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Kinetics of catalysis with surface disorder
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We study the effects of generalized surface disorder on the monomer-monomer model of heterogeneous
catalysis, where disorder is implemented by allowing different adsorption rates for each lattice site. By map-
ping the system in the reaction-controlled limit onto a kinetic Ising model, we derive the rate equations for the
one- and two-spin correlation functions. There is good agreement between these equations and numerical
simulations. We then study the inclusion of desorption of monomers from the substrate, first by both species
and then by just one, and find exact time-dependent solutions for the one-spin correlation functions.
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I. INTRODUCTION adsorption by thé\ species and one which favors adsorption
by the B's. They showed numerically that such disorder al-

Diffusionless surface-reaction models were first intro-lows for a reactive equilibrium in two dimensions.
duced by Ziff, Gulari, and Barshdd], who investigated a In this paper, we extend the analytical method usdd]n
monomer-dimer reaction corresponding to the chemical reto a general form of surface disorder, based®irbut allow-
action 2CCOr0,—2CO, on a catalytic surface. A well- ing for a range of different types of site in the lattice. Fur-
studied variant[2—4] employs the simpler monomer- thermore, we also investigate separately the effects of de-
monomer reaction, described by sorption in the system. All the results presented are for the
physically relevant case of two dimensions.

This paper is organized as follows. In Sec. Il we define
the model and derive the general rate equations for the
n-spin correlation functions. In Sec. lll, these equations are
applied to a model similar to that if®] and their solutions

kg are compared to numerical simulations. In Secs. IV and V we
Bgast S— Bsurface include the effects of desorption, first by both species and
then by just one, and derive exact solutions. The conclusions

are summarized in Sec. VI.

Ka
Agas+ S— Asurface

kr
Asurface+ Bsurface_’ ABgas+ 2S, (1)
Il. RATE EQUATIONS
where S denotes an empty site. This process exhibitdg-a We consider the surface reactidn- B— 2S on a periodic

netic phasewhen there are equal propensities Afand B LXL square lattice, ignoring the effects of diffusion and
species, in which the long-time kinetics become dominatedlesorption. For simplicity, we take the reaction-controlled
by domain coarsening. Mean-field analysg, in which ev-  limit, where the adsorption ok andB species is taken to be
ery site is taken to be connected to every other site in @nfinitely fast so that the substrate is always full. The algo-
“complete graph,” demonstrated that finite lattices will al- rithm employed here is to select a nearest-neighibty)
ways saturate—that is, the lattice will either become full ofpair at random, check for afB reaction, and, if so, remove
A’s, or full of B’s, and the process will stop. Krapivsk®]  the particles and immediately refill both sites.
recently solved the model exactly in the reaction-controlled With the usual homogeneous model, the probability of
limit ke—o by mapping the system onto the standard Isingfiling a site with anA or B is independent of the site
model. chosen—in this model, however, that probability is allowed
Many enhancements to these models have been studiged vary. Specifically, we introduce thsite inhomogeneity
with a view to more closely modeling actual chemical pro-matrix P;;, 0<P;;<1 Vi,j, such that the probability of fill-
cesses, including nearest-neighbor excluded adsorp@ibn ing the site {,j) with anA is given byP;; (or, equivalently,
and surface diffusiof4,8]. However, only recently have the a probability 1Py of filling the site with aB).
effects of surface disorder been touched upon by Frache- Since in the reaction-controlled limit each sitgjj has
bourget al.[9]. They chose to model a disordered surface byonly two possible states, we can map this model onto an
taking a lattice of two different types of site, one that favorsising model with mixed Glauber-Kawasaki dynamifs,
identifying A’s with §;=+1 and B’s with §;=—1. The
master equation foP(S,t), the probability distribution for
*Electronic address: David.Head@brunel.ac.uk the system to be in the sta-={S;;} at timet, is
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d d
at P(S,t)=i21 [Uij(Fi;S)P(Fi;S,t) —U;;(S)P(S,1)] At gt (SijSu) = (Ajj + A)(Sij Sy + (1 —2Py;)

X(SijSitAijSij}) +(1—2Py)

