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The role of fluctuations in the disorder-lamellar transition in a block copolymer melt is investigated using a
cell dynamical system simulation by measuring the propagation velocity of the interface between ordered and
disordered regions. Our results strongly suggest that near the transition temperature, in the absence of noise, the
velocity increases with quench depth asv;At @t5(Tc2T)/Tc is the reduced temperature measured from the
transition temperatureTc#, while in the presence of noise, the velocity increases asv;t. These results lead us
to conclude that the addition of noise causes the disorder-lamellar transition to change from second order to
first order. This conclusion is consistent with the prediction of Brazovskii@Sov. Phys. JETP41, 85 ~1975!#.
@S1063-651X~96!50606-9#

PACS number~s!: 61.25.Hq, 05.40.1j

Block copolymers~BCP’s! are linear polymer chains,
typically composed of two homopolymer subchains grafted
covalently at one end. Their properties have attracted a great
deal of interest, both scientific and technological. Depending
on temperature and polymer composition, BCP systems have
been found to exhibit many fascinating periodic structures as
well as a homogeneous disordered phase. The mean field
theories of Leibler@1#, in the weak segregation regime, and
Ohta and Kawasaki@2#, in the strong segregation regime,
yield phase diagrams which reproduce many features of
phase diagrams obtained experimentally. According to these
theories, the order parameter of the BCP system is intro-
duced in the following way. Letfa(r) andfb(r) denote the
local volume fractions ofa and b segments, andNa and
Nb represent the degrees of polymerization ofa and b
blocks. Under the condition that the molten phase is incom-
pressible@fa(r)1fb(r)51#, the system can be described
by a single order parameter:c(r)5fa(r)2fb(r). The spa-
tial average ofc~r! is given by c̄52 f21, where f is the
block ratio, f5Na /(Na1Nb).

According to Leibler’s mean field theory, for a symmetric
chain @Na5Nb#, the transition from a disordered system to
an ordered system is second order, and the resulting ordered
phase consists of alternating ‘‘stripes’’~lamellae! of a-rich
andb-rich regions. Systems which exhibit such a transition
between a homogeneous isotropic disordered phase and a
lamellar phase belong to the ‘‘Brazovskii universality class’’
@3#. For such systems, the transition to the ordered state,
predicted to be second order by mean field theory, is ex-
pected to become first order due to the effect of fluctuations.
Treating fluctuations within the Hartree approximation, Fre-

drickson and Helfand calculated the phase diagram for the
BCP system and obtained results significantly different from
those obtained within the mean field theory@4#. Some of
their predictions have been confirmed experimentally@5#.

In this article, we investigate the effects of fluctuations on
a symmetric BCP system through computer simulation by
studying the propagation velocity of the interface between
the lamellar phase and the disordered phase near the transi-
tion temperature. It should be noted that the system we study
presents special technical problems. The only work of which
we are aware concerning the identification of a fluctuation-
induced first order transition in a numerical simulation was
recently reported by Shiwaet al. @6#. Using a cell dynamical
system~CDS! approach@7# to study the Swift-Hohenberg
equation, they found a double-plateau evolution of the Nus-
selt number in the presence of noise.

Perhaps the most direct method to distinguish a first order
transition from a second order transition is to consider the
evolution of droplets of the equilibrium phase in the parent
phase, that is, to determine if sufficiently small droplets will
shrink and eventually disappear rather than grow.~Of course,
in this case, it is never possible to make a certain identifica-
tion of a second order transition.! For the present case, how-
ever, such a study is not practically feasible. The system we
study is very close to the critical temperature. In general, if
both phases appear in such a system, their interface will ex-
tend over a very long distance.~The thickness of the inter-
face is essentially the correlation length of the system.! If we
place a single small droplet of the equilibrium phase in a
system prepared in the parent phase, its dynamics will ini-
tially be dominated by diffusion, and it will quickly spread
and its amplitude shrink. In a noiseless system, this would
not prevent us from determining the fate of this droplet. Its
evolution could be followed indefinitely, and its amplitude
would eventually be seen to everywhere approach zero or its
equilibrium value. However, to investigate the behavior in
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which we are interested, we must add noise to the system. In
this case, when we place a localized droplet of the ordered
phase in the disordered phase, its amplitude quickly decays,
and it becomes ‘‘lost’’ in the noise. Its subsequent evolution
cannot be distinguished from the evolution induced by the
noise. The time development of the droplet thus cannot be
isolated, and it cannot be said to either ultimately shrink and
disappear or to grow.

