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We study the depinning phase transition of a directed polymer in ad-dimensional space by a periodic
potential localized on a straight line. We give exact formulas in all dimensions for the critical pinning we need
to localize the polymer. We show that a bound state can still arise even if, in average, the potential layer is not
attractive and for diverging values of the potential on the repulsive sites. Our solution can be useful in the
context of kinetic growth of interfaces.@S1063-651X~96!50106-6#

PACS number~s!: 68.45.Gd, 68.35.Rh

The statistical mechanics of long linear chains~directed
polymers! in ordered and disordered media has been an ob-
ject of intense study in the past few years. One relevant
problem in that large context is the study of the depinning
transition of a directed line by a single extended defect em-
bedded in a (d11)-dimensional lattice. An attractive poten-
tial pins the interface~here a line! on itself suppressing wan-
dering, but thermal fluctuations increase the configurational
entropy and a phase transition takes place at a given critical
temperatureTc @1#. The depinning transition of polymers by
a single defect has been the object of intense work and exact
results are now well established in some simple cases@2,3#.
Moreover the simultaneous effect of both point and extended
defects has led recently to some new results in the context of
the renormalization group approach in continuum models
@4#.

In this article we will deal with the following problem: the
depinning phase transition of a single polymer in a
(d11)-dimensional hypercubic lattice by a periodic poten-
tial localized on a line, i.e., a potential which is alternatively
attractive and repulsive. We point out that such a potential
layer can be used, for instance, to mimic the effect of two
alternating kinds of pinning centers with different strengths.
Moreover it is tightly linked with a simplified version of the
Kardar-Parisi-Zhang~KPZ! equation for interface growth
~see discussion below!. Some well-known arguments show
that with ann-dimensional~oriented! defect the polymer is
localized ford2n11<2 by an arbitrarily weak attractive
force, while ford2n11.2