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Spherically symmetric random walks. |. Representation in terms of orthogonal polynomials

Carl M. Bender
Department of Physics, Washington University, St. Louis, Missouri 63130

Fred Cooper
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Peter N. Meisinger
Department of Physics, Washington University, St. Louis, Missouri 63130
(Received 6 June 1995; revised manuscript received 8 February 1996

It is shown that, in general, a connection exists between orthogonal polynomials and semibounded random
walks. This connection allows one to view a random walk as taking place on the set of integers that index the
orthogonal polynomials. An illustration is provided by the case of spherically symmetric random walks. The
correspondence between orthogonal polynomials and random walks enables one to express random-walk
probabilities as weighted inner products of the polynomials. This correspondence is exploited to construct and
analyze spherically symmetric random walks Drdimensional space, wheif@ is not restricted to be an
integer. Such random walks can be described in terms of Gegenhadtraspherical polynomials. For ex-
ample, Legendre polynomials can be used to represent the special case of two-dimensional spherically sym-
metric random walks. The weighted inner-product representation is used to calculate exact closed-form spatial
and temporal moments of the probability distribution associated with the random walk. The polynomial
representation of spherically symmetric random walks is then used to calculate the two-point Green’s function
for a rotationally symmetric free scalar quantum field the@B81063-651X96)05606-1

PACS numbse(s): 05.40:+j, 04.60.Nc, 02.90tp

I. INTRODUCTION For the special case=1 we define

Random walks onD-dimensional hypercubic lattices Pou(1)=1, Pin(1)=0. (1.3
have been studied in great detail; see, for exarfthi#, and
the references therein. In two recent papedg] we pro-
posed and analyzed another kind@fdimensional random

Note that probability is conserved because the total probabil-
ity of the random walker moving out or in isnity:

walk that is well defined even whe is noninteger. This P —

. X . n)+Pi,(n)=1. 1.4
random walk takes place on a spherical lattice consisting of ou{ )+ Pin(n) (14
an infinite set of concentric nested spheres of ragjji, To describe a random walk on this lattice we introduce

n=1,2,3... . Wedefineregion nto be the volume lying the notationC,,.,, which represents the probability that a
betweenR,,_; and R,, with the central region, region 1, random walker, initially in regiorm at time t=0, will be

being the volume insid&, . If the random walker occupies found in regionn at timet. The probabilityC,, ..., satisfies
regionn at timet, then at timet+ 1 the random walker must  the partial difference equation

move out to regiom+1 with probability P,,(n) or in to

region n—1 with probability P;,(n). The probabilities of Chitm=Pin(N+1)Chi1t-1:mtT Pouln—1)Ch_1t—1:m
moving out and in are in proportion to the hyperspherical

surface areas bounding region Let Sy(R) represent the (n=2), (1.5
surface area of ®-dimensional hypersphere

Cl,t;m: Pin(z)cz,tfl;m: (1.6
2’7TD/2 04
Sp(R)= T(D2) R and the initial condition
We then takefor n>1) Cnom= nm- (1.7
b1 The random walk described above has the advantage that
Po ()= Sp(Ry) R (1.1 the quantityC,, .., is @ meaningful probability foall real
ou So(Ry)+Sp(Ry-;) RPI4+RP-E M values of the spatial dimensidd;, that is, for all timeg, the
inequality
and
0<Cpims=1
D-1

Pi(n)= Sp(Rn-1) = DE”‘l 5=1. (1.2 holds. This result is in stark contrast with the random walk as

Sp(Rn)+Sp(Rn-1) Ry +R;; it is conventionally defined on a hypercubic lattics. For
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54 SPHERICALLY SYMMETRIC RANDOM WALKS. I. ... 101

example, on @-dimensional hypercubic lattice, the prob-  Our long-range objective in studyifig-dimensional ran-
ability that a random walker who is initially at the orighh ~ dom walks is to understand critical behavior in quantum field

will again be found at the origin dt=2 is theory. We would like to understand, for example, the tran-
sition that occurs when a self-interacting scafdrquantum
1 field theory in space-time dimensidh<<4 becomes a free
C0,2:0:ﬁ’ quantum field theory foD>4. One possible approach to

such a problem would be to formulate a quantum field theory

which is greater than unity fob < 3; the probability that a in terms of random walk§5,8]. However, if we do so on a
random walker who is initially at the origif will again be  hypercubic lattice, it is not possible to study these random

found at the origin at=4 is walks except for integer values &f, as we have discussed
above. As a result, we cannot use a hypercubic lattice to
6D—3 examine the behavior of a quantum field theory near4.
CO"‘?O:W’ Thus we are motivated to investigate alternative kinds of

random walks that may be consistently defined dbrreal
which is negative foD<%. D. Critical behavior has already been observed in a two-

In this paper we present an array of results concerning?'rrt'ﬁns'on?lt:vphe”ca”y .syrtr;]r.netnc. r:gdlom—wallf[ rgo[fﬂg!
D-dimensional random walks. Specifically, we consider ran-1 the NExL WO papers in this serigs0,11] we study this

dom walks that are defined by the partial difference equag:ritical behavior as a continuous function Dffor all D>0

tions (1.5—(1.7). We show in Sec. Il that there is a natural in the context of birth and death models. We also show that
one-to-bne c.orr.espondence betw.een the probabiligs,, polymers adhering t®-dimensional curved surfaces exhibit

that describe a random walk on a lattice consisting of regioném'versal critical behawor.' .
n, n=1,2,3..., and a set oforthogonal polynomials Of course, a quantum field theory that is developed from