Even in the system we study, it is possible in principle to
study the evolution of droplets, but in order to do so, they
must extend over a region whose size is on the order of the
correlation length. With the parameter values used in the
present numerical study, and using results appearing in Ref.
@8#, this length was found to be between approximately 1000
and 2000 cells. It may be thought that in such a situation, it
would be possible to simply coarse-grain the system so that
the correlation length corresponds to any desired reasonably
small number of cells. However, in the present case, this
cannot be done since coarse-graining beyond a certain point
will result in the period of the ordered structure becoming
smaller than the cell size. For the parameter values we con-
sider here, the period of the ordered structure is approxi-
mately 25 to 50 times shorter than the correlation length.
Thus to honestly study the dynamics of droplets for the
present purpose would require a system size of perhaps at
least 200032000 ~approximately 60 times larger than the
system used in our investigation! and a somewhat tedious
preparation of the initial droplets. In a system such as this, a
metastable disordered state cannot be distinguished from an
unstable disordered state through a study of local dynamics.
In this sense, we can say that locally there is no difference
between the two. Only when we consider more macroscopic
behavior can the distinction between the two be made, and in
this sense, only here does the distinction have meaning.

Another method which could be used to identify a first-
order phase transition is to measure the scattering function of
the equilibrium pattern in the neighborhood of the transition
temperature and look for a discontinuity in the scattering
peak height. We attempted this, but were unable to detect
any such discontinuity. Evidently, the precision of our nu-
merical computation was not sufficient.

The method we use in this study relies on the fact that the
temperature dependence of the steady state propagation ve-
locity of an interface separating the disordered and ordered
phases directly reflects the order of the transition@9,10#. In
the case of a second order transition, the steady-state velocity
of an interface separating the stable ordered state and the
unstable disordered state depends on the velocity in accor-
dance with the relationv;At @t5(Tc2T)/Tc , Tc is the
transition temperature#, provided fluctuations and initial in-
homogeneities are sufficiently small@11#. In the case of a
first order transition, the interface velocity in the steady state
depends linearly on the temperature nearTc @9#. By perform-
ing a CDS simulation for the BCP system, we have carried
out a dynamical test of the BCP system to determine how
fluctuations affect the nature of the phase transition. In fact,
an earlier investigation of the type of phenomena in which
we are interested was carried out experimentally in a liquid
crystal system near the nematic–smectic-A transition by Cla-
diset al., whose results strongly suggest that this transition is
weakly first order@9,10#. A similar experiment for BCP sys-

tems is also important not only to determine the order of the
transition but also to test the various properties of front
propagation in such systems and compare these with the cor-
responding theoretical predictions.

Oono and Shiwa proposed the following partial differen-
tial equation to describe the dynamics of microphase separa-
tion in a BCP system~with no macroscopic flow! @12#:

]c

]t
5¹2@2D¹2c2ac1uc3#2B@c2c̄#, ~1!

where¹2 is the Laplacian, andB, D, a andu are positive
phenomenological parameters. The term proportional toB
reflects the long range interaction. On the basis of this equa-
tion, the problem of front propagation in a BCP system was
studied numerically by Liu and Goldenfeld for a symmetric
one-dimensional system@13#. The value of the selected front
velocity they determined agrees with that derived using the
marginal stability conjecture@11#. Later, employing the re-
ductive perturbation method, one of the present authors
~G.P.! studied the invasion of lamellar, triangular and bcc
ordered phases into the disordered region and calculated
propagation velocities of front-envelope profiles for various
invasion processes near the spinodal line@8#.

