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Interface dynamics in a block copolymer melt and the effect of noise
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The role of fluctuations in the disorder-lamellar transition in a block copolymer melt is investigated using a
cell dynamical system simulation by measuring the propagation velocity of the interface between ordered and
disordered regions. Our results strongly suggest that near the transition temperature, in the absence of noise, the
velocity increases with quench depthwas \/7 [7= (T.—T)/T, is the reduced temperature measured from the
transition temperatur€.], while in the presence of noise, the velocity increases-as. These results lead us
to conclude that the addition of noise causes the disorder-lamellar transition to change from second order to
first order. This conclusion is consistent with the prediction of BrazoyS&dv. Phys. JETR1, 85 (1975].
[S1063-651%96)50606-9

PACS numbd(s): 61.25.Hq, 05.40k]

Block copolymers(BCP’s) are linear polymer chains, drickson and Helfand calculated the phase diagram for the
typically composed of two homopolymer subchains graftedBCP system and obtained results significantly different from
covalently at one end. Their properties have attracted a greéttose obtained within the mean field thedd]. Some of
deal of interest, both scientific and technological. Dependingheir predictions have been confirmed experimentidlly
on temperature and polymer composition, BCP systems have In this article, we investigate the effects of fluctuations on
been found to exhibit many fascinating periodic structures ag symmetric BCP system through computer simulation by
well as a homogeneous disordered phase. The mean fielludying the propagation velocity of the interface between
theories of Leiblef1], in the weak segregation regime, and the lamellar phase and the disordered phase near the transi-
Ohta and Kawasaki2], in the strong segregation regime, tjon temperature. It should be noted that the system we study

yield ph_ase diagram_s which r_eproduce many _features Oﬁresents special technical problems. The only work of which
phase diagrams obtained experimentally. According to thesge are aware concerning the identification of a fluctuation-

theories, the order parameter of the BCP system is intropqyced first order transition in a numerical simulation was
duced in the following way. Le,(r) and ¢,(r) denote the  yecently reported by Shiwet al. [6]. Using a cell dynamical
local volume fractions ofa and b segments, andN, and  system(CDS) approach[7] to study the Swift-Hohenberg

N, represent the degrees of polymerization @fand b equation, they found a double-plateau evolution of the Nus-
blocks. Under the condition that the molten phase is incomse|t number in the presence of noise.

pressible[ ¢o(r) + ¢p(r) =11, the system can be described  perhaps the most direct method to distinguish a first order
by a single order parametef(r) = ¢,(r) — ¢p(r). The spa-  transition from a second order transition is to consider the
tial average ofy(r) is given by 4=2f—1, wheref is the  evolution of droplets of the equilibrium phase in the parent
block ratio, f=N,/(N,+ Np). phase, that is, to determine if sufficiently small droplets will
According to Leibler's mean field theory, for a symmetric shrink and eventually disappear rather than gr@.course,
chain[N,=Ny], the transition from a disordered system to in this case, it is never possible to make a certain identifica-
an ordered system is second order, and the resulting ordergidn of a second order transitiorizor the present case, how-
phase consists of alternating “stripeglamellag of a-rich  ever, such a study is not practically feasible. The system we
and b-rich regions. Systems which exhibit such a transitionstudy is very close to the critical temperature. In general, if
between a homogeneous isotropic disordered phase andbath phases appear in such a system, their interface will ex-
lamellar phase belong to the “Brazovskii universality class” tend over a very long distancéThe thickness of the inter-
[3]. For such systems, the transition to the ordered statdace is essentially the correlation length of the systéfiwe
predicted to be second order by mean field theory, is explace a single small droplet of the equilibrium phase in a
pected to become first order due to the effect of fluctuationssystem prepared in the parent phase, its dynamics will ini-
Treating fluctuations within the Hartree approximation, Fre-tially be dominated by diffusion, and it will quickly spread
and its amplitude shrink. In a noiseless system, this would
not prevent us from determining the fate of this droplet. Its

*Electronic address: komura@iizuka.isc.kyutech.ac.jp evolution could be followed indefinitely, and its amplitude
Electronic address: fukuda@ton.scphys.kyoto-u.ac.jp would eventually be seen to everywhere approach zero or its
*Electronic address: VYE03010@niftyserve.or.jp equilibrium value. However, to investigate the behavior in