{Q,_1(X)}, n=1,2,3... . This set of polynomials is uniquely a spherically s_ymmetric random _Walk Wi_II itself be spheri-
determined by the function®, (n) and P(n) in Egs. cally symmetric. Such a _theory is physically ung_cceptable
(1.5—(1.7). There is a simple expression f6r, ..., in terms _becausg it violates gausallty. Nevertheless, the critical .behav-
of these polynomials. In general, one can View a randoni®" th_at is observed in such a theory may well be a universal
walk on the regions as a random sequence of raising and unction ofD and, at the very least, such a thepry may pro-
lowering operators applied to the set of ponnomiaIsV'de some clues as to how a scalar quantum field theory can

{Q,_1(x)}. (Although not discussed in this paper, this cor- go from interacting to noninteracting BX=4. In Sec. V we

respondence between polynomials and random walks efalry out some pre_liminary investig_gtions of spherically
tends to multidimensional random walks and multi-indexSYMMewic quantum field theory. Specifically, we use the ma-
systems of orthonormal functions chinery of spherically symmetric random walks that is devel-

If we take evenly spaced concentric sphef@s=n), we oped in Secs. lI-IV to obtain the free two-point Green's
find that for the special case8=0,1,2, the polynoimials function of a rotationally symmetric scalar quantum theory.
{Qn_1(x)} associated withP;,(n) andP,(n) in Egs.(1.1)—

(1.3) are standard6,7] classical polynomials: Gegenbauer Il. CONNECTION BETWEEN POLYNOMIALS
polynomials forD=0, Chebyshev polynomials fdb=1, AND RANDOM WALKS

and Legendre polynomials @ =2. However, for all other In this section we propose and discuss the following

yalues ofD the ponnon_1|aIs have not been previously Stud'quadrature solution to partial difference equations of the type
ied and are not found in any of the usual treatments of OM11.5—(1.7):

thogonal polynomials. While we can generate these polyno-

mials, we have not been able to determine their general 1

mathematical properties, such as their weight function and Cn,t;m:Un—lf dX WX)X'Qp_1(X)Qm-1(x), (2.2

interval of orthogonality. -1
In Sec. Il we modify the form ofP,(n) and P,,(n) in

Egs. (1.)—(1.3) by replacing these functions with their

largen asymptotic behaviors. The polynomials that we now

obtain are well-known classical polynomiaisltraspherical

polynomialg for all D. This allows us to find closed-form

expressions for the probabiliti€s, ., for all values ofD.
Taking the probabilities in Sec. lll, we then calculate in

Sec. IV extraordinarily simple, closed-form, analytic expres- X . .
sions for the probability of a random walker eventually re-in dueuing theory12] and solutions to special cases of these

turning to the region from which the walker started, the ex differential equations are found in terms of standard orthogo-
pected time for the walker to return to the initial region, andn@ Polynomials. - L o

other space and time moments of the probability distribution 1he form of(2.1) incorporates the initial conditiof.7)
Chm- (In contrast, in Ref[4], after heavy analysis we were in a natqral way. We simply choose tmrmalizethe set of
oniy able to obtain asymptotic approximations for these moPolynomials{Qn(x)} so that

ments) We also find that for integeD these moments ex- L 1

hibit the qualitativ_e feat.ureée.g., Polya_’s the_ore)mf ran- J' dX WX)Q(X)Qr(X) = — &, - (2.2
dom walks onD-dimensional hypercubic lattices. -1 Un

where{Q,(x)},n=0,1,2..., is a set opolynomials orthogo-

nal with respect tav(x) on the interval-1<x<1 and{v,},
n=0,1,2..., is asequence of positive numbers. This pro-
posed solution can in part be motivated by observing that the
standard orthogonal polynomial§] also satisfy three-term
recursion relations. Further, differential equations similar to
the difference equations satisfied By, ;.,, are encountered
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With this choice of normalization we see thattat0 (1.7)
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Qmn_1(1) is a constant independent of for all m=1. Fi-

follows immediately from the above statement of orthogo-nally, from the conditiong2.4) and (2.5), we conclude that

nality:
1
Cn,O;m: Un—lf_ldx W(X)Qpn—1(X)Qm-1(X)= é\n,m-

We now demand that the set of polynomidl®,(x)}
obey the recursion relation

Pin(n+1)v,Qn(X)=v,-1XQn_1(X)

- Pout(n_l)vn72Qn72(X) (nZZ)
(2.3
and the initial conditions
Qo(x)=1 (2.9
and
Qi(x)= P20, X. (2.5

The partial difference equatioit$.5—(1.7) for the probabili-
tiesC, ., are automatically satisfied so long as E@s3)—-
(2.5 hold.

We will now show that

Qn(l)=1 (2.6)

for all n=0. This interesting property is a consequence of
the conservation of probability; namely, the probability of

finding the random walkesomewhereon the lattice at an
arbitrary timet is unity:

2 Cn,t;m: 1. (27)
n=1

To establish Eq(2.7) we merely sum Eq91.5—(1.7) over
alln=1, using Eqgs(1.3), (1.4), and(1.7). Assuming that the
sum

©

f(X)= 2, v,Qn(X)

n=0

this constant is 1,

Qm(1)=1, (2.10

and we therefore obtain ER.6).

