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Multifractality of the Lorenz system
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We use the unstable periodic orbit expansion of the dynangidahction to find the multifractal spectra
f(«) andg(A) for the Lorenz system at (o,b) =(28,10,8/3) and also for an incomplete, generalized Baker’'s
map with the topology of the Lorenz syste[$1063-651X96)01908-3

PACS numbgs): 05.45:+b, 02.50.Cw, 02.60.Cb

[. INTRODUCTION thereby reducing the computational problem of finding the
leading zero. This has far-reaching consequences for the de-
The multifractal properties of a chaotic attractor are usescription of chaotic systems: Even though trajectories them-
fully quantified by its spectrum of singularitie«) [1].  selves cannot be followed for long times, a class of quantities
Here a € [ amin.@max iS the pointwise dimension, or Her  can be found in an averaged sense. Specifically, we can find
exponent, of the natural measuygeat pointx; on the attrac- the multifractal spectrdi(«) andg(A). Numerically calcu-

tor and is defined by the relation lated trajectories are, via the shadowing theorem of Bowen
and Anosov, close to a “true” trajectory of the system, but

o Inu S %) are of little use in a multifractal description, as we then must

a(xj)=lim —————, (1) describeany behavior the system might show, not just the

) Inl; !
li—0 ' measure-one behavior.

The purpose of this article is to demonstrate the applica-
tion of this technique to a system of ordinary differential
o i S ; equations. The results of similar studies for maps have ap-
con_tammgs. AS th? partltlon_becomes infinitely ref'ﬂe& peared in the literature, but to date application of the tech-
shrinks onto the poink; . f(«) is then the Hausdorff dimen- piq 6 1o flows has been restricted to determining the Haus-
sion of the collection of all points with pointwise dimension dorff dimension and the Liapunov expondbt7]. Here we
@ . . compute the complete spectra using a formalism that shows

Within a more general thermodynamical formalism, the, pare in the spectra a given cycle contributes. Two aspects

singularity spectrum is one of several ways in which the ;| pe investigated in detalil.

attractor properties can be ql_Jantifi(_ad and contair_ls the infor- (i) Although it will prove possible to encode each periodic
mation in the generalized dimensiobx, [2]. A different it with a binary label, the binary dynamics in our system
measure of complexity is the spectrum of dynamical scalingg jncomplete, implying that not every string corresponds to
|nd_|cesg(A), wher_eAi is the Ioc_:al Liapunov exponent at 5, sllowed periodic orbit. This is denoted a “pruned” binary
pointx; andg(A) is the topological entropy of the collec- gynamics, since not all branches of the complete binary tree
tion of points with exponent\; [3]. This spectrum contains re covered. By utilizing the binary grammar, the symbolic
the information in the set of Rgi (generalizefl entropies  gynamics can be renormalized to a complete dynamics of
[4]. , _ ) o higher order. We can then find a special family of orbits
Recent implementations of this descriptive approach haV@iving the main part of ¥, while other orbits contribute

made imaginative use of the dynamicalfunction and, in only through higher-order terms.

particular, the way this function can be expressed through (i) In a more general case, we will not be able to renor-

whereS(1;,X;) denotes a segment in an optimal partition to
be specified below anld is the diameter of the smallest ball

the cycle expansiori®]. Here malize the symbolic dynamics, i.e., the symbolic dynamics
will not be a finite shift. We will discuss how this affects the
EZH (1-t,) 2 expansion of 1.
{ BC p7 In Sec. lll we explore the Lorenz systdi@]

where the product is over a set of representative periodic x=o(y—X),
orbits, the prime cycle¢PCO). The prime cycles are found
from the set of periodic orbits by removing the orbits that are

repetitions of lower-order orbits. The weighy attached to y=x(r=2)-y, ®
each prime cycle is determined by the quantities of interest, .

as discussed in detail if6], and in Sec. Il B below. The z=Xxy—bz

leading zero of 1 is then sought, which in turn determines

the required spectrum. at parameter valueso(b,r)=(10,8/3~28), i.e.,r varies

The strength of this approach is that the infinite productover a small range near 28. To illustrate the technique and to
(2) is often closely approximated by a finite expansion over dacilitate discussion of results presented in Sec. Ill, we look
set of low-order prime cycles—the fundamental cycles—first in Sec. Il at a pruned generalized Baker’s map.
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Lorenz system, however, the multinomial structure is only