A CDS model corresponding to Eq.~1! in the presence of
noise was also introduced by Oono and Shiwa@12# as a
slight modification of the CDS model describing spinodal
decomposition. A detailed investigation of this system was
subsequently performed by Bahiana and Oono@14#. We em-
ploy the same CDS model, where the difference equation for
the order parameterc is given by

c~n,t11!5c~n,t !1^^I~n,t !&&2I~n,t !2B@c~n,t !2c̄#

1Ch~n,t !, ~2!

with

I~n,t !52D@^^c~n,t !&&2c~n,t !#2Atanhc~n,t !1c~n,t !,
~3!

where n5(nx ,ny) designates the two-dimensional lattice
point (nx andny are integers!. We choose the units of length
and time in a such way that the lattice constant and the
transport coefficient do not appear in the above equations.
The quantity^^X&& is an isotropic spatial average, defined
on the square lattice bŷ^X&&5(1/6)(X~nearest-neighbor
cells! 1~1/12!(X~next-nearest-neighbor cells!. Hence the
correspondence between the coefficients in Eq.~1! and
the above equations isa5A21, B53B, D5D/3. Time t
is also scaled by factor of 3. The last term in Eq.~2! repre-
sents the noise;C is the noise amplitude, taken here as an
independent parameter@15# and h(n,t)5hx(nx11,ny ,t)
2hx(nx ,ny ,t)1hy(nx ,ny11,t)2hy(nx ,ny ,t), where hx
and hy are random numbers uniformly distributed in the
interval @21,1#. In our simulations, we fixed the parameters
as B50.02, C50 or 0.01, D50.5, c̄50, and variedA
around the transition temperatureAc .

Linear stability analysis of Eq.~1! shows that the spinodal
line is determined by (a23uc̄2)224BD50 @8#. Since the
microphase-separation temperature~MST! and the spinodal
temperature coincide for the symmetric,c̄50 case, the tran-
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sition temperature between the lamellar and disordered
phases isac52ABD52ABD50.2 for the above parameter
values. Hence the corresponding critical value ofA in Eq.
~3! for c̄50 isAc5110.251.2.

In order to examine the velocity of the propagating inter-
faces, we first produced sufficiently developed~30 000 time
steps! ‘‘seed’’ patterns on a square lattice of size 1283128
for various values ofT,Tc (A.Ac) near the transition
point. Then the ‘‘seed’’ patterns were mounted in the middle
of lattice of size 1283512 with periodic boundary condi-
tions. Having prepared such an initial state, we allowed the
interface to propagate with the same value ofA as that with
which the ‘‘seed’’ pattern was produced. In contrast to the
real system, however, the above CDS model withc̄50 does
not produce a well-defined lamellar structure, but rather a
complicated bicontinuous pattern. Bahiana and Oono at-
tempted to avoid this difficulty by performing a three-
dimensional simulation, adding thermal noise, imposing a
bending penalty, and taking into account hydrodynamic in-
teractions, but none of these attempts changed the pattern
significantly@14#. We have found that a well-ordered lamel-
lar structure can be obtained by imposing a macroscopic
shear flow, the velocity of which is given byvx(r)5ġy and
vy5vz50. In this case, the right-hand side of Eq.~1! ac-
quires the convective term2ġy(]c/]x), and a correspond-
ing discretized term appears in Eq.~2!. It should be stressed,
however, the shear flow was applied only during the prepa-
ration of the ‘‘seed’’ patterns and was turned off when we
measured the interface propagation velocity.