The result(2.6) enables us to find a simple formula for the
set of numberqv,}. We letx=1 in the recursion relation
(2.3) to obtain

Pin(n+Dvp=vh_1—Pou{n—Dv,_, (N=2)
(2.1)
and in the initial condition(2.5) to obtain
L (2.12
“1TPN(2) '

The unique solution to Eq2.11) that satisfies Eq2.12) is

n

PoulK)

o opkan (D

(2.13

Un=Vo
The value ofv is determined from the orthogonality condi-
tion (2.2 atn=m=0 and the initial conditior{2.4):
1
fl—ldx W(x)

The result in Eq(2.13 can be used to eliminate the num-
bersv,, from the recursion relatiofR.3), giving a much sim-
pler recursion relation for the polynomial,(x):

Pou M) Qn(X) =XQn - 1(X) =~ Pin(nN)Qn—2(X)

Vo=

(n=2).
(2.19

The initial conditions in Eqgs(2.4) and (2.5 also become
much simpler:

Qo(x)=1, Qi(x)=x.

This recursion relation generates polynomials that exhibit
parity symmetry; that is, even-index polynomials are even
functions and odd-index polynomials are odd functions:

exists in the space of distributions, we substitute the expreQ,(—x)=(—1)"Q,(x). From the orthogonality condition

sion forC,, ., in Eq. (2.1) into Eq.(2.7) to obtain

fl dx W(X)X'Qpm_1(X)f(x)=1. (2.9
-1

Next, we compute the functiof(x) directly from the recur-
sion relation(2.3) by summing over alln=2, using Egs.
(2.4) and(2.5). We obtain the following equation fdr(x):

(1—-x)f(x)=0.
The solution to this equation is a generalized function
f(X)=ad(x—1), (2.9

where §(s) is the Dirac delta function and is a constant.
Substituting Eq(2.9) into Eq. (2.8) gives the condition that

(2.2) one can then deduce that the weight functig(x) is an
even function ofk. As a consequence, we see from the inte-
gral representation in Eq2.1) that ann versust table of
values of the probabilitie€,, ., has a checkerboard pattern
with nonzero entries alternating with zero entries in both the
n andt directions. Evidently, a random walker starting from
the sitem att=0 can only reach a site at timet if n+m+t

is even. This parity condition is a consequence of the original
definition of our random walk in which the walker must
move in or out on every step and may not remain in the same
region.

It is interesting to examine some special cases of the poly-
nomial solution forC,, .., in Eq. (2.1). We consider the case
of equally spaced spherical shelg=n and look at some
particular values of the dimensid@ with P, (n) andP;,(n)
given in Egs.(1.1)—(1.3).
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A. Special caseR,=n, D=1 C. Special caseR,=n, D=0
Here Here

PoulM=3, Pp(n)=3 (n=2) (2.19 n—1 n
out(n) 2n 1’ Pin(n):2n—1 (n=2)

and

Pou(1)=1, P;(1)=0. 219 and

The polynomialgQ,(x)} are the standard Chebyshev poly-
nomials of the first kind6]:

Pou(1)=1, Pin(1)=0.
The first few polynomials in the s¢Q,(x)} are

QO(X):]-! Ql(x):Xi QZ(X):SXZ_Zy

T3(X)=4x3—3x, 74(x)=8x*—8x%+1, (2.189
Qa(x)=3(153—-13X), Qq(x)= §(105*— 1152+ 16),

To)=1, T1(0)=X, TH(x)=2x*~1,

and so on. For these polynomialsy(x)=1/\/1—x?,
v,=2/l7,n=1; andvy=1/7r. The random walk probabilites and so on. For these polynomials we have chosen

in Eqg. (2.1 are given by v,=3(2n+1)/[4n(n+1)], n=1, andv,=2. The random
walk probabilities in Eq(2.1) are then given by
2 1
Cntm=— f dx 1(X)- T m-1(X) (n=2), (2n—1)
! v1—2 Tmal e Crtim= —f dX WO)X'Qn- 1(X) Q- 1(X)
4n(n—1)
1 ! 1 t o7 =2
Cigm=— f_ldx\/mx/m_l(x), (n=2),
3 (1
which form=1 reduces to the particular solution Cl,t;m:Z f dx W(X)X'Qpp—1(X).
-1
(n+2j—1)!
Cn,n+2jfl;1:'|(n+ i 1)120 22 (n=2), The polynomials Eq(2.18 are closely related to the stan-
AT =L dard Gegenbauefultraspherical polynomials {#{¥(x)}
(21)! with upper indexa=3/2 [6]. These particular Gegenbauer

L2 7 polynomials satisfy the recursion relation

given in Ref.[3] (n+1)7 32(x)=(2n+3)x7Z Z?(x)— (n+2) 7 F3(x)

(n>0)
B. Special caseR,=n, D=2
Here and the initial conditionsz”§?(x)=1 and Z ¥?(x)=3x.
These Gegenbauer polynomials are orthogonal on the inter-
n n—1 val —1=sx<1 with respect to the weight function
PoulM=5—7 Pin(N)=5-—7. (217 w(x)=1-x2 The polynomialQ, . ,(x) satisfies the same

recursion relation as these Gegenbauer polynomial
The polynomialg Q,(x)} are the standard Legendre polyno- # & (). However, it is generated from different initial

mials [6] conditions. We have been able to show that the weight func-
tion w(x) with respect to which the set of polynomials
Po(X)=1, A(X)=X, PH(X)=3(3x*>-1), {Qn(x)} is orthogonal satisfies the integral equation
Za(x)=3(5x°=3%),  74(x)=5(35¢~30¢°+3), Jl 4 2\x
w2 .
and so on. For these polynomialg(x)=1 andv,=2n+1. -1 IXE T (1=x)[In(L+ V) = In(1= V)]
Thus the random-walk probabilities in B@.1) are given by We do not know a closed-form solution to this equation.
Chtm=(2n— 1)f dx X7 1(X) P m-1(X), D. Special caseR,,=n, D=3
Now,
which form=1 reduces to the particular solution
n2 (n—1)2
(2n—1)(n+2j—1)! Pl M= 5022071 PlM=502 5077