€1 approximate and the low-order corrections must be taken
1 f L into consideration.
—_— R The pruning rule implies that whenever the itinerary of a
Ui periodic orbit changes from 1 to 0, not more thianzeros
0 . Ao Ay follow, and if the symbol changes from 0 to 1, not more than
0

i1 ones follow. We can use this to introduce a more efficient
symbolic dynamics, where the new symbols are ithei
_ o _ binary strings of the form @', for ke[1j,] and
FIG. 1. First coarse graining of the pruned, generalized Baker's o [1i,]. Creating all combinations of these new symbols,
mapf of Eq. (4). The part marked 0 is mapped onfowhereas the ;o can |abel all periodic orbits, without any unused strings,
region 1 is mapped ontg. showing that the binary dynamics pruned in this special way
is complete multinary, of ordeipXi .
Il. A PRUNED, GENERALIZED BAKER'S MAP The multinomial structure of the pruned Baker's map
Consider the mag of the unit square given by gives a weight of the fornt,=a"b"™, wheren, and n,
denote the number of zeros and ones in the binary label of
the periodic orbitp, of symbolic lengthn,=ng+n,. The

NoXn yae[0,7] fundamental cycles will then be the new symbols:
Xn+1 €0+ Agyn/’ A ' FC={01'} with k andI as above. The expansi@b) is thus
Voot = 12y (1-x,) (4)  readily evaluated to give
’ yn € ( 7711] . . .
(Yn= 7 A1 1 ab(1—al0)(1-b'1)
Z=1- ) 6
Z (1-a)1-b) ©

Referring to Fig. 1, Ap=(1—¢p)/p and A;=(1

—€)/(1—7) are the expansio.n factors in regiqns.o anc_i 1 a”qntroducing the “dressed” variablesA=a(1—a0)/(1
No» N1, 1, €, ande; are all in (0,1). The periodic orbits of —aio*l) andB=b(1—bi1)/(1—b'1"1), this can be written
this map are first encoded with a binary label:éhar0 each 17=1-AB/[(1-A)(1—B)]. Setting 1/=0 then yields

time an iterate lands ig<7, otherwise a 1. Each periodic o1 pg—1 For complete binary dynamics, and i,

orbit is then uniquely represented by its appropriate binarys — 5 andB=b. The choice fora andb now depends on

string. Next we prune, by requiring that no periodic orbit hasy,e narticular thermodynamic aspect we wish to examine.
more thani, successive visits to region 0, nor more than  gome examples follow,

successive Vvisits to region 1. This restriction, called a block
pruning rule, can be effected through a particular choice of

the parameterse, and €;. When ¢, and e; are small, B. Multifractality of the pruned Baker's map
ig~ .—IntsO/InZ qndi1~ —Iney/In2. The complete binary dy- We now examine some thermodynamic properties of the
namics is regained whesy, ande; are set to 0. map, beginning with the spectrum of singularitigsy). In

principle [1], this is computed from the partition function
A. Cycle expansions of the pruned Baker's map

Calculating the product of2) the direct way, we get the F(q'T):r!i_'TL U%) pili T @
expansion "