+Z [Vij(FijFi+1;S) P(FijFiy1;St)
T X(Sij Sc{AwiSat)

—Vii(SP(S1)] for |i—k|+|j—1|>1. 9
Wi (FiiFii 11S)P(Fii Fii 1S, Here,  Ai(S;j)=—4(Sj)+(S+1)) +(Si-1j) +(Sj+1)
+; (Wi (Fi i+ :9P(F Py 25,0 +<S|J 1) is the discrete Laplaman11 Fdr—k|lj+|1— |J;i

for nearest-neighbor two-point correlations, the rate

~Wi(SPSH]. @) equation has a more complex form. For example,

The flip operato=;; acts on the system-state vectby d
flipping the sign of theS; component, leaving the remaining 47 at (SijSi+1))=(2di;—8)(SjSi+1j) +(Si-1;Si+1))
components unchanged;; corresponds to Glauber spin-flip

dynamicg10], Whereaslij a_ndV\_/ij _corre_spond to Kawasaki +(SSi+2)) +(SjSi+1j+1)
exchange dynamics. Equati¢®) is identical to the homoge-
neous case, except that now the full expression&JfprV;; , +(SjSi+1j-1 (Sij-1Si+1))
andW;; are given b
g Y +(Sjj+1Si+1j) +(1-2Py)
471U;5=(1-S;S1){1-dij +Sj(1-a;)} X{(Si-1jSSi+1j)— 3(Si+1j)}
+(1-§;S_){1-di_1j+Sj(1-a’ )} +(1-2P; 1 1j)(SjSi+1jSi+2))
+(1-8;S;+){1—-e;+S;(1-b;)} —3(Sp+2(1—dj). (10
+(1-8;S;j-D{1—-ej-1+S;(1-bjj_p}, In the homogeneous limiP;;—3, the results in[6] are
&) recovered.
47V =(1- ;S 1){dy +a5 S}, 4) lll. TWO-SITE DISORDER
We now turn to the case wher; can take just two
47Wi=(1-5; S+ ){ej + b;; St (5) different valuesp or q=1—p, with an equal humber of

sites andy sites. This corresponds to the model giverj9ih

where the constant coefficienas;, bij, d;;, ande;; are re-  With equal fluxes of A and B species, e=|p—3 and
lated to the inhomogeneity matri;; , C_=c. =3, using the notation given there.
Sincep+qg=1, the global dynamics of the system must
aﬁ =P,y =Py, be unchanged under the transformatipng) — (1—p,1—q)
=(q,p). This symmetry means that the system cannot favor
bX—p. .. +p one state over the other, and so the averageSgj taken
ij— Cij+1=ij over the entird. X L lattice, (1L?)Z, i(Sij), will always tend
to zero in theL —< limit. An important consequence of this
dij=Pij+Piy1j—2PijPiyqj, is that if a finite system always saturates, then it does so with
equal probability of saturating either to every site being,
e =Pij+Pij1— 2P, P11 (6)  or every site being-1, and so(S;j)|;-..=0 Vi,j, regardless

of whateverP;; may be. If a reactive steady state occurs—
We proceed by deriving the rate equations for the onelhat is, if the average saturation time diverges at least as fast
and two-spin correlation functions, where the generabin ~ ase"” [S}—then it should be expected théS;) may be
function is given by nonzero fort— (if p#3). It is the purpose of thls section to
apply the rate equations derived in Sec. Il to predict the
equilibrium value of(S;;) on p sites in any such nontrivial
)= E Siyipe S, PS . (7)  steady state.

Although the concentrations qf sites andq sites are
equal, different arrangements of the sites can dramatically
alter the long-time dynamics of the system. For instance,
choosing to split the lattice into two alternatin{?x2) sub-
lattices, with one sublattice full gb sites and the other full
of g sites, results in a system with no nontrivial steady states
for p#0 or 1. Since saturation always occu(S;;);-..=0 on
either type of site.