1063-651X/96/58)/55884)/$10.00 53 R5588 © 1996 The American Physical Society



53 INTERFACE DYNAMICS IN A BLOCK COPOLYMER MELT AND ... R5589

which we are interested, we must add noise to the system. liems is also important not only to determine the order of the
this case, when we place a localized droplet of the orderettansition but also to test the various properties of front
phase in the disordered phase, its amplitude quickly decaygropagation in such systems and compare these with the cor-
and it becomes “lost” in the noise. Its subsequent evolutionresponding theoretical predictions.
cannot be distinguished from the evolution induced by the ©Oono and Shiwa proposed the following partial differen-
noise. The time development of the droplet thus cannot béal equation to describe the dynamics of microphase separa-
isolated, and it cannot be said to either ultimately shrink andion in a BCP systentwith no macroscopic flow[12]:
disappear or to grow. oy o

Even in the system we study, it is possible in principle to — =V —-DV2y—ay+uy®]-B[¢y— ], (1)
study the evolution of droplets, but in order to do so, they at
must extend over a region whose size is on the order of the 2 , L
correlation length. With the parameter values used in thé(vhereV IS the_ Laplacian, an@, D, a andu are p_osmve
present numerical study, and using results appearing in Repiénomenological parameters. The term proportiona to

[8], this length was found to be between approximately 1006§aflects the long range interaction. 'On 'the basis of this equa-
and 2000 cells. It may be thought that in such a situation, jfion, the problem of front propagation in a BCP system was

ould be possible to simplv coarse-arain the tem so thaﬁtudied numerically by Liu and Goldenfeld for a symmetric
wou pOSs| SImpYy ree-gral System S e-dimensional systefl3]. The value of the selected front

the correlation length corresponds to any desired reasonab . . . : .
g P y elocity they determined agrees with that derived using the

small number of cells. However, in the present case, thi . . . .
cannot be done since coarse-graining beyond a certain poi argmal stability _conjecturéll]. Later, employing the re-
uctive perturbation method, one of the present authors

will result in the period of the ordered structure becoming

smaller than the cell size. For the parameter values we coriC-P) studied the invasion of lamellar, triangular and bce

sider here, the period of the ordered structure is approxigrdered phases into the disordered region and calculated

mately 25 to 50 times shorter than the correlation |engthpropagation velocities of front-envelope profiles for various

Thus to honestly study the dynamics of droplets for theinvasion Processes near the, spinodal ﬂ.ak
y y y P t A CDS model corresponding to EfL) in the presence of

present purpose would require a system size of perhaps a . !

least 2000x2000 (approximately 60 times larger than the noise Was_also_ introduced by Oono and S.h'm] as a

system used in our investigatipand a somewhat tedious slight mod_|f_|cat|on of t_he C.:DS ”.‘Od.e' descn_blng spinodal

preparation of the initial droplets. In a system such as this, gecomposmon. A detailed Investigation of this system was

metastable disordered state cannot be distinguished from alllbsequently performed by Bahiana an_d Ofrg. We em-

unstable disordered state through a study of local dynamic§’on the same CDS ”?00"?" where the difference equation for

In this sense, we can say that locally there is no differenc&® order parametef is given by

between the two. Only when we consider more macroscopic -~ el

behavior can the distinction between the two be made, and in”(™t* D=¢(n0)+{Zn0)) —Z(n,t) = Bly(n.1) ~ ¥]

this sense, only here does the distinction have meaning. +Cy(n,t), 2
Another method which could be used to identify a first-

order phase transition is to measure the scattering function afith

the equilibrium pattern in the neighborhood of the transition

temperature and look for a discontinuity in the scatteringZ(n,t)=—D[({#(n,1)))—%(n,t)]— Atanhj(n,t)+ g(n,t),

peak height. We attempted this, but were unable to detect )

any such discontinuity. Evidently, the precision of our nu- . . . :
merical computation was not sufficient. where n=(n,,n,) designates the two-dimensional lattice