1 wherea,(q) is an optimal partition fromz,, the set of all
Zzl_pezppctp' partitions withn segments, the optimalization given by a
supremum whe>1, and an infimum wheg=<1. The size
I; of a segment is the diameter of the smallest ball containing
where PPC is the power set of PC, i.e., the set of all differenthe segment, whereas the measure contained in the segment
combinations of prime cycles. To facilitate the computationjs p.. For a givenqe R, 7(q) is found as the unique,
of 1/, it is useful to write it in the cycle expanded form of whereI'(q,7) flips from 0 to. The pointwise dimension is
(5] then found from the definitionv=dr/dq and a Legendre
transform determines the spectrum of singularities:
1 f(@)=qa—7(q).
—=1- E ti— 2 Cns 5) There are two practical difficulties with the partition func-
¢ feFC— n=0 tion in (7): first of all, the optimal partition has to be found
and second, we need appropriate quantities representing the
where FC denotes the fundamental cycles epds the re-  distribution of visitation frequencie$p;} and the lengths
maining contribution from elements of PPC of lengthalso  {l;}. For the first problem it is usually argug@] that one can
called thenth level curvature correction. The multinomial use the Kolmogorov-Sinai theorem of ergodic theory and
structure of the pruned Baker's mag) ensures that,=0  that the Shannon entropy,p;lnp; thus takes its supremum
for all n, since the weight, depends only on the number of value when the partitionr is generating. However, this theo-
zeros and ones in the binary label of the onpit For the  rem is not automatically applicable to a partition function of
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the form(7), since the proof10] uses the properties of the where n, is the length of the prime cyclep and
Shannon entropy, quite different from the properties®f tp=Aqu)\g‘T‘1. With z=1, the requirement’(q,7)=1
A generalization of the Kolmogorov-Sinai theorem can becorresponds to finding the leading zero of.1/

found[11] in the case of the Rwi entropy, showing that Consider the pruned baker’'s map of E4): Any periodic
orbit p of lengthn,, containingn, zeros andh, ones, has

INEpd|  In p? the multipliers A,=Ag°A7* and A,=\°A7%, where

sup( 1—q )2 1_yq (8  Ag,A1,\p and\, are as in(4). With the orbitp, we now

éez, associate the Weigfth=A;q)\g_7_1, which on using the

above equations becomgs=a"b", if a=Ay\§" " ! and
when y is a generating partition for the system. For expan—b=Al‘q)\‘}‘T_l.
sive homeomorphisms, a uniform partition is generating Having identifieda andb, Eq.(6) applies and the leading
when the mesh is finer than the expansive congtefit The  zero of 1£ determines the requiret{q). A comparison be-
sum in (7) can then be writted, "> p, whereo is the tween this formalism and the finite partition su®8) shows

optimal partition. The split optimum defining in (7) can be  that we now include all orbits found and that each orbit is
formulated as a supremum, since |nf|n|te|y I’ecycled; i.e., an infinite resummation of each pe-
riodic orbit is done.

It is instructive to evaluate(q) formally through a varia-

I, pf — o (In2§p9> tion of Eg. (5 with respect to q and 7
1-9 .2\ 1-q /) dgde{ *+drd,{"*=0, and then use(q)=dr/dq to find
(InA)
and (8) applies, showing that a generating partition is opti- a(q)=1- {Inn) ° (10

mal also for(7).

For the Baker's map, and for a suitable Poincarap of Here and throughout this article, the angular brackets are
the Lorenz equations, we can find a generating partition condsed to denote an ensemble average, which we will call the
sistent with a binary symbolic dynamics. To each point thereescort average, which in this case takes the form
is then a unique semi-infinite binary string, or itinerary, gen-
erated by the trajectory from that point. On thih level of (Q)= > 4Qs, (11
coarse graining each segment is a collection of the points feFC
with identicaln itinerary and this can be used to label each
segment uniquely.

Each segment contains a periodic orbit whose symboli
representation is just infinite repetitions of the binary label of In.thef(a) formalisme(1)=D,, the information dimen-
the segment, and the visitation frequency and size of thgjon \Whenq=1, the escort average is an average over a
segment can be represented by the properties of this periodigecial measure called the repeller meastylg, = 1/A;.
orbit. In this way Grebogi, Ott, and Yor{d 3] argue that for  seeing the escort averagediliand In\ as characteristic ex-
Markov partitions,(7) can be written ponents, Eq(10) takes the form of the Liapunov dimension

D, in two dimensions, showing that the Kaplan-Yorke con-
) -1 jecture D, =D; holds in a generalized form for two-
I'(g,7)=lim Zf APINTTE, (9 dimensional hyperbolic systems.
n—e 1< For chosen values of the pruning parametgrandi,, all
fundamental orbits are first identified and then the smallest
whereF, is the set of all fixed points of", whereas\; and  root of the ¢ function (6) yields 7(q). The weights in the
\; are the absolute values of the unstable and stable eigeascort averagél1) are then found and thus(q) from (10).
values(Floquet multipliers of the fixed pointj. The parti- The spectrumf(a) is found as a parametric plot of
tion defined above is Markovian since, by construction, thef(q)=qa(q) — 7(q) versusa(q).
boundaries of ther(+ 1)th partition maps to the boundaries  |n Fig. 2 we show the singularity spectrum thus obtained,
of the nth partition. with the choice of parameters quoted in the caption. The

