive zeroes or ones
as

wn~p!5h~xp!S 1xpD
n

, ~19!

wherexp is the smallest positive root of

x2xi~pqi211qpi21!1~pqx2! i2151. ~20!

The functionh(x) does not depend onn and is bounded in
x.

The probability we require to simplify the partition func-
tion um(p) is a conditional version ofwn(p), so the relation
between the two is

wn~p!5 (
mP@0,n#

S nmD umpmqn2m5qnV~p/q!. ~21!

We now usep as a free parameter in@0,1#, and by choosing
p5a/(a1b), we can combine~19! and ~21! to eliminate
V(a/b) from ~17! and find

G~q,t!5 lim
n→`

S a1b

xp
D nh~xp!. ~22!

Requiring that G(q,t) is finite and nonzero, we find
xp5a1b, which upon insertion in~20! yields

a1b2ab~ai1bi2aibi !51.

This is also what 1/z50 and Eq. ~6! give, for the case
i 05 i 15 i .

In this way we see that, for this system, we could have
used the theory of recurrent events from probability theory to
do the resummations otherwise done by the cycle expansions
of 1/z. It also illustrates the wide scope of thez-function
formalism.

III. THE MULTIFRACTALITY OF LORENZ

Consider now the Lorenz equations~3! at the parameter
values (r ,s,b)5(28,10,8/3). Orbits quickly contract onto a
butterfly-shaped object with complex metric and statistical
properties, which we here will describe using the multifractal
formalism. We observe the attractor using a Poincare´ section
at z5r21 and contained within the region bounded by the
two fixed points in this plane. This yields two branches
where the unstable manifold of the two symmetric fixed
points cross the section. Assuming the measure to be smooth
along the orbits~Sinai, Ruelle, and Bowen!, we set out to
describe the multifractal properties of the dynamics along the
branches.

The classical method used in@1# to find f (a) involves
finding the uniquet(q) that holds the partition function~7!
finite as the partition becomes infinitely fine and then use the
Legendre transform to obtainf (a) as discussed previously.
Here we use the direct approach~10!, based on the escort
average, with the weights tp5Lp

2qlp
q2t21 , where

Lp.1.lp are the Floquet multipliers, that is, the eigenval-
ues of the Jacobian matrix of orbitp.

A. A hierarchy of partitions

The simplest symbolic description we can give the system
is to record which branch an orbit visits, i.e., a zero if the
orbit visits the left branch (x,y) and a one otherwise. At
our choice of parameters, this yields a generating partition:
Any point is uniquely represented by the symbolic itinerary
of the trajectory starting at this point. A finite itinerary, on
the other hand, defines a segment.

We construct a hierarchy of Markov partitions in the fol-
lowing way. Let a segment of a partition on thenth level be
the collection of points with the samen first symbols in their
itinerary. These points constitute connected regions, and as
we increasen, we create successively finer partitions, as il-
lustrated in Fig. 5. The segments are ordered along the
branches after the binary value of their labels, showing a
twisted horseshoe topology.

B. Finding the periodic orbits

The Lorenz system is symmetric underS:
(x,y,z,t)→(2x,2y,z,t), which in symbol space corre-
sponds to an interchange of 0 and 1. So orbits symmetric
under S have the same eigenvalues, a fact that at string
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length 16 reduces the number of cycles we need to find from
8798 to 4418. We are at present able to find all orbits of
symbolic length 16 or less in the following way. First, search
a long (106) symbolic itinerary for the substring most com-
patible with repetitions of the cycle itself, itsS-symmetric
orbit, or any permutation of the two. The point correspond-
ing to the first symbol of this substring is then read from a
disk and used in a Newton-Raphson method@14# to localize
the orbit to within the accuracy of the numerical integration,
10210.

The Jacobian matrix is then found@14# by integrating six
partial derivatives of the coordinates with respect to the ini-
tial condition along the found orbit. The largest eigenvalue
of this matrix isLp . As Lp /lp@1 andlp becomes very
small, lp is best found using the dissipationLplp5e2dTp,
whered5s1b11541/3 andTp is the orbit period. Since
1/z is very sensitive to small changes int whenuqu is large,
t(q) is found through bisection rather than a Newton search.
Instead of differentiatingt(q) numerically, we now use the
escort average~10! to determinea(q) and then find the spec-
trum throughf (a)5qa2t(q).

We used an Adams-Bashforth five-step method as predic-
tor, corrected by an Adams-Moulton four-step method, giv-
ing a total error of orderh4, whereh is the step size. All
calculations were done using quad precision andh4510210 .