A more informative model can be constructed by ran-

<$1j17'

n]n

Using this and2), some lengthy but straightforward cal-
culations result in the following hierarchy of differential
equations, using the renormalized time scaldefined by
7 =1+ 71, and settingr,=7:

d
aiT (Sij)=A4ij(S;j) +(1-2P;)){S;j{4i;S;j}), (8
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domly arranging the andq sites. This allows for regions of  y
p sites, which will all tend to be fixed into the same state, p,
and regions ofj sites, which will all tend to be fixed into the L . X
other state, to “pin” the dynamics into a reactive equilib-
rium.

When p=q=3%, we simply have the original homoge- ©°8 -
neous model with its associated kinetic phase—the distinc- r
tion between the two sorts of site is lost. w0 or 1, the |
kinetics become entirely trivial, the only randomness coming
from the choice of which sites are to be checked for reaction, I X
and afterO(L?) reactions the system reaches a steady state | x
in which boundaries between regions pfand q sites are
constantly reacting, but never moving. 04 -

More interesting, however, are the dynamics fiet0, 2, I
or 1, when the system approaches a reactive steady state
exponentially in time. A useful mean-field theory can be
constructed by assuming that every site is surrounded by
exactly twop sites and twoq sites. It is then possible to
write down (8) and (10) for the two sorts of site(S;;), and
(Sij)q, and the various two-point functions. To obtain a oo ool

K X i 0.6 0.7 0.8 0.9 1 P
closed set of equations, however, further approximations
must be made to reduce the three-point functioné&ll) to FIG. 1. Plot ofp Vs y|,—... The line gives the values predicted
one- and two-point functions. The obvious choice is by the rate equations. Numerical simulation results are plotted as
crosses. The simulations were performed on a22@0 lattice, and
<SijSkISmn>%<SijSkl><SkISmn>! (11) averaged over 100 runs.

but this is no longer asymmetric und&g— — S, which . . o
would result in(S;),+(S;j)¢#0, something which cannot cpntlnued until an equilibrium state was apparent. '_rhe two
be true sincgp+q=1. To restore the required symmetry we différent sets of values foypl;-.. are compared in Fig. 1,

must also include, where appropriate, the alternative thre¢¥here the simulation results compare favorably with the ap-
point approximation proximate analysis, the agreement improving for larger val-

ues ofp. Note that even whep=0 or 1,y, still doesnot
(SijSiSmn =~ {(Sij){ SSmn)- (12 tend to*1, either in theory or in the numerical work. This is
because the system will now include configurations of
For greater clarity, we denote the one-spin correlatiojammed sites. For instance, in the casepefl, a q site
function (S;j),= —(Sjj)q by Y. the two-spin correlation surrounded by foup sites may initially start at-1 but be
function between two NN sites(or, equivalently, two NN  unable to change, since if all four Npisites get fixed into a
q sites by z,,, and usez,, for the two-point function be- +1 state before they have reacted with the cenfralite,
tween nearest-neighbgr and q sites. Settingr=1, we can then theq site will never be able to react and so it will stay
now obtain a closed set of equations, at +1 for all time, despite the fact that it hd; =0.
The discrepancy fop~3 can be explained by considering
when the approximations employed are valid. The reduction
247 Yo~ ~2Ypt (172p)(Zpq+ Zpp—2), (13 of three-point functions to one- and two-point functions
given in (11) and (12) will fail when there exist large do-
d mains of sites in the same state. To see why this is the case,
4& Z,p=(4pg—8)Z,p—3(1—2p)y,+{(1—2p)yp+3z,,}  consider a group of three adjacent sites. Each site is in either
a +1 state or a-1 state, so we can, for instance, set +)
X(ZpptZpg) +(2—4pQ), (14) to denote the case when all three sites are in#Hestate,
and so on, for the other seven possible combinations. Now,

d when p=0 or 1, the state of each site will be fixed by
4& Z,q=4pa—(4pg+6)z,4+3(1—-2p)y, whether it is ap site or aq site, and, if we ignore jamming
effects, the site will be independent of its neighbors. Thus,
+3Zpq(Zppt Zpg)- (15  taken over the entire lattice, each of the eight possible con-
figurations, (+++), (++-), (+—+),..., (———), have