Though simplified, it is still a difficult and suboptimal value forA is found from the normalization, i.e., by solving
task to calculate this sum accurately. We will see that use ofg) whenq=1 and7=0. To interpret this, and to see the role
the ¢ function incorporates the fact that the properties ofplayed by particular periodic orbits, it is instructive to asso-
periodic orbits are given in finite time, but persist forever, ciate a pointwise dimensios; to a single fundamental orbit
enabling an efficient resummation. 0%1'. From the escort average expression dor Eq. (10),

To get from Eq.(9) to the ¢ function in Eq.(2), first  this is a,=1—InAy/IN\y, SO
introduce the leveh partition sum I'(q,7), so that
I'=T, ... Then introduce the generating function _ . XInAg+inA,
O(z,9,7)=2,-02"T(q,7). After judicious rearrangement T inng+ Ny
of the termg5], {) can be expressed in the form

with weights t;=A; 9" "@~1_|n general, this average
will have to be taken over the power set of the prime cycles

(12

wherex=Kk/I is the fraction of zeros to ones in the cycle.

q With complete dynamics the asymptotes for ELR) are
Q(zq,7)=-2z—In H [1-2"t,(q,7)], 1—InA0/In?\O and 1-InA;/In\; asx—o andx—0, respec-
dz" pepc tively. In Fig. 2 we have plotted,; andf(«) to get a picture
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FIG. 4. Spectrum of scaling indice(A), and the local Li-
FIG. 2. f(a) spectrum of the pruned Baker's mag=0.1, apunov exponent associated with each of the fundamental cycles
A=0.5,Aq=3, andA,;=1.48 ... ,under the pruning,=5 and A« again plotted against orbit length.
i;=7. Here the points show; of the 35 fundamental cycles«(
axis) versus a scaled orbit lengtly @xis). The extreme orbits are azAaqey(‘”, b:Al‘qe7<q>_ (14
labeled by their binary itinerary.
The leading zero of thé function fixesy(q) as forr(q) in
of which orbits predominantly explore which parts of the the f(a) formalism and the generalized exponent is obtained
attractor. In particular ¢ max,@min) are given by (01,001), from A(q)=dy/dqg. The spectrum of scaling indices then
explaining why f(amin)=f(ama)=1. We will compare this follows from a Legendre transforng(A)=gA —y(q). The
with the result for the Lorenz system in Sec. Ill. g(A) spectrum of our example system is shown in Fig. 4.
The escort distributiofit;} can be used in a direct manner It is instructive to express the local Liapunov exponent
to see where an orbit contributes. In Fig. 3 we have plotted\(q) in the escort average formulation. A variation of
Int;(q) for the fundamental cycles of our example system. 1/{=0, with respect taj and v, yields
We now apply a similar treatment to the spectrum of dy-

namical scaling indices. The appropriate partition function is (InA)
? bpropraie P A(g)= 7", (19
(n)
I'(q,y)=lim sup e pf, (13 wheren is the length of the symbolic string of the periodic
nowoeZ, €0 orbits. The escort average now takes the form

_ _ _ _ (Q)==rcA; 9%"Q¢. Following the earlier discussion con-
corresponding to the following choice farandb in the{  cerninge,,, we now consider the local Liapunov exponent

function (6): of a solitary fundamental cycla,, finding
xInAg+InA4
0 M= 17x (16)
AL =—__—_—=
1 v \\{:&%{f with x=Kk/| as the ratio of zeros to ones as before. In Fig. 4,
, éé;i%{é’f;‘:"’" Ay, for the fundamental cycles is plotted against theas-
2 /’;?ifzﬁ& caled lengthk+1. Note the reversal of which orbits contrib-
/’7:’ ::\\\ % ute to which part of the spectrum from the casef &) in
\\\\ The above results are all based on an exact block pruning
rule. This is only true for special choices af ande; in Fig.
4 1. We will here examine what happens at other values. As
€o ande, vary, periodic orbits are removed in a well-ordered
5 .\ manner determined by the ordering of their binary value in
\ relation to the kneading sequenicet]. Supposee; is held
/ \ fixed andeq varied. There is a range of values &f, say,
2 10 0 0 20 30 40 50 d¢€q, over which orbits with ; successive zeros are removed.