Chint2j-1:1= jl(2n+2j—1)1121
For this case we can calculate any finite number of polyno-
given in Ref.[3]. mials{Q,(x)}:



104 CARL M. BENDER, FRED COOPER, AND PETER N. MEISINGER 54

Qo(¥)=1, Qi(X)=X, Qx(x)=%(5x*—1),
Q3(X) = 35(65¢*—2%K),

Qu(X)=525(1625*— 1130k*+ 81),

and so on. These polynomiadse orthogonal and they sat-
isfy the normalization constrain2.10. However, for this
value of D (and for all values oD other thanD=0,1,2
these polynomials are not related to the standard classical
polynomials that one can find in reference books. We are
unable to determine analytically the weight functiegx)

with respect to which these polynomials are orthogonal.
Thus the formal expression E¢R.1) for the probabilities
Chtm is not very useful. In the next section we devise a
random walk process for which wmandetermine the weight
function and thus find in closed form physically realistic
probabilitiesC,, ., for all values ofD>0.

00 01 02 03 04 05

n-1
2(n+1)

00 0.1 02 03 04 05

IIl. RANDOM WALKS n

FOR ULTRASPHERICAL POLYNOMIALS FIG. 1. Comparison betweeR;,(n) in Eqg. (1.2) and the uni-

In this section we show how to modify the expressions forform approximation toP;,(n) in Eq. (3.2) for D=3 and 5. Note
Pou(n) andP;,(n) in Egs.(1.1)—(1.3) so that we are able to that the uniform approximation is exact@t=1 and 2.
obtain analytic closed-form expressions @y ,.,, for all val-
ues of D>0 for the case of evenly spaced spherical shellgnensionD of space; to wit, ab increases, a random walker
R,=n. The random-walk process examined in Sec. Il D isis more likely to move outward than to move inward. As we
too difficult to solve in closed form simply because the for- Will see in Sec. 1V, it is this bias that gives rise to Polya’s
mulas for P,,(n) and P,(n) in Egs. (1.1)—(1.3) become theorem; this theorem states that foxD<2 a random
much too complicated whel takes on values other than 0, walker returns to the starting point with probability 1, while
1, or 2. for D>2 this probability is less than 1.

As we will see, the polynomials generated by the recur- Substituting the formulas above into EQ.14) gives the
sion relation(2.14) belong to a set of well-known classical recursion relation
polynomials if we take the formulas fd?,,(n) and P;,(n)

to be bilinear functions ofi of the general form (N+D—=2)Qn(x)=(2n+D —3)xQ,-1(X)
an+b —(N=1)Qu-2(x) (n=2). (3.3
Pou(N)= C_I’H-d ) (3.2

Taking as initial conditions

with P;(n)=1—P,{n). Note that bilinear functions con-

tain three arbitrary parameters. We fix these parameters as Qo) =1, Qux)=x,
follows. First, we demand that the random walk be confined _
to the values oh=1. To impose this condition we require we can easily use Eq3.3) to generate subsequent polyno-
thatP,,{(1)=1 or, equivalently, thalP;,(1)=0. This fixes one mials

parameter. Second, we demand that the largesymptotic

behavior ofP,(n) in Egs.(1.1) and(3.1) agree to orden. Q,(x)= i [(D+1)x2—1]

These two conditions above yield the unique choice D ’

n+D—-2 n—-1 1
Pol M =2n:p—3" Pr(M=2nip—3 @2 Qs(0) =5 [(D+3)x*~3x],

By determining the arbitrary parameters in E8}.1) at the 1
two boundary pointsi=1 and~ we obtain a uniformly ac- X)= D2+8D+ 15)x*— (6D + 18)x2+ 3
curate approximation t&,(n) and P;,(n) in Egs. (1.1)— Q) D?+2D 8 X ( ) I
(1.3 for all n=1. In fact, Eq.(3.2) agrees exactly with Egs.

(1.1)—(1.3) for D=1 [see Egs(2.195 and(2.16] andD =2 1 ) 5
[see Eq(2.17]. For other values db, Eq.(3.2) continues to Qs(X)= gz5p [(D*+12D+39x
be a good approximation, as verified in Fig. 1, where we

compareP;,(n) in Eqg. (1.2) with P,,(n) in Eq. (3.2) for — (10D +50)x3+ 15x].

several values ob.
The requirement that Egél.1) and(3.1) agree to orden These polynomials are just the Gegenbafudiraspherical
as n—o incorporates the crucial dependence upon the dipolynomials[6] Z’ﬁ“)(x) normalized so tha®,(1)=1:
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nir'(D-1) AD-112)y) (3.4) Hn(D)=1-

Qn(x)= Tin+D=1) 4.7)

=® ~
2t:OCm,Zt;m

Gegenbauer polynomials are hypergeometric functions in the Our problem is now to evaluate the sum, which we denote
variable &—1)/2; furthermore, since they are polynomials, by S,,, in Eq.(4.1). Using Eq.(2.1) with Q,(x) given in Eq.

the Taylor series foQ,(x) aboutx=1 terminates: (3.4) we have
n . . o0
n\ T'(j+D+n-1)I'(D/2) [x—1}!
Qn(X) 120(] T(D+n—1)I(j+D/2) | 2 Sn= 2, Craxm

(3.5 -

From the conventional theory of Gegenbauer polynomials {
[6] we immediately know the weight function with respect to
which the polynomial®Q,(x) are orthogonal:

Umflfl dx(1—x?) P25 Q- 1(X)].
0 -1
4.2

Note that this sum is divergent unleBs>2. To verify
this assertion we observe that the latgesymptotic behavior
of the integral in Eq(4.2) is

w(x)=(1—x?)(P~272, (3.6)

Also, the normalization coefficients, in Eq. (2.2) are iden-

tified as 1

J’ dX(l—XZ)(D72)/2X2t[Qm,1(X)]2~F(D/2)t7D/2
-1

(2n+D-1)T(n+D-1)I[(D+1)/2] a7
B Jmn!T(D/2)T (D) B (t—c).