At the chosen parameter values, pruned orbits are experi-
mentally found@14# to contain the substrings 025 or 125, at
least as a first approximation. We first assume this empirical
observation to be exact and will return to what happens if
this is not the case in Sec. IV. The pruning rule is then of the
block form as in the case of the pruned Baker’s map in Sec.
II, with fundamental cycles of the form FC5$0k1l%k,lP@1,i # .
The Lorenz dynamics thus corresponds to a symmetric mul-
tinary dynamics of order 2425576 and we can find an effi-
cient expansion of 1/z.

To find the fundamental cycles, we need a better method
than the one above, as the cycles now range from 2 to 48 in
length. As seen in Fig. 5, the symbolic dynamics poses a
strict ordering of the symbol sequences along a branch. This
can be used directly in a bisective hunt along linearized sec-
tions of the branch to find any periodic orbit of length less
than;50. Implementing this@11#, we are able to find all
fundamental cycles within the accuracy of the integration. In
Fig. 6 we show the values forakl for different fundamental
orbits, determined fromakl512 lnLkl /lnlkl , against the or-
bit lengthnf .

C. Cycle expansion of the Lorenz system

The redefinition of the alphabet makes the expansion of
1/z more efficient. The first two curvature corrections are

c552t0010122t001t01,

c652t00010112t00101122t01t00012t01t00112t001t001,

which can be seen to vanish iftp51 or if tp5an0bn1. We
have successively included the effects of the curvature cor-
rections up to orbit length 16 in Eq.~5! and derived the
corresponding singularity spectra: These are found to differ
by at most 1024; see Fig. 7. In Fig. 8 we show the spectrum
of singularities for the Lorenz equations, calculated using all
fundamental cycles and curvature corrections up to and in-
cluding c16.

The previous results are combined in Fig. 9 to show both
f (a) andakl , the pointwise dimension of the fundamental
cycles. Forakl , the abscissa is proportional tonf5k1 l , the
symbolic length of the orbit, as before. The purpose of this
figure is to show where in thea domain a certain cycle
contributes. Figure 9 can be compared with Fig. 2, from the
pruned Baker’s map. A more complex structure is immedi-
ately apparent: The cycle distribution is skew symmetric,
with relatively few cycles contributing to larger values of
a. These features are generally explained by the fact that
there is a range of values for the expanding eigenvalueL f ,
for orbits of fixed lengthnf , as shown in Fig. 10. Another

FIG. 5. Levels 2–5 in the hierarchy of partitions generated by
the binary dynamics.

FIG. 6. Pointwise dimension of the fundamental cycles
a f512 lnLf /lnlf versusnf . Orbits along branch I have the form
0k1, while those along II have the form 0nf /21nf /2 if nf is even;
otherwise 0(nf11)/21(nf21)/2.
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new feature also emerges: cycles can now become ho-
moclinic at appropriate values of the parameterr . We will
return to the effects of this later.

To complement the above, we show also the spectrum of
scaling indicesg(L), obtained as explained in Sec. II, using
Eq. ~5! for the dynamicalz function, now with the cycle
weight tp5Lp

2qlp
nfg . Results are shown in Fig. 11. In this

case we have ignored the curvature corrections, i.e., set
cn50 for all n.

IV. DISCUSSION

In applying the cycle expansions of Eq.~5! to the Lorenz
case we have assumed that the topology is such that we can
find the set of fundamental cycles. In the case of a block

pruning rule as above, this is possible, but as we varyr , the
pruning rule also changes. We here examine how this affects
the cycle expansions.

At the parameter values of interest, homoclinic orbits ex-
ist for a dense set ofr values. Asr is increased from its
critical valuer 0>24.67, orbits become homoclinic in a well-
defined manner@14#. All periodic orbits with more than 26
identical successive zeros or ones are removed in homoclinic
explosions asr is increased to a valuer>26.63. The manner
in which the family of prime cycles of the form 0261s, where
s is an admissible sequence, is removed is the same as for the
previous families 0271s, 0281s, etc.: The prime cycle 0261 is
the first of this family to become homoclinic, atrmin>26.3.
The other members of this family follow, with increasing
binary value of their label, until, atrmax>26.7, the orbit
026126 aquires homoclinic status. The next family to go,
0251s, behaves in a different manner, as shown in Fig. 12.
When r>rmax the first member of this family aquires ho-
moclinic status as for the other families and, asr is in-
creased, orbits with higher binary labels are pruned. Now,

FIG. 7. Convergence off (q) as the curvature corrections are
included. Plotted is~up! 1043@ f n(qi)2 f 16(qi)# versus~forward!
n, the longest curvature correction included, and~across! qi . For
eachn a newt(q) is found.