The kneading sequence determines thateafcreases to
FIG. 3. Logarithm of the escort distributidt;} versusg, show-  €o Say, 001 is the first to be removed,'@' the last to be
ing the relative importance of fundamental cyclescais varied.  removed.
Note the well-arranged transition from five bands of seven weights For any intermediate choice ef,, we may not be able to
into seven bands of five weights. redefine the symbolic dynamics in a manner giving a finite
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number of fundamental cycles. We will then, in addition to ~ [a+b\"
the fundamental cycles of type'D, have an additional set I'(q,7)= lim (x_) 7(Xp)- (22
contributing in an unshadowed way tof1MHowever, these n—et 7P

orbits necessarily contribute values fer in the range Requiring thatT'(q,7) is finite and nonzero, we find

E)Cémsi%gﬂax) and the weights associated with such orbits Wi”xpza+b, which upon insertion ir20) yields

It is our contention that these contributions to theunc- a+b—ab(a +b —ab')=1.
tion will not alter f(«) significantly [nor g(A)]. We defer o )
further discussion of this point until Sec. Ill, where the same] NiS is also what ¥/=0 and Eq.(6) give, for the case

situation arises in the topology of the Lorenz system, bufo=!1=!- _
with more interesting results. In this way we see that, for this system, we could have

used the theory of recurrent events from probability theory to
do the resummations otherwise done by the cycle expansions

of 1/Z. It also illustrates the wide scope of tigefunction
We conclude this section with a somewhat quirky appli-formalism.

cation of the/ formalism—more to demonstrate the scope of
the technique than anything else—where we associate the Ill. THE MULTIFRACTALITY OF LORENZ

dynamics of the mag4) with a sequence of Bernoulli trials ) _
where 0 denotes “success” and 1 denotes “failure” and Consider now the Lorenz equatiof® at the parameter

assume that these two possible outcomes occur with profy@lues €,o,b)=(28,10,8/3). Orbits quickly contract onto a

abilities p andq=1—-p, respectively. For simplicity we let butterfly-shaped object with complex metric and statistical

the pruning be symmetridy=i,=i. properties, which we here will describe using the multifractal
We are interested in the probability of doiny trials, formalism. We observe the attractor using a Poincaaion

withouti successive successes auccessive failuregiven &t z=f.r R dl and coptaiﬂgd v;/ithin thﬁ_ reg.iolr; boundebd byr:he
that the series contaima failures. Knowing this probability, WO fixed points in this plane. This yields two branches

sayu.(p), we can rewrite the partition functiafd) as a sum Wh_ere the unStabIe_manlfOId Qf the two symmetric fixed
over the number of zeros in the string: points cross the section. Assuming the measure to be smooth

along the orbitg(Sinai, Ruelle, and Bowgnwe set out to
n describe the multifractal properties of the dynamics along the

r'(g,7)=lm > ( )um(p)amb”m branches.

n—ee me[On] | M The classical method used fd] to find f(«) involves

_ n finding the uniquer(q) that holds the partition functiot)

im b™0(a/b), (17 finite as the partition becomes infinitely fine and then use the
Legendre transform to obtaif{«) as discussed previously.
where the last expression follows on introducing the generHere we use the direct approa¢h0), based on the escort

C. Correspondence with Bernoulli trials

n—oe

ating function average, with the weightstp=A;q)\g‘T‘1, where
N Ap>1>N\, are the Floquet multipliers, that is, the eigenval-
ues of the Jacobian matrix of orlpt
Q(s)= % ] (m) Un(P)s™ (18) P
me|[0,n

A. A hierarchy of partitions
Using standard techniques of probability thefit$], we can
find the probability of not seeingsuccessive zeroes or ones
as

The simplest symbolic description we can give the system
is to record which branch an orbit visits, i.e., a zero if the
orbit visits the left branchX<y) and a one otherwise. At

1\n our choice of parameters, this yields a generating partition:
w,(p)= n(xp)(x—) , (199  Any point is uniquely represented by the symbolic itinerary
p of the trajectory starting at this point. A finite itinerary, on
wherex,, is the smallest positive root of the other hand, defines a segment. o
o _ _ We construct a hierarchy of Markov partitions in the fol-
x=x(pgd " t+qp H+(pgx®) t=1. (200  lowing way. Let a segment of a partition on théh level be
) ) . the collection of points with the sanmefirst symbols in their
The functionz(x) does not depend om and is bounded in jinerary. These points constitute connected regions, and as
X. B . o - we increasen, we create successively finer partitions, as il-
~ The probability we require to simplify the partition func- ysirated in Fig. 5. The segments are ordered along the
tion uy(p) is a conditional version ofvy(p), so the relation  pranches after the binary value of their labels, showing a

between the two is twisted horseshoe topology.
n
w,(p) = % | (m)umpmq”mzqnﬂ(p/q). (21) B. Finding the periodic orbits
me|0,n

The Lorenz system is symmetric undersS:

We now usep as a free parameter [i9,1], and by choosing (x,y,z,t)—(—x,—VY,z¢t), which in symbol space corre-
p=al/(a+b), we can combing19) and (21) to eliminate  sponds to an interchange of 0 and 1. So orbits symmetric
Q(a/b) from (17) and find under S have the same eigenvalues, a fact that at string
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ar 0 a0t Zoot00 100N 1010 FIG. 6. Pointwise dimension of the fundamental cycles
J e e a;=1—InA;/In\; versusn; . Orbits along branch | have the form
/000G / . . .
. oo oo ot 01, while those along Il have the form"®1"2 if n; is even;
- otherwise @+ D72 (=172,

To find the fundamental cycles, we need a better method
than the one above, as the cycles now range from 2 to 48 in
FIG. 5. Levels 2-5 in the hierarchy of partitions generated bylength. As seen in Fig. 5, the symbolic dynamics poses a
the binary dynamics. strict ordering of the symbol sequences along a branch. This
can be used directly in a bisective hunt along linearized sec-
length 16 reduces the number of cycles we need to find frorions of the branch to find any periodic orbit of length less
8798 to 4418. We are at present able to find all orbits othan ~50. Implementing thi11], we are able to find all
symbolic length 16 or less in the following way. First, Searchfu.ndamental cycles within the accuracy of the integration. In
a long (16) symbolic itinerary for the substring most com- Fig: 6 we show the values fa,, for different fundamental
patible with repetitions of the cycle itself, iS&-symmetric ~ OrPits, determined fronay =1-InAy/Ink, against the or-
orbit, or any permutation of the two. The point correspond-Pit lengthng.
ing to the first symbol of this substring is then read from a

disk and used in a Newton-Raphson methbd] to localize C. Cycle expansion of the Lorenz system

the orbit to within the accuracy of the numerical integration, The redefinition of the alphabet makes the expansion of

10710 1/¢ more efficient. The first two curvature corrections are
The Jacobian matrix is then foudl4] by integrating six

partial derivatives of the coordinates with respect to the ini- Cs5=2tg0101~ 2tooator

tial condition along the found orbit. The largest eigenvalue

of this matrix isA,. As A,/\,>1 and\, becomes very C6=2to0o101 2001011 2to1tooor— tortoorr— toortoo1,

small, A, is best found using the dissipatiohp)\pze*”p,
where §=o+b+1=41/3 andT is the orbit period. Since which can be seen to vanishtif=1 or if t,=a"b". We
1/¢ is very sensitive to small changesirwhen|q| is large, have successively included the effects of the curvature cor-
7(q) is found through bisection rather than a Newton searchrections up to orbit length 16 in Ed5) and derived the
Instead of differentiating-(q) numerically, we now use the corresponding singularity spectra: These are found to differ
escort averag€l0) to determinex(q) and then find the spec- by at most 104; see Fig. 7. In Fig. 8 we show the spectrum
trum throughf(a)=qa— 7(q). of singularities for the Lorenz equations, calculated using all
We used an Adams-Bashforth five-step method as predidundamental cycles and curvature corrections up to and in-
tor, corrected by an Adams-Moulton four-step method, giv-cluding c¢.
ing a total error of ordeh®, whereh is the step size. All The previous results are combined in Fig. 9 to show both
calculations were done using quad precision afvd 1010, f(a) and a4, the pointwise dimension of the fundamental
At the chosen parameter values, pruned orbits are expereycles. Fore,,, the abscissa is proportional tg=Kk+1, the
mentally found[14] to contain the substrings®®or 1?°, at  symbolic length of the orbit, as before. The purpose of this
least as a first approximation. We first assume this empiricdigure is to show where in the domain a certain cycle
observation to be exact and will return to what happens icontributes. Figure 9 can be compared with Fig. 2, from the
this is not the case in Sec. IV. The pruning rule is then of thepruned Baker’s map. A more complex structure is immedi-
block form as in the case of the pruned Baker's map in Secately apparent: The cycle distribution is skew symmetric,
I, with fundamental cycles of the form F€{0k1'}ky,e[m. with relatively few cycles contributing to larger values of
The Lorenz dynamics thus corresponds to a symmetric mule. These features are generally explained by the fact that
tinary dynamics of order #4576 and we can find an effi- there is a range of values for the expanding eigenvalue
cient expansion of I/ for orbits of fixed lengthn;, as shown in Fig. 10. Another
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FIG. 7. Convergence of(q) as the curvature corrections are  FIG. 9. Combination of (@) and «;, the pointwise dimension
included. Plotted isup) 10°X[f,(q;)—f1e(q;)] versus(forward  of the fundamental cycles. For the fundamental cyclesytialue
n, the longest curvature correction included, dadros$ q;. For  is proportional to the length of the orbit. The purpose is to show
eachn a new(q) is found. where in thea spectrum a certain cycle contributes. The labels |

and Il are as in Fig. 6.

new feature also emerges: cycles can now become ho-
moclinic at appropriate values of the paramateWe will
return to the effects of this later.

To complement the above, we show also the spectrum

scaling indicegg(A), obtained as explained in Sec. Il, using  at'the parameter values of interest, homoclinic orbits ex-
Eq. (5 for the dynamical{ function, now with the cycle ist for a dense set of values. Asr is increased from its

weight t,= A, “\}"”. Results are shown in Fig. 11. In this critical valuer ,=24.67, orbits become homoclinic in a well-
case we have ignored the curvature corrections, i.e., sefefined mannef14]. All periodic orbits with more than 26
c,=0 for all n. identical successive zeros or ones are removed in homoclinic
explosions as is increased to a value=26.63. The manner
IV. DISCUSSION in which the family of prime cycles of the forn?Ls, where
s is an admissible sequence, is removed is the same as for the
In applying the cycle expansions of E@) to the Lorenz  previous families 61s, 0%1s, etc.: The prime cycle 1 is
case we have assumed that the topology is such that we c@fe first of this family to become homoclinic, Bt;,=26.3.
find the set of fundamental cycles. In the case of a blockrhe other members of this family follow, with increasing
binary value of their label, until, at,=26.7, the orbit

pruning rule as above, this is possible, but as we varthe
runing rule also changes. We here examine how this affects
e cycle expansions.

026126 aquires homoclinic status. The next family to go,
108 f () TN 0%°1s, behaves in a different manner, as shown in Fig. 12.
- : Whenr=r,, the first member of this family aquires ho-
105 E . moclinic status as for the other families and, rass in-

creased, orbits with higher binary labels are pruned. Now,

1.04

N 4
108} - . In Ay — 0.38-0.69"f

102}

0.2 II

PSR
EE

1.01 ‘ 0.1

1.055 1.06 1.065 1.07 1.075

FIG. 8. Spectrum of singularitie§ «) for the dynamics in the so.2f. I I
Poincaresection of the Lorenz system, found using the 300 funda- e
mental cycles corrected with the 10135 elements from the
PPC\FC(that is, elements from the power set of prime cycles
excluding the fundamental cyclesf total length less 16 or less. FIG. 10. Logarithm of the expanding eigenvalues of the funda-
[By assuming the measure to be smooth along the orbitsmental cycles. Plotted is the difference from the exponential fit:
flo(a@)=f(a)+1.] InA;—0.38-0.69'f versusn; . The labels | and Il are as in Fig. 6.
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FIG. 13. Conjectured effect of the sét of fundamental cycles
onf(a) (dashed lingtogether withf (a) from the block fundamen-
FIG. 11. Spectrum of scaling indicgg A) of the Lorenz equa- talsF (solid curve.

tions. This curve was found using only the 300 fundamental cycles,
assuming that all curvature corrections are negligible. ~ S
ahzah+l=3+ V_, (23)

3
however, this trend turns, for=27.5, and the pruned orbits

again become admissible. In Fig. 12 we show hewde- Wherevs is the smallest of the linearized eigenvalues of the
pends orr for some orbits at the extreme part of the spec-origin, i.e., vz=—(o+1)2—[(o— 1)2+ 4gr]/2, and
trum. Note the periodic orbit312, which is not pruned in 6=o+b+1=41/3. This givesa,=1.4 in this region of .
this region ofr, showing that the block pruning rule is only ~ At anyvalue ofr in the range of interest there are peri-
approximative. Including this orbit at=28 will move odic orbits close to the homoclinic orbit and these may be
amax t0 about 1.082. This illustrates the sensitivity of thefundamenstal cycles, though not of the block type, for ex-
right-hand part off (a) to the effect of a small correction of 2mMPle, G°101, which, for lowerr values, contributes to
the pruning rule. 1/¢ through the correction term

Denote the fundamental cycles of the fornf10 the
“block” fundamental cycles. Of these, we see th&'D is

the one closest to becoming homaclinic. Following the orbityyt pecomes a fundamental cycle a&10 becomes ho-
as we change, however, we se¢Fig. 12 that this never moclinic. The expansion of the function is therefore
happens, consistent with the observation14] thati de- amended to read
creases to 24 asapproaches 28, but then increases.

For the homoclinic case, one can estimate the pointwise 1
dimensionam,y Using the linearized flow around the origin I 1—§F tf—gge tg_cgc te, (24)
and the Kaplan-Yorke conjecture that the pointwise dimen-
sion equals the Liapunov dimension, giving

Co25101= 1925101~ L0251t 01

where F is the block fundamental cycle§ is the set of
fundamental cycles not i, andC is the set of elements
from PPC making up the curvature corrections. The €ets
andG thus vary withr, taking into account how the pruning
rule changes.
1012, I We conclude with the followingconjecture The main
B effect of the fundamental s&® is to alter thef(a) curve
from that shown in Fig. &) to the curve in Fig. 13. Here the
downward sloping part has been connected to the point
ap, corresponding to the homoclinic orbit. The following
observations support this conjecture.

The Lorenz system is nonhyperbolic; in particular it sup-
ports homoclinic orbits, which, in the parameter range of
interest, are dense in A (nearjhomoclinic orbit connects
two quite distinct regions of the attractor: the butterfly-
shaped object, where a typical orbit spends most of its time,
and the seldom visited origin. The role of the homoclinic is
to induce a phase transitigd7] at some appropriate nega-
tive value ofg, manifest as a flat part of thg(«) curve
[recall thatg=f’(a)]. Such phase transitions are common in

FIG. 12. Following some extreme orbits ms varied. Plotted is ~ Other nonhyperbolic systenj$6,17, where they again dis-
the pointwise dimensiorn; versusr. The orbits marked i and ii are tinguish between different parts of the attractor. One differ-
0251001 and 6°101. ence in the system considered here is the linking of these

1.00f ¢ - i - i . 0751
1.08
1.07

1.06

1.05 265 27 275 28 285 29
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transitions with homoclinic orbits. In a recent study of the modifying the curve inq<q;, as shown in Fig. 13. This

logistic map (a nonhyperbolic systen{17], it was argued point is under further study.

that for g<gt, gr>0 being the critical value where the

transition occurs, spectra can be computed using techniques

devised for hyperbolic systems. We believe the same argu- ACKNOWLEDGMENTS
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