Un

Finally, we note that the polynomial®,(x) satisfy the Thus
Sturm-Liouville eigenvalue differential equation

IM,(D)=1 (0<D=2). 4.3
d? d
{(1—x2) W_DX &+n(n+D—1) Qn(x)=0 When D>2 the sumS,, converges, and we begin the
evaluation by interchanging the order of summation and in-

and the first-order difference-differential equation tegration:

1
_ _ y2\(D-4)12 2
Q,(X)=nQ,_;. (3.9 Sin Um—lf_ldx(l X) [Qm-1(X) 1%

d
{(1—x2) T X

We evaluate this integral exactly using the recursion relation

Now that we have identified explicitly the polynomials (3 3 anq the difference-differential equati¢®.8). The result
Q(x), the weight functionw(x), and the normalization co- ;

efficientsv,, we can use the formula in E.1) to calculate
the moments ofC,, ., and obtain a physical description of om+D-3

our random walk. D_3 (4.9
IV. QUANTITATIVE DESCRIPTION Substituting into Eq(4.1) gives
OF THE RANDOM WALK
In this section we discuss the properties of the hyper- Hm(D)zm (D>2). (4.5

spherical random walk introduced in Sec. Ill. We calculate
the probability of eventually returning to the starting point of This result is exact for alin andD [13]. The probability in

a random walk, the expected time of return, and variou . ,
other moments of the random walk probabilities. As will be%qs'(4'3) and(4.9 confirms that Polya's theorem hOId.S for_
1Ihls model of a random walk, regardless of the region in

evident, the key advantage of this random walk is that all Owhich the walk begins.

th titi Iculaiedc! f ; . .
ese quantities can be calculaiacclosed form For a hypercubic lattice the probability of eventually re-
turning to the starting point of a random walk is given in

A. Probability of eventual return terms of an integralsee Eq(2.12 of Ref.[3]]
In a physical description of a random walk the simplest
and most natural question to ask is, What is the probability M(D)=1—

of eventually returning to the starting point? The probability
that a random walker will eventually return to regiom
given that the walker started in regiom is denotedI, (D).  wherely(x) is the modified Bessel function. Unlike the ran-
To calculatell (D) we use generating function methods dom walk discussed in this paper, when-2, I1(D) cannot
previously describefisee Eq(2.11) of Ref. [3]]; to wit, be given in closed fornjexcept for the special cage=3).

Jodt e [I(t/D)]P’
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However, the asymptotic expansionldf{D) for largeD is o (2m+D—3)M,
known [see Eq(2.15 of Ref.[3]]: > Coam=Sn="—p5—5
i=0 -
1 1 - (2m+D—3)M;
(D)~ s+ =5+ (D—o%). = 1

(2m+D—3)M,
(D—6)(D—4)(D—-2)D(D+2)’

Note that for largeD, the probability of returning to the 2 t2C. .. =
starting point of a random walk falls off algebraically like =
1/D in both models. In contrast, for the hyperspherical ran-

dom walk discussed in Ref3], the probability function - 3

I1,(D)=1-1/£(D—1) falls off exponentiallylike 21~ for ;0 Cmatim

large D. As functions ofD, the hypercubidI(D) and the

hypersphericall ,,(D) discussed here both exhibit cusps at (2m+D—-3)M3

D=2. ~(D—8)(D—6)(D—4)(D—2)D(D+2)(D+4)’

Observe that for largm, I1,(D) approaches 1. This hap-
pens because the available entropy for the random walk bavhere
comes constant; at large radius a sphere looks locally like a Mo—1
plane. Indeed, am—, the recursion relation3.3) ap- 0™
proaches that of a one-dimensional random walk for which M;=(2m—1)D+2(m—1)(m—2),
Poun) =Pin(n)=3.
M,=(2m—1)D3+2(7m?—13m+7)D2+4(m—1)(6m?

B. Expected time of return —17m+16)D + 12(m— 1)(m—2)(m2—3m+4),
As explained in Ref[4], the expected time of return
T.(D) of a random walker who begins the walk in region M= (2m—1)D°>+2(19m?—29m+ 15D+ 2(96m?

is obtained from the first moment &, ,.,: — 2062+ 386m— 173D+ 4(99m’ — 48am°

T (D)= — —=02Cmaim .6 +1093M2— 1184m+ 477) D2+ 4(90m°— 621m*
Hm(D)(Et:OCm,Zt;m)2 3 2
+2040m*— 3683n%+ 3414n— 1252 D + 24(m— 1)

Again, using formulag3.3) and (3.8) we can calculate the X (m—2)(5m*—30m3+ 97m?— 156m-+ 104).
sums in Eq.(4.6) straightforwardly. We find that

D. Spatial moments

© (0<D=4) Thekth spatial moment of a random walk is defined as a
To(D)=9 2(D—2)[(2m—1)D+2(m—1)(m—2)]. weighted average over the probabilit€s ;. :
(2m—1)D(D—4) o
(R= 2 n*Coim. 4.7

(D>4)
Note that in generalR*), depends on the starting poimt of
the random walk. We have suppressed the argumebe-
cause, as we will see, the leading asymptotic behavior of
(R¥), ast—o and the first correction to this behavior are
independent ofn. (The second correction does depend on
m.)