The method we use in this study relies on the fact that th@°iNt (Nx andn, are integers We choose the units of length
temperature dependence of the steady state propagation \?éq-d time in a.S.UCh way that the Igttlce constant and. the
locity of an interface separating the disordered and orderefjansport c.oeff|C|en.t do not appear in .the above equations.
phases directly reflects the order of the transifieriq]. In The quantity((X)) IS an isotropic spatial average, _defmed
the case of a second order transition, the steady-state velocig)) the square lattice by(X))=(1/6)=X(nearest-neighbor
of an interface separating the stable ordered state and t&!19 +(1/12=X(next-nearest-neighbor cellsHence the
unstable disordered state depends on the velocity in accofP'TéSpondence between the coefficients in EQ. and
dance with the relation ~ 7 [r=(T.—T)/T,, T, is the the above equations B=A-1, B=35, D=D/3. Timet
transition temperatuite provided fluctuations and initial in- is also scale(_j b.y _factor of 3 The Ia_st term in EZ). repre-
homogeneities are sufficiently smdll1]. In the case of a sents the noise; is the noise amplitude, taken here as an
first order transition, the interface velocity in the steady statd"dependent parametgil5] and 7(n,t)=7x(n+1ny,t)
depends linearly on the temperature n€af9]. By perform-  — 7x(Nx, Ny, 1) + 7y (N, ny+ 18 = 7y (ny,ny 1), where 7,
ing a CDS simulation for the BCP system, we have carried"d 7y are random numbers uniformly distributed in the
out a dynamical test of the BCP system to determine hovt€rval[—1,1]. In our simulations, we fixed the parameters
fluctuations affect the nature of the phase transition. In factds 8=0.02, C=0 or 0.01, D=0.5, =0, and variedA
an earlier investigation of the type of phenomena in whicharound the transition temperaturg . '
we are interested was carried out experimentally in a liquid Linear stability analysis of Eq1) shows that the spinodal
crystal system near the nematic—smedtitransition by Cla-  line is determined byd—3u?)?>~4BD=0 [8]. Since the
dis et al, whose results strongly suggest that this transition ignicrophase-separation temperat(@&ST) and the spinodal
weakly first ordef(9,10]. A similar experiment for BCP sys- temperature coincide for the symmetrie=0 case, the tran-
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FIG. 1. Schematic representation of the invasion of a lamellar
phase into a homogeneous disordered phase.

velocity

T

sition temperature between the lamellar and disordered 0.010
phases is.=2yBD=2BD=0.2 for the above parameter

values. Hence the corresponding critical value/in Eq. D 0 C=0
(3) for =0 is A,;=1+0.2=1.2. BB c=00l
In order to examine the velocity of the propagating inter- 0.000 . : ' ‘
1.200 1.202 1.204 1.206 1.208 1.210

