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Interface fluctuations on a hierarchical lattice
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We consider interface fluctuations on a two-dimensional layered lattice where the couplings follow a hier-
archical sequence. This problem is equivalent to the diffusion process of a quantum particle in the presence of
a one-dimensional hierarchical potential. According to a modified Harris criterion, this type of perturbation is
relevant and one expects anomalous fluctuating behavior. By transfer-matrix techniques and by an exact
renormalization-group transformation we have obtained analytical results for the interface fluctuation expo-
nents, which are discontinuous at the homogeneous lattice [ig1i063-651X96)01808-9

PACS numbgs): 05.40:+j, 64.60.Ak, 68.35.Rh

I. INTRODUCTION with a one-dimensional Huberman-Kerszb@riK) sequence
[7] and the corresponding Ising quantum chain were studied.
Recently, there has been a growing interest in natural anth numerical[18] and exac{19,2( calculations, nonuniver-
artificial systems that are organized in a hierarchical waysal critical behavior was found in accordance with the van-
Examples can be found in economical organizatidisand  ishing crossover exponent in E@.), which follows from the
stock-market exchangdg], in geological processes before fact that the fluctuation exponent of the HK sequence is
major earthquakel3], and in studies of relaxation phenom- =0 [20].
ena of proteing4], spin glasse$5], and computer architec- In this paper we consider the interface fluctuation problem
tures[6]. Theoretically, much effort has been devoted to theon a layered lattice, where the couplings between the layers
understanding of the linear dynamig@s., the diffusion pro- follow the HK hierarchical sequence. As far as interface
cess in a system with hierarchically organized energy barri-wandering on nonperiodic lattices is concerned we should
ers. According to numericdl7,8] and exact{9,10] results, mention the work by Henley and LipowsKg1], who con-
the diffusion in such systems can be anomal@ukich is  sidered the interface roughening in two-dimensional quasi-
often called “ultradiffusion” [7]). Furthermore, in several crystals. On a layered lattice with Fibonacci-type quasiperi-
models there is a dynamical phase transifiBhseparating odicity, nonuniversal interface fluctuations were observed,
regions with normal and anomalous diffusion. For a comprewith a continuously varying interface wandering exponent.
hensive review on the subject see Héfl]. This behavior is again in accord with the relevance-
Another subject of theoretical interest is the properties ofrrelevance criterion, since witlfl=—1 and v=», =3 the
(statig phase transitions on hierarchical lattices. For theserossover exponent in E@L) is ®=0. In our problem, on the
and other nonperioditquasiperiodic or more generally ape- HK lattice =0, thus®=3>0 and the perturbation is rel-
riodic) systems a relevance-irrelevance criterion has recentlgvant. Therefore one expects anomalous interface fluctua-
been proposefi12], in analogy to the Harris criterionl3]  tions on this lattice.
for random magnets. The crossover exponent corresponding The structure of the paper is as follows. We define the

to a nonperiodic perturbation is given by model in Sec. Il. The results of the transfer-matrix calcula-
tions and that of an exact renormalization-grqRgs) trans-
d=1+vD(Q-1) (1) formation are presented in Secs. lll and IV, respectively. The

results are discussed in Sec. V.
in terms of thewv correlation length exponent of the unper-

turbed system and the wandering exponent of the sequence Il. FORMALISM
Q [14]. HereD denotes the number of coordinates on which ) . ) .
the couplings depend, e.g., for a layered sys@m1. The We consider a diagonally layered ferromagnetic spin

perturbation is then expected to be relevéntelevani if model(cf. the Ising modelon the square lattice with hierar-

®>0 (d<0), which was indeed found in a series of exactchically organized interactions. The couplings in tite di-

studies on two-dimensional layered Ising modgls,16.  agonalK,=Jy/kgT are selected from a séky,y,x;,...) and