Recently, the nucleation of a lamellar phase in a
fluctuation-induced first order transition was discussed by
Hohenberg and Swift@16#. They showed that the critical
droplet shape is anisotropic in general. In their terminology,
the subject of the present investigation is the propagation
of a ‘‘longitudinal’’ interface, as shown in Fig. 1. In the
calculation of the interface velocity, the front position
was specified for every ten time steps by measuring the total
length of the ordered region. The lengthl (t) of the ordered
region was estimated by the valuel (t)52(c(n,t)2/
Lcmax

2 , wherecmax is the maximum value ofc(n), andL is
as shown in Fig. 1. In the presence of noise, an average over
more than ten propagations was taken. While there are obvi-
ous problems with this method of calculating the velocity
~especially in the presence of noise!, for the present problem,
we feel it is probably the most precise method which can be
realized using a relatively simple numerical procedure, as
long aslk0 is not too large, wherek0 is the wave number of
the equilibrium ordered pattern. Fortunately, we were able to
obtain meaningful results using a small enough number of
time steps thatlk0 never became larger than approximately
10. For values ofA very close toAc51.2 ~approximately
1.202 and less!, the propagation velocity was not large

enough to obtain meaningful results using our numerical pro-
cedure.

We first discuss the noiseless system, i.e.,C50. In Ref.
@8#, the propagation velocityv is calculated using the reduc-
tive perturbation method as

v5@2a~a224BD!/D#1/2. ~4!

If we consider the temperature just belowTc , we put
a5ac1t52ABD1t (ac@t, t.0), and hencev;At to
lowest order in t. In terms of A, we have v'0.327
3(A21.2)1/2 for the above parameter values. In Fig. 2, the
propagation velocityv determined through our numerical
simulations is plotted as a function ofA. As shown, the data
are fit well by the curvev50.3453(A21.20)0.54060.005. If
the point atA51.210 is removed from the fit, we obtain
v50.3063(A21.20)0.51360.006. For a range of values of
A infinitesimally close toAc , the exponent appearing here
should be exactly 1/2. As the maximum value ofA in-
creases, however, this value should also increase@as seen by
expanding Eq.~4! to second order#. Our results are consistent
with this behavior.

We now study the effect of the noise for the case
C50.01. This value was also used in Ref.@6#. In this case,
the lamellar pattern develops spontaneously in the region
ahead of the front. To minimize the error introduced by the
presence of this ‘‘undesired’’ order, in the calculation of
l (t) we removed the contribution ofc(n)2 for values ofn
for which the deviation from zero had not been caused by the
front. Of course, this procedure itself is inherently error-
ridden, but it is perhaps the best alternative. After a suffi-
ciently long time, the propagation of the front is impeded
significantly by the spontaneously developed ordered phase
growing before it. We determined the propagation velocity
before this ‘‘collision’’ occurs, and the result is also shown
in Fig. 2. The data are fit well with the curve
v52.273(A21.20)0.93860.015 given in the figure. Again if
we remove the point atA51.210 from the fit, we obtain
v53.053(A21.20)1.00560.013. As in the noise-free system,
we expect that the observed deviation from 1 in the former

FIG. 1. Schematic representation of the invasion of a lamellar
phase into a homogeneous disordered phase.

FIG. 2. Propagation velocity for the invasion of a lamellar or-
dered region into a disordered region in the absence and presence of
noise.
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case is due to the presence of a non-first-order contribution.
~Note in this case, the second-order effect should cause the
exponent to decrease.! We believe that our result reflects the
first order nature of the transition due to the Brazovskii ef-
fect. We point out that our result is consistent with the cal-
culation of the growth kinetics of a BCP lamellar droplet by
Fredrickson and Binder in the sense thatv is proportional to
t @17#. As mentioned above@16#, however, their assumption
of a spherical droplet is problematic since, as discussed in
Ref. @8#, the propagation velocity of the front is highly an-
isotropic. An investigation using other values of the noise
amplitude is presently underway, and the details of our re-

sults will be published elsewhere. The predicted effects of
shear flow on the Brazovskii type transition@18# will also be
investigated in the future.

In summary, within the CDS approach, we found evi-
dence of a fluctuation-induced first order transition in a sym-
metric BCP system by measuring the velocity of the inter-
face between the ordered and disordered phases.
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