faces, we first produced sufficiently develop@® 000 time
steps “seed” patterns on a square lattice of size B8
for various values ofT<T. (A>.A.) near the transition FIG. 2. Propagation velocity for the invasion of a lamellar or-
point. Then the “seed” patterns were mounted in the middledered region into a disordered region in the absence and presence of
of lattice of size 12& 512 with periodic boundary condi- noise.
tions. Having prepared such an initial state, we allowed the
interface to propagate with the same valuedoés that with  enough to obtain meaningful results using our numerical pro-
which the “seed” pattern was produced. In contrast to thecedure.
real system, however, the above CDS model withO does We first discuss the noiseless system, i(e=,0. In Ref.
not produce a well-defined lamellar structure, but rather 48], the propagation velocity is calculated using the reduc-
complicated bicontinuous pattern. Bahiana and Oono attve perturbation method as
tempted to avoid this difficulty by performing a three-
dimensional simulation, adding thermal noise, imposing a
bending penalty, and taking into account hydrodynamic in-
teractions, but none of these attempts changed the pattern
significantly[14]. We have found that a well-ordered lamel- If we consider the temperature just beloV, we put
lar structure can be obtained by imposing a macroscopia=a.+ r=2BD+1 (a;>1, m>0), and hences~ /7 to
shear flow, the velocity of which is given hy(r)=7yy and  lowest order in7. In terms of A, we havev~0.327
vy=v,=0. In this case, the right-hand side of H4) ac- X (A—1.2)2 for the above parameter values. In Fig. 2, the
quires the convective term yy(dyldx), and a correspond- propagation velocityy determined through our numerical
ing discretized term appears in E@). It should be stressed, simulations is plotted as a function gf. As shown, the data
however, the shear flow was applied only during the prepaare fit well by the curve) =0.345x (A—1.20)*54=0-005 ¢
ration of the “seed” patterns and was turned off when wethe point at.A=1.210 is removed from the fit, we obtain
measured the interface propagation velocity. v=0.306X(A—1.20)°-°130:006 Fqr 3 range of values of
Recently, the nucleation of a lamellar phase in aA infinitesimally close to4., the exponent appearing here
fluctuation-induced first order transition was discussed byshould be exactly 1/2. As the maximum value 4f in-
Hohenberg and Swiff16]. They showed that the critical creases, however, this value should also incréaseseen by
droplet shape is anisotropic in general. In their terminology expanding Eq(4) to second orddr Our results are consistent
the subject of the present investigation is the propagatiomith this behavior.
of a “longitudinal” interface, as shown in Fig. 1. In the We now study the effect of the noise for the case
calculation of the interface velocity, the front position C=0.01. This value was also used in RE]. In this case,
was specified for every ten time steps by measuring the totahe lamellar pattern develops spontaneously in the region
length of the ordered region. The lenditt) of the ordered ahead of the front. To minimize the error introduced by the
region was estimated by the valugt)=23y(n,t)?/ presence of this “undesired” order, in the calculation of
L2, Whereymayis the maximum value ofs(n), andL is  I(t) we removed the contribution af(n)? for values ofn
as shown in Fig. 1. In the presence of noise, an average ovéor which the deviation from zero had not been caused by the
more than ten propagations was taken. While there are obvfront. Of course, this procedure itself is inherently error-
ous problems with this method of calculating the velocityridden, but it is perhaps the best alternative. After a suffi-
(especially in the presence of nojistor the present problem, ciently long time, the propagation of the front is impeded
we feel it is probably the most precise method which can besignificantly by the spontaneously developed ordered phase
realized using a relatively simple numerical procedure, agrowing before it. We determined the propagation velocity
long aslkg is not too large, wherg, is the wave number of before this “collision” occurs, and the result is also shown
the equilibrium ordered pattern. Fortunately, we were able ton Fig. 2. The data are fit well with the curve
obtain meaningful results using a small enough number ob =2.27x (A—1.20)*938-0015 gjven in the figure. Again if
time steps thatk, never became larger than approximatelywe remove the point af4=1.210 from the fit, we obtain
10. For values of4 very close to.A.=1.2 (approximately v =3.05x (A— 1.20)4905:0013 Ag in the noise-free system,
1.202 and legs the propagation velocity was not large we expect that the observed deviation from 1 in the former

A

v=[2a(a?-4BD)/D]*2 (4)
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case is due to the presence of a non-first-order contributiorsults will be published elsewhere. The predicted effects of
(Note in this case, the second-order effect should cause trghear flow on the Brazovskii type transitiph8] will also be
exponent to decreagalVe believe that our result reflects the investigated in the future.

first order nature of the transition due to the Brazovskii ef- In summary, within the CDS approach, we found evi-
fect. We point out that our result is consistent with the cal-dence of a fluctuation-induced first order transition in a sym-
culation of the growth kinetics of a BCP lamellar droplet by metric BCP system by measuring the velocity of the inter-
Fredrickson and Binder in the sense thads proportional to  face between the ordered and disordered phases.

7 [17]. As mentioned abovEL6], however, their assumption

of a spherical droplet is problematic since, as discussed in \We would like to thank Professor Y. Shiwa and Dr. H.
Ref. [8], the propagation velocity of the front is highly an- Kodama for their helpful discussions. This work is supported
isotropic. An investigation using other values of the noiseby a Grant-in-Aid for Scientific Research, Ministry of Edu-
amplitude is presently underway, and the details of our reeation, Science and Culture, Jap@6740320.
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