We have found an exact expression {&), for all val-
ues oft for the special casm=1:

Note that aD increasesT (D) approaches 2, indepen-
dent of the starting poini. This is because for very large
dimensionD, if a random walker does not return to the start-
ing point on the second step, the random walker wéizer
return; asD — the entropy for moving outward dominates
the walk. However, for fixed asm increasesrl (D) di-
verges. This is because for largethe D-dimensional walk

approaches a one-dimensional walk for which the expected tot+l
time of return is infinite. (R =2t+ DK+ > > (=1)*
r=1 s=r+1
C. Higher temporal moments xf(2r—1,2-1,2,k) (4.8

In general, all temporal moments can be calculated irgng
closed form. Thepth temporal momenE {2 otPC .1y is @

t t+1
rational function ofD and m whose complexity increases ,_, _ K +
with p. The sum defining theth temporal moment con- (R2141=(2t+2) +r§=:l s=§r:+1 (—1)""sf(2r,2s,2t+1k),

verges wherD>2p+2 and diverges wheb<2p+2. We (4.9
list the first four temporal moments belojmote that the
zeroth momeng,,, is already given in Eq4.4)] where
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(x=y)T(x+y—1)T(t+1)(x*—y¥)

ooy tk)= X+y\ [t—x+3 t—y+3 ’ (4.10
2T(x)r(y)r r (D+x+y-3)
2 2 2
|
This formula has the virtue that tHe dependence is very D+k D+k—1
simple; the parametdd occurs just once in the denominator (— k(D—3)T<T)
of f in Eq. (4.10. Furthermore, for the special case of the (Rk>t~ (21)¥2¢ 1—
zeroth moment, setting=0 in Eq. (4.9 or (4.9) immedi- F(E> D+k)
ately gives the resultR%),= 1, which states that probability 2 2

is conserved. Fok>1 this formula is inherently compli-

cated. It is not easy to determine the asymptotic behavior of X (2t) Y24k

<R")t for larget from Eqgs.(4.8) or (4.9) because terms in the

double sum oscillate in sign. 2 2
To find the asymptotic behavior ¢R), ast—= we use 8Dk~ 18Dk + 12D — 2k +33k_28}(2t)—1

generating-function techniques. We rewrite E4.7) as a 12(D+k-2)

derivative operator appliekl times to a power series:

(m—=1)(m+D-2)
D

g1k +0(t7%? (t—o0). (4.13
(R¥) =Iim(z—> > Z"Chim- (4.10)
t dZ n,t;m

z—1 n=1
Observe that the leading term in this asymptotic expansion is
precisely the same as the result in Ej4) of Ref.[4] for the
case of spherically symmetric random walks described by
the probabilities in Eqs(1.1)—(1.3) with R,=n. The result
in Eqg. (4.13 is obtained directly and with considerably less
effort than that in Ref[4], where only the leading asymp-
1 totic behavior was obtained. Note that the first two terms in
<Rk)t= lim f dx(1—x?)(D—2)/2x'Qy,_ 1(X) Eq. (4.13 are independent of the starting pomt To verify
-1 the accuracy of this asymptotic expansion we compare the
first three partial sums of this series with the exact values of
4.12 the moments obtained numericallytat 1000; this compari-
son is given in Tables | and Il. In Table | we consider kile
moment for various values & andD with m=1. In Table
Il we consider the first and second moments for various val-
It is convenient to use the expression fgrin Eq.(3.7) and  ues of the starting poinh with D=2.
the recursion relatiof3.3) for Q,(x) to evaluate the sum in From the asymptotic behavior in E@L.13 with k=2 we
Eq. (4.12: can determine the Hausdorff dimensibn, of the random
walk [4]. We find that

Next, we substitute into Ed4.11) the integral representation
for the probabilityC,, .., in Eq. (2.1) and use Eq(3.6). We
obtain

z—1

X

d | <
z d_Z) [ano Z"0,Qn(X)

r D+1 Dy=2
2 X) = 1—72 for all values ofD. This result agrees with that obtained in
nZO 0nQu(X) F(E)F(E ( ) [5] for a D-dimensional hyper-cubic lattice.
2 2

V. APPLICATION TO QUANTUM FIELD THEORY
X (1—2xz+22)~(P+D72 Q

One of our long-range goals in our study of
D-dimensional random walks is a deeper understanding of
We are interested in the behavior of the resulting integraD-dimensional quantum field theory. In particular, we are
ast—. By Laplace’s method this integral is dominated by interested in how critical phenomena in such theories depend
values ofx near 1 in this limit. Thus, for fixedn Eq. (2.10 on the dimension of space-time. We are especially interested
implies that we may replac®,,_;(x) by 1 to leading order; in how a¢* scalar field theory becomes free Bs-4. We
we thus conclude that the leading asymptotic behavior ohave already conducted several investigations of
(R¥), is independent ofn. To obtain higher-order terms in D-dimensional quantum-mechanical and field-theoretic sys-
the asymptotic expansion we repla@g._,(x) by the expan- tems[14-17. In this section, as an elementary illustration of
sion in EQ.(3.5). A straightforward asymptotic analysis of how to apply our work orD-dimensional random walks to
the resulting integral gives the first few terms in the asymp-quantum field theory, we use the random walk probabilities
totic expansion of R), for larget with m fixed: Chtm in Eq. (2.1) with the polynomialsQ,(x) given in Eq.
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TABLE I. Actual and predicted values dfﬁ:lnkcnyt;m for t=1000 andmn=1.