For marginal sequences, whefe=0, continuously varying &n=nxo, such that

critical exponents and anisotropic scaling behavior were ob-

served[17]. Kh=kn, h=2"2m+1). 2
As far as the critical behavior on hierarchical lattices is

concerned, mainly the two-dimensional layered Ising modeTlhis type of structure of the couplingBig. 1), which shows
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h(a:) inhomogeneity. The interface is not likely to visit sites with a
matrix elementg,, n>1, since the corresponding probability
— is weighted by a factor oR".
The interfacial free energy and the longitudinal corre-
- lation length§;, which is measured parallel to the bound-
aries, are given in terms of the leading and the next to lead-
ing eigenvalues of the transfer matiy and\; as

o=—log \g 5
N and
- & T=1og(No/\1). ©®
- The fluctuations of the interface grow on a power-law scale
- ([h(0) = h(x)12)~x2", Y
X K3 wherew is the wandering or fluctuation exponent, which is
Ky _1 . .
" w=3 for homogeneous two-dimensional systefipa].
1 Another quantity of interest is the probabiliBy(x) that
Ko the interface aftex steps has the same position, ile(0)
|X‘X| |X(X| |X‘X| IX\Xi =h(x). For a walk or diffusion problem, where plays the

role of the time Py(x) is the autocorrelation function, which
FIG. 1. Structureless interface on a diagonally layered squar®as the asymptotic behavi®(x)~x~*. For homogeneous
lattice. The values of the couplings, which follow the hierarchical two-dimensional latticesy=3 and generallyw=1y [8]. It
HK sequence in Eq2), are indicated below. Sites to be decimated could be shown by slightly modifying the derivation in Ref.
in the RG transformation are marked Ky [8] that the autocorrelation function averaged over the start-
ing positions of the interface can be expressed through the
the typical features of ultrametric topolod$], was intro-  spectrum of the transfer matrix as
duced by Huberman and Kerszb¢rg following the work in « «
Ref. 1] P=r 3 (2 = [Coo[ o @
The boundary spins on th&,1) surfaces are fixed in dif- 0 L5 \No — No '
ferent orientationgFig. 1) and we are interested in the fluc-
tuations of the interface separating the positive and negativéhereg(r)=1/LZ;5(A —\;) is the density of states arld
regions. The interface is considered as a continuous struglenotes the width of the system in thelirection, thus being
tureless string and complicated interface configurations, sucte dimension of the transfer matrix.
as overhangs and bubb|eS, are omitted. It is genera”y ac- The eigenvalues of the transfer matrix are dense at the tOp
cepted that to study interfacial fluctuations it is sufficient to0f the spectrum and one can develop a scaling theory in
keep only solid-on-solidSO9 -type interface configura- terms of these critical eigenvalues. We consider a critical
tions. In this so-called SOS model the interface is geometrilevel A; of a system with a finite width. and denote by
cally represented by a directed walk or polyri2g]. ANj=No—); its difference from the top of the spectrum.
In the SOS model the interface is characterized by itschanging lengths by a factor bf=2, i.e., withL'=L/2, the
heighth(x) at sitex and the interfacial energy is specified by ith eigenvalue will be\{ and the differenceA);)" will scale

the Hamiltonian with a factor ofb¥:; thus
(A)\i)’=2yAA)\i, (9)
~HikeT= 2 2Knpo» ®) wherey, is the gap exponent. We stress that the statement in

Eq. (9), that all critical levels scale with the same factor, is a

where surface effects are omitted. The thermodynamic proqScallng hypothesis, which will be verified by actual calcula-

erties of the interface are conveniently studied in the_ionS in the following sections.
; ) y Using Eq.(9), the transformation law for the density of
transfer-matrix formalisnp23,24]. For our model the transfer S
. S R states is given by
matrix in thex direction, parallel to the boundaries, is given

by g(AN)=21"1g'[(AN)'], (10)

To=6n, 16 2Knt 5, ., 072K, (4) which is compatible with a power-law dependence of the
’ ’ ' density of states at the top of the spectrum:

Here, according to Eq2), the matrix elements are from a set g(AN)~ (AN L, (12)
(€p,€1,62, - - .) @nd the ratio of successive terms is constant:

er.1/e,2=R<1. For the homogeneous systerR=1, Now putting this expression into E¢8) and evaluating the
whereas for hierarchical latticd® measures the strength of autocorrelation function, one gejs=1/y, .
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From the scaling behavior of the spectrum in E®).one TABLE I. Leading eigenvalue and the corresponding interface
obtains, for the finite-size corrections to the largest eigenvamuctuation exponent from numerical diagonalization of the transfer
ues, matrix for different values of the hierarchical parameter.

No— Ni(L)~L ", (12 R N e w=1ly,

Thus, from Egs.(6) and (12), the longitudinal correlation 1 2 0.5
length is &~LY*. In a finite system the correlation length 0.999 1.998 008 94 0.456 7199
perpendicular to thél,1) surface is limited by the width of 0.9 1.828 53274 0.455109 2
the strip& ~L; therefore the interface wandering exponent 0.75 1.622 186 48 0.445 1438
in Eq. (7), which can be alternately defined gs~¢|", is 0.5 1.352 860 81 0.400 4540
given by 0.25 1.149 486 52 0.311 0577
0.1 1.053 814 56 0.227 2971
w=1/y,. (13 0.001 1.000 500 38 0.091 186 7

Thus, indeedw= v, as expected from scaling considerations.