The most constructive way to test the validity of this equal weightings. A brief analysis shows that the approxima-
analysis is to compare the value gf at equilibrium, as tions are now in fact exact. However, within domains of
predicted by(13)—(15), to numerical simulations. We iter- similar states, there will only be two equiprobable configu-
ated the equations using a computer algebra package, witations, (+++) and (———), and the approximations now
the initial conditionsyp|;-o=2Zyplt—0=2pqlt-0=0, until a  fail. Since domain coarsening is associated with 3, we
steady state became evident. For the simulation runs, wghould expect the mean-field theory to break down here.
used the corresponding initial conditions of a lattice ran-Note that, as can be seen from Fig. 1, the theory does man-
domly filled with +1’s or —1’s. Again, the simulations were age to predict the exact answer foe3. This is due to noth-
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ing more than13) decoupling from the other rate equations, = Combining this with(22) gives rise to a differential equa-

giving rise to the trivial solutiory(t)=0. tion for G,

The analysis in this section can be easily extended to
other inhomogeneity matrices. For instance, it is possible to G Gy 1 1
construct a mean-field theory for the case of the alternating Ea { 4 X+ §+Y+ V) N 1]

c(2X2) sublattices. For small times the theory agrees well

with experiment, but once saturation effects start to occur the

approximations again break down and fail to predict the cor- T lgw XYI(1-2Qy). (29)
rect answer of/,—0.

Noting that, except foG(X,Y,t), the right-hand side of
IV. INHOMOGENEOUS DESORPTION (24) is independent of time, it is not difficult to derive an
explicitly time-dependent expression ;) in terms of its

We now turn to an enhanced model studied by Fichthorn
initial state, ;= (S;j)|i-o.

Gulari, and Ziff[11], which introduces noise into the system
in the form of the desorption of and B species from the o

substrate. They demonstrated numerically, later confirmed (S)=eV" S ol (Vt)l_ (Lt)
by mean-field analysigl 2], that even a small desorption rate ! St KK 2717 27
induces steady-state reactivity onto finite lattices. In our ver-

©

sion of the model, sites vacated by desorption are refilled by 1 S (1-2 jt ~t'17 '

anA or aB as defined by the inhomogeneity matrix, which T3k ( Qi) =kl 27

we now callQ;; . Q;; differs from P;; in that now itonly

applies to sites refilled after desorption—sites vacated after o

an A+B—2S reaction have an equal chance of being re- X1y 2_T>dt ' (25)

filled either by anA or by aB. Thus, the reaction kinetics
alone are the same as the usual homogeneous model, and thierel,(t) is theith order modified Bessel function. In the

Uj;, Vjj, andWj; operators WlthOUt the desorption take their special cas@;; Q;; =0, it is possible to to rewrite the second
simpler form found by settin®;; = 2in (3)—(5). Explicitly, term on the nght hand side @£5) as
871Uij(S)=4=S(S+1jtS-1jt Sj+11Sj-1), 1 =
(16) —4—7_3“:2_30 (1=2Qu){fi—ks1j—1F Fik—1j-1
87,V (S)=1—-S S .1, (17)
2% S5, ikt sk (26)
87Wij(S)=1-§;Sj+1- (18)

where for clarity we have introduced

To include mhomogeneous desorption within this formu-
lation, we replacéJ;; with U,J, fii(t)= J' ~t'In. ( ) ( )dt’ 27)

1
d__ _
Uij=Uij+ o 1148(1=2Qq)}, 19 \which obeys the identity

where, as in6], we introduce a renormalized time scale fi 1j+fi_1j+fj 1+ f -1
and the spin-flip parametey, defined by 4 4r ar 'yt 7
L 11 == fii= = dodot — e | o Ji| 7). (29)

1
=+ (20)
T T1 T T3

27 27

with &; the usual Kraecker delta. Substitutin@8) into (25)

y=1—1lrs. (21) and(26) results in an exact expression,
The one-point spin-correlation rate equation can now be _ —tr -
recalculated using2) and (16)—(19), (§j)=2Q;—1+e k’;_w (1-2Qu+ o)
d Yt A
47 41 (Si)=vAi(S) 41— P{(S)+(1-2Qi} Xlick 52|11 57 (29)
(22)

So when A;;Q;;=0, (S;;)—2Q;;—1 exponentially as
t—o0, again in agreement with the homogeneous result of
T11]. With desorption, jamming is no longer possible and so
now (S;;)—1 whenQ;;=1. Although this final solution is
® oc exact, it is hard to see what physical applications a mixed
G(X,Y,t)= E E XiYi(SU>. (23) r%oa@ohgglr;eous and/or inhomogeneous model such as this one
j=—w j=—w .