k D Actual Leading behavior With first correction With second correction
1 1 2.622 50x 10" 2.523 13x% 10" 2.623 13% 10" 2.623 13% 10
2 4.013 81x10* 3.963 3210 4.013 32% 10 4.013 8210
3 5.047 52610 5.046 265¢10" 5.046 26510 5.047 52K 10
4 5.987 220 10" 5.944 99 10" 5.894 991x 10" 5.897 220< 10"
5 6.631 71% 10" 6.728 35% 10" 6.628 353 10" 6.631 71810
2 1 1.051 45 10° 1.000 000 10° 1.050 46X 10° 1.051 46X 10°
2 2.040 13&%10° 2.000 000x 10° 2.039 63%10° 2.040 13X 10°
3 3.001 00 10° 3.000 00x10° 3.000 000x 10° 3.001 00x 10°
4 3.943 02&10° 4.000 00x 10° 3.940 55x 10° 3.943 05x 10°
5 4.870 366¢10° 5.000 000< 10° 4.865 43%10° 4.870 43%10°
3 1 5.352 67k 10 5.046 265¢10* 5.346 265 10" 5.352 57 10¢
2 1.219 25K 10° 1.188 99& 10° 1.218 99& 10° 1.219 246<10°
3 2.019 01K 10 2.018 506<10° 2.018 506<10° 2.019 01X 10°
4 2.914 616¢10° 2.972 49 10° 2.912 495 10° 2.914 65X 10°
5 3.892 60X 10° 4.037 01X 10° 3.887 01x10° 3.892 73K 10°
4 1 3.205 90x 10° 3.000 000x 108 3.201 85 10° 3.205 851x10°
2 8.237 81x 10° 8.000 000< 10° 8.237 800x 10° 8.237 800x 10°
3 1.500 006x 10 1.500 000k 10° 1.500 000x 10’ 1.500 000< 10"
4 2.342 11410 2.400 000< 10’ 2.340 55010’ 2.342 15x 10
5 3.344 34% 10 3.500 000x 10’ 3.338 52010’ 3.344 520x 10

(3.4) to calculate the Euclidean two-point Green’s functionOur objective is to find the continuum limit of this expres-

of a D-dimensional free scalar quantum field theory havingsion.

spherical symmetry. We will then verify our calculation by  For definiteness we choose, m, andt to be even:

taking the spherical average of the two-point Green’s funcn=2N, m=2M, andt=2T. Also, without loss of generality,

tion of a conventional translationally invariafiionspheri- we takeN=M. Substituting the formula foC,, ., in Eq.

cally symmetri¢ Euclidean field theory18]. (2.1) with Q,(x) given by ultraspherical polynomials in Eq.
(3.4), andw(x) in Eqg. (3.6) andv,, in Eq. (3.7), we obtain

A. Derivation of spherically symmetric propagator

from random-walk probabilities C, . 4NF2( D—- l)
For this calculation we follow the standard recipe dis- _ 2 fl  2\D-2)2
cussed in Refl5]. Specifically, we begin with the generating G(2N.2M,)) 7MP~2 0 ax(1=x%)

function G(n,m,\) for the temporal moments of the prob-

abilities Cy, ¢ % 2 (X)\)ZTgr[z(’\IID:ll)IZ]
T=N—-M

— t
G(n,m,)\)—go MCh - X (x) 7 {2~ 112 x). (5.1)

TABLE Il. Actual and predicted values (ﬁﬁzlnkcnyt;m for t=1000 andD =2.

k m Actual Leading behavior With first correction With second correction

1 1 4.013 8110 3.963 3210 4.013 3210 4.013 82310
3 4.019 75x 10" 3.963 32k 10" 4.013 32% 10" 4.019 76810
5 4.03359% 10 3.963 3210 4.013 3210 4.033 63% 10"
7 4.055 30610 3.963 3210 4.013 32% 10 4.055 43810
9 4.084 81410 3.963 3210 4.013 32% 10 4.085 16310

2 1 2.040 13&10° 2.000 000<10° 2.039 63%10° 2.040 13%10°
3 2.046 19&10° 2.000 000<10° 2.039 63%10° 2.046 13%10°
5 2.060 336¢10° 2.000 000<10° 2.039 63%10° 2.060 13%10°
7 2.082 55%10° 2.000 000x10° 2.039 63%10° 2.082 13%10°
9 2.112 84&10° 2.000 000 10° 2.039 63%10° 2.112 13%10°




Next, we perform the sum in E@5.1):

D_
4NI‘2(—

) fldx(l—xz)(D_z)/z
0

G(ZN,ZM ,)\)= W

2N—2M
X(X)‘) A(D-1)12]
1—x2\2 " 2N-1

X (x) 250 1(x). (5.2

SPHERICALLY SYMMETRIC RANDOM WALKS. I. ...

To prepare for taking the continuum limit we make use of

the equivalence of Gegenbauer and Jacobi polynorfdls

I'(D/2)T(2N—2+D)
I(D-1)[(2N—1+D/2)
X47)[2(m?:12)/2'(D72)/2](X)-

D-1)/2
R0 =

(5.3

Substituting Eq.(5.3 into Eqg. (5.2) and takingN and M
large gives

1
G(2N,2M,\)=24"PNP’2y 1—D/2f dx(1—x2)(P-2)12
0

(X)\)ZN 2M

Xﬁf[(D 2)/2,(D-2)/2]

X (x) 75y 2202y, (5.4)

WhenN andM are large the integral in E@5.4) is domi-

nated by values ok near 1. Thus we make the change of

variablex=1— €?s%/2, wheree is a small parameter:

G(2N,2M ,\)=4€>NP2\1-P72

Zle S[A(1—€?s?/2)]2N-2M
X ds 2 2152
0 1-N\2(1-€5212)

(D-2)12 22
€S €’s
_A(D-2)12,(D-2)/2
x| 2 PD-212(D-2) ](1__)

s\ (D—2)/2 22
% ? FD-2)2,(0- 2)/2](1 €S )
(5.9

We now make use of the following asymptotic limit for
Jacobi polynomial$6]:

5]

2a2

A “>(1—ﬁ)=Ja<s),

lim I 5

where J(s) is a Bessel function. Becaud¢ and M are
large, we can use this asymptotic limit twice in E§.5):

109
G(2N,2M ,\)=4€>NP2\M 1~ P72
" f@ed SN (1— €2s?/2)]2N"2M
o STINZ(1-252)2
X J(p-2)2(€(2N—1)8)J(p_2)12
X (e(2M —1)s). (5.9
We introduce the continuum variablesandr’ by
ur=e(2N—-1), pur’'=e(2M-1),
where u is a mass parameter. Note thatr’. Also, since

e€<1, we may replace the upper limit of integration in Eq.
(5.6) by « and simplify the integrand:

G(2N,2M u)\)ZZGrD/Z(I")l_DQM

* S
X fo ds TN 71— 7 Jo-2rlkrs)

XJp-2)2pr's).

Finally, we make use of the Bessel function integral iden-
tity [19]

o S
f dsm J,(as)J,(bs)=I,(bc)K, (ac) (a>h),

where |, and K, are modified Bessel functions. Taking,
\%€=1-\? we have

2u N1— ’
G(2N,2M .\ )= —— rP2(r )P o gyt )

XKp—2)2ur). (5.7

Apart from a multiplicative normalization constant, the
expression in Eq(5.7) is the final result for the Euclidean
propagator. Lets(r—r'’) represent the spherically averaged
amplitude for a free scalar particle of magsto propagate
from some point on a sphere of radiugo some point on a
sphere of radius’. Note that this probability amplitude is
not symmetric under the interchangeradndr’; whenD>1
it is more likely for a particle to propagate from a sphere of
smaller radius to a sphere of larger radius than for the reverse
to occur. This is because the final state of the particle propa-
gating to the larger sphere has a higher entropy. This asym-
metry does not occur in translationally invariant theories.
Our final, properly normalized, result for the propagator is
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Ar—r")y=(r")P (rr ’)1_D/2|(D—2)/2(,uf<) We can now verify that?(rar’) i_n Eq.(5.9 is prc_)perly
normalized by calculating the amplitude for a particle at ra-
XKp-2)2(pr=), (5.8 diusr to propagate tany radius:
where

fo dr’ Z(r—r")=r""P2Kp_5(ur)

re=maxr,r'}y, r_=min{r,r'}. r
X J'Odr'(r')D/2|(D—2)/2(,U«r')
The normalization of the Green'’s function in E&.8) will

be verified in Sec. V B. 1-D12 ® D2
The propagation asymmetry in E€5.8) is a continuum tr l(o-2)2(r) ) dri(r’)

manifestation of the directional bias that is present in spheri-

cally symmetric random walks. Note th@, ., the prob- XKp-2)y2(pur”)

ability of walking fromm to n [see Eq(2.1)], is nota sym-
metric function ofm andn. Rather, it is the functiom,,_; in
Eq. (3.7) multiplying a symmetric function ofn andn. The
function v,_, represents the random-walk entropy associ-

r
= ? [lo(r)Kip—2)(r)

. . . 1
ated Wlth the volqme of hyperspherical regionThe asym- 122N Kppa(1)]= —3,
metry in Eq.(5.8) is a direct consequence of the asymmetry 2
inChm-

o _ ’ _ where we have the used the Wronskian identity for modified
B. Normalization of the two-point Green'’s function Bessel functions. This result agrees with that in £q10).

The free propagator in momentum space for a

is _ . . . .
In this subsection we derive the spherically symmetric

propagator in Eq(5.8 from the translationally symmetric

- 1 propagator in Eq(5.9) by taking an angular average. To
Z(k)= K 2 obtain the angular average we let
To obtain the coordinate-space propagatdr —r') we take [r=r'[=r?+(r")*=2rr’ cosé.

the D-dimensional Fourier transform of the momentum-

Space propagator: We then expand the modified Bessel function in Eq9) as

a series in terms of Gegenbauer polynomials

D

2m)P ) K+ u? , e
(zm) . Ku(alr=1')) 1, o
=T 5 pir’ | 2 (n+)7]
1 11y (D—2)/2 Ir—r’| 2 n=0
:(27T)D72 (M/|r_r |)
X (€oS )y () Kpip(pr”)
XK p-2y2(plr=r]). (5.9
The coordinate-space propagator satisfies the Green'’s- (r<r’).

function differential equation
If we then integrate over the angt only then=0 term in
the series survives and we obtain the result in ). The
(V2= ) r—1")=8P)(r—r"). fact that we obtain the same two-point Green’s function di-
rectly from our random-walk model supports the validity of

. ) the uniform approximation for the probabilitiéy, (n) and
Let us calculate the amplitude for a particlerab propa- P,(n) in Eq. (3.2).

gate anywhere We obtain this amplitude by integrating
Z(r—r'") with respect tar’ over all space:
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