In the following we calculate the interface fluctuations ony o gptained from the raw data with a comparatively smaller
the HK lattice by two methods. First, we study numerically 5cciracy, up to 5 digits. In this case, to increase accuracy we
the spectrum of the transfer matrix, verify the validity of the ,seq sequence extrapolation methods, such as the van den
scaling hypothesis, and determine the interfacial tension anfl;yock-Schwartz and the Bulirsch-Stoer meth{2s).

the wandering exponent. Then we apply an exact Thg |eading eigenvalue of the transfer matrix, which is
renormalization-group transformation and calculate analyticgnnected to the interfacial tension in E§), and the ex-

cal expressions for the critical exponents. trapolated values of the interface wandering exponent are
listed in Table I. One can see that both the leading eigen-
lll. NUMERICAL STUDY OF THE TRANSFER MATRIX value and the wandering exponent are monotonically de-

The transfer matrix of the interface problem in E4) is creasing aR goes from one to zero. In.the limR—0 thg

tridiagonal and could be diagonalized by powerful methodémerfaeIal tension in Eq(5), 'goge_ther with the wandering

[25]. In the specific problem, however, due to the hierarchi-£XPonent, goes to zero, Wh'Ch. IS dge to the fact that the

cal structure of the transfer matrix, one can implement a ver ystem.ten.ds to be separated Into d|sc9nnected parts. More

fast algorithm to calculate the roots of the correspondin nteresting is the beha_wor Of. the wandering ex_ponent around
he homogeneous lattice point. As the valueRois lowered

determinant. bel h deri . by a fini
We consider a finite system of size=2' and express the elow one the wandering exp?nent Jumps by a finite amount
of Aw=0.0432799 fromw=3. In renormalization-group

corresponding determinabt(2') by two subdeterminants of .
sizes 2 T and 2711, respectively, in the form (RG) language, _such type of pehawor correspo.nds to a rel-
evant perturbation, which brings the system into another
D(2)=D(2' " HD(2' H-D(2'-1)D(2'"1-1)e ;. stable fixed point. In the next section we shall explicitly con-
(14  struct the RG transformation and determine exactly the wan-
. dering exponent.
The symmetric determinaf(2' —2) of size 2—2, which is
obtained fromD(2') by leaving out the first and last rows IV. RENORMALIZATION-GROUP CALCULATION

and columns, can be similarly expressed as
We are going to study the scaling behavior of the largest

D(2'-2)=D(2'"1-1)D(2'"1-1) eigenvalues of the transfer matrix in E@), which satisfy
the second-order difference equation

O0=Tiir1is1—MNGi+Ti_1ith -1, (15

—D(2"1-2)D(2""1-2)? ,. (14b

Finally,

| _ -1 -1 where in the thermodynamic limit the boundary terms are
D(2-1)=D(2")b(2""~1) omitted. The structure of the couplings that are connected to
_D(2|—1_1)5(2|—1_2)€|2_1_ (149  Tii+1 in Eq. (4) are shown in Fig. 1. To construct an exact
recursion we decimate those sites that are connectedjo a
These relations supplemented widlil)=—\, D(2)=\?—&3, coupling_or e_quivalently to aB; matrix elemen(denote_d by_
and D(2)=\?-¢€2 define a fast procedure to calculate theCrosses in Fig.)1 We note that the same type of decimation
value of the determinant for very large sizes. For examplewas used by Maritan and Stella in their study of the diffusion
we could treat with this method slightly perturbed systemsProblem on the HK lattic§ 10]. One can see that after a
with R=~1 up to sized =2%°-2%. decimation step théegy,€;,¢€p) triplet will play the role of the
The largest eigenvalues calculated by this method all haveenormalizeds;, whereas the other couplings will renormal-
the same type of finite-size dependence, thus the scaling hyze ase, = €, 1, keeping the value oR and the structure of
pothesis in Sec. Il is indeed satisfied. The leading eigenvalthe transfer matrix unchanged.
ues calculated on the largest finite lattices are accurate at Performing the RG transformation we first denote the two
least up to 10—12 digits. The gap exponents describing theeighboring sites to be decimated bgndi+1 and express
finite-size dependence af (L) in Eq. (12), however, could # and ., as
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Yi=Agi_1+Bii s, decreasing function dR and discontinuous &=1. The fact
that w(R) <3 can be understood, since the interface prefer-
i 1=Bi_ AP, (16)  entially stays ong lines and the probability to visit &, line

is rapidly decreasing witm. Consequently, the interface
whereA=e\/(\2—€2) andB= gye,/(\2—€2). Then the differ-  fluctuations are damped by the inhomogeneously distributed
ence equations in terms of the remaining, nondecimategouplings.