This can be solved by using a generating function
G(X,Y,t), defined in terms of the time-dependent one-spi
correlation function(S;;),
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V. INHOMOGENEOUS ONE-SPECIES DESORPTION L1 L2 t t
—a— 7+ (1— T

While investigating the monomer-dimer model, Ziff, Gu- (Sy)=e e 3]k,I:7L/2 Uk'li‘k<2_r>|i"(2_7)
lari, and Barshadi1] briefly discussed the additional feature
of allowing just the monomers to desorb. Physically, this B (1-q)L? jt exd —t/ EJF 1-9
corresponds to the reaction 26@,—2CG0, where only the T3 0 T T3
CO can desorb from the substrate, which is a good approxi-
mation for this reaction at the usual operating temperatures. <1 i) | -(L)dt’ (35

To apply a similar principle to our monomer-monomer "“27r) N\2r '

model, we extend the analysis in Sec. IV to allow for the
desorption ofA species only, with the inhomogeneity matrix VI. CONCLUSIONS AND DISCUSSION
Qjj only applying to sites vacated after desorption. Thus, the
flip-exchange operators are unchanged frd®)—(18), but
now we replaceJ;; with

We have introduced a methodology for dealing with the
effects of generalized surface disorder on the monomer-
monomer reaction procegs+B—2S by mapping the sys-
tem in the reaction-controlled limit onto an Ising model. The
1-Q;; two-dimensional rate equations were derived, including the
273 (1+5;). (30) very concise one-spin correlation equati@), and used to
study the special case of two-site disorder. Here, it was found
that the global system dynamics are sensitive to the choice of
layout of the two different types of site. Catalysts consisting
of two different molecules arranged in a regular manner,
such as on two alternating(2x2) sublattices, allow for no
) reactive equilibrium and will always saturate on finite lat-
tices. Choosing to randomly arrange the sites, however, al-
47 G (S =28~ (I-(1+(S;)). @D lowing compacgt clusters of 'E/he samge site, was shown to pro-
duce a reactive steady state. Analysis based on the rate
The definitions ofr and y have now altered from the previ- €quations was used to predict the concentratioa'sfand
ous case, B’s on the different types of site, showing reasonable agree-
ment between theory and simulation despite the rather crude
approximations involved in the analysis. The model was

Furthermore,Q;; is also taken to be a constant matrix,
Qjj=d Vi,j. The rate equation for the one-spin correlation
function (22) is now

E: 1 + i (32  thenextended to include desorption from the substrate, either
T T1 T2 by one or both species, and was solved exactly in both cases.
Extending this work to dimensions other thar=2 is
47 straightforward once the mapping onto the Ising model has
y= 7'_3 (33 been achieved. Indeed, the rate equationsdferl can be

immediately seen from those given héB—(10). We have

Applying the same generating functié23) results in a new focused ord=2 since the most useful physical application is

partial differential equation fo6(X,Y,t) acting on arLxL  ©f surface catalysis. - _ .
lattice, It should be noted that the definition of inhomogeneity we

chose to employ here is only one of many ways of modeling
1-q ) surface disorder. For instance, requiring that each site be
-1 T (G+L"). “hit” a different number of times before adsorbing a par-
(34) ticle, or assigning a quenched random “energy” to each site
and always adsorbing the particles onto the vacant site with
Continuing as before, an explicit time-dependent expressiothe lowest energy, are just two alternative possibilities. We
for (S;) is reached, intend to study some of these in future work.

XlYl
—1 7| XYy

G G (1
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