FIG. 8. Spectrum of singularitiesf (a) for the dynamics in the
Poincare´ section of the Lorenz system, found using the 300 funda-
mental cycles corrected with the 10 135 elements from the
PPC \ FC ~that is, elements from the power set of prime cycles
excluding the fundamental cycles! of total length less 16 or less.
@By assuming the measure to be smooth along the orbits,
f Lor(a)5 f (a)11.#

FIG. 9. Combination off (a) anda f , the pointwise dimension
of the fundamental cycles. For the fundamental cycles, they value
is proportional to the length of the orbit. The purpose is to show
where in thea spectrum a certain cycle contributes. The labels I
and II are as in Fig. 6.

FIG. 10. Logarithm of the expanding eigenvalues of the funda-
mental cycles. Plotted is the difference from the exponential fit:
lnLf20.3820.69nf versusnf . The labels I and II are as in Fig. 6.
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however, this trend turns, forr>27.5, and the pruned orbits
again become admissible. In Fig. 12 we show howa f de-
pends onr for some orbits at the extreme part of the spec-
trum. Note the periodic orbit 02513, which is not pruned in
this region ofr , showing that the block pruning rule is only
approximative. Including this orbit atr528 will move
amax to about 1.082. This illustrates the sensitivity of the
right-hand part off (a) to the effect of a small correction of
the pruning rule.

Denote the fundamental cycles of the form 0k1l the
‘‘block’’ fundamental cycles. Of these, we see that 0241 is
the one closest to becoming homoclinic. Following the orbit
as we changer , however, we see~Fig. 12! that this never
happens, consistent with the observation in@14# that i de-
creases to 24 asr approaches 28, but then increases.

For the homoclinic case, one can estimate the pointwise
dimensionamax using the linearized flow around the origin
and the Kaplan-Yorke conjecture that the pointwise dimen-
sion equals the Liapunov dimension, giving

ãh5ah11531
d

n3
, ~23!

wheren3 is the smallest of the linearized eigenvalues of the
origin, i.e., n352(s11)/22@A(s21)214sr #/2, and
d5s1b11541/3. This givesah>1.4 in this region ofr .

At any value of r in the range of interest there are peri-
odic orbits close to the homoclinic orbit and these may be
fundamental cycles, though not of the block type, for ex-
ample, 025101, which, for lowerr values, contributes to
1/z through the correction term

c0251015t0251012t0251t01,

but becomes a fundamental cycle as 0251 becomes ho-
moclinic. The expansion of thez function is therefore
amended to read

1

z
512 (

fPF
t f2 (

gPG
tg2 (

cPC
tc , ~24!

whereF is the block fundamental cycles,G is the set of
fundamental cycles not inF, andC is the set of elements
from PPC making up the curvature corrections. The setsC
andG thus vary withr , taking into account how the pruning
rule changes.

We conclude with the followingconjecture: The main
effect of the fundamental setG is to alter thef (a) curve
from that shown in Fig. 8~a! to the curve in Fig. 13. Here the
downward sloping part has been connected to the point
ah , corresponding to the homoclinic orbit. The following
observations support this conjecture.

The Lorenz system is nonhyperbolic; in particular it sup-
ports homoclinic orbits, which, in the parameter range of
interest, are dense inr . A ~near-!homoclinic orbit connects
two quite distinct regions of the attractor: the butterfly-
shaped object, where a typical orbit spends most of its time,
and the seldom visited origin. The role of the homoclinic is
to induce a phase transition@17# at some appropriate nega-
tive value ofq, manifest as a flat part of thef (a) curve
@recall thatq5 f 8(a)#. Such phase transitions are common in
other nonhyperbolic systems@16,17#, where they again dis-
tinguish between different parts of the attractor. One differ-
ence in the system considered here is the linking of these

FIG. 11. Spectrum of scaling indicesg(L) of the Lorenz equa-
tions. This curve was found using only the 300 fundamental cycles,
assuming that all curvature corrections are negligible.

FIG. 12. Following some extreme orbits asr is varied. Plotted is
the pointwise dimensiona f versusr . The orbits marked i and ii are
0251001 and 025101.

FIG. 13. Conjectured effect of the setG of fundamental cycles
on f (a) ~dashed line! together withf (a) from the block fundamen-
talsF ~solid curve!.
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transitions with homoclinic orbits. In a recent study of the
logistic map ~a nonhyperbolic system! @17#, it was argued
that for q,qT , qT.0 being the critical value where the
transition occurs, spectra can be computed using techniques
devised for hyperbolic systems. We believe the same argu-
ment can be applied here, making allowance for the obvious
difference that the origin in the logistic map is a point of
maximal measure, whereas here, it is minimal, so the in-
equality is inverted.

Other members of the setG are long periodic orbits with
small values oftp , having negligible effect inq.qT , but

modifying the curve inq,qT , as shown in Fig. 13. This
point is under further study.
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