spins have the same form as E@5), provided that the ei- ~ One can estimate(R) in the limit R—0, when the prob-
genvalue and the couplings transforms as ability of a large interface fluctuation of height=2" is pri-
marily given byp,~e€,, i.e., by the probability to have one
N—Aeg . €nt1 step on thex, line. For such a fluctuation the interface ap-
N'= g &g nN=l2.., (17 proximately takesx~p,, 1~R™ " steps, thus the wandering

exponent in leading order isv(R)=—log 2/logR, which
ande;= €,. Thus the ratio of the sequence remains invarianf:om.aSpondS to the asymptotic behawor_ Of the qnalyncal re-
R’=I% aso expected. As a conseql?ence in the RG transfosult in Ed.(22). We note that in th&—0 limit the interface

mation, besides, it is sufficient to consider only one cou- luctuations can be described by a Markovian process and

; . : then our problem is equivalent to the diffusion of a particle
pling, saye;, and the RG transformation can be written as a X . . g
two-parameter recursion in a hierarchical lattice, as studied in Reff8-11].

The HK sequence used in this paper can be generalized by

N2 2— (2 N2— 2 having a generab charactef27] instead of thev=2 used in
A=\ #, €;=R l, (19 Eq. (2). Then one has, in Eq2), h=R"(vm+ u), with
€01 €o w=1,2,...p—1. According to our numerical and analytical

investigations forr=3 and 4, the main characteristics of in-

wheree, is the input value of the largest matrix element. terface fluctuations remain the same asifer2: the wander-
The physically relevant fixed point of the transformation . :

with \>0 is given b ing exponent has a jump B=1 and varies witlR. Forv=3
9 y we obtained the analytical result

e\* R MY VI-R+R? log 3
— = — y - = — ’ (19) W, ,_2=
€p 1-R €p 1-R =3 |Og AV:S,
which is stable for €R<<1. The eigenvalues of the linear- 1 1 2 12
ized fixed-point transformation are roots of a quadratic equa- A,_3= 2( R +R+ 1) +|4 R +R+ 1) -3 (22

tion and are given as

2 12 As mentioned before, the problem studied in this paper is
_2} . (20) related to the diffusion process on hierarchical latticEs.
Our problem, however, can be formulated as the quantum-
) ) ) ) mechanical diffusion process of a particle that is represented
_The leading eigenvalua,>1 determmes_ the scaling b_ehav- by a wave packet and placed on a one-dimensional HK po-
ior of the spectrum of the transfer matrix and $)escaling  tential. Thenx and h(x) correspond to the timé and the
dimension is given by position of the particle at a given time step, respectively,
while the transfer matrix describes time evaluation. Accord-
= . (21)  ing to our results, in a one-dimensional hierarchical potential
log 2 the width of the wave packet will grow in time anomalously
astV®,
Our final remark concerns some similarities of our results
8o that of interface fluctuations in a repulsive, inhomoge-
neous surface potential, decaying-as “, wherel measures
the distance from the surfad@8]. In two dimensions, for
w<2, the perturbation is relevant and the interface wander-
ing exponent takes the anomalous value 1/w>3 [29]. In
This problem, however, the perturbation is confined to the

. _1 H i
dering exponentv=3. Compa“”g t_hg anglyncal resu_lts fo_r surface; furthermore, the wandering exponent is continuous
w=1/y, with those obtained by finite-size calculations in _, -,

Table |, we can say that the numerical results are indeed very
accurate: they correspond to that in E2({l) at least up to six ACKNOWLEDGMENTS
digits.

1 1 1 1
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The second eigenvalue of the RG transformatiom\js<1
and the corresponding scaling field is irrelevant; thus th
fixed point in EqQ.(21) is attractive and governs the critical
properties of the physical model with;=Rey. It is seen
from Eq. (19) that the fixed point of anomalous interface
fluctuations does not exist at the homogeneous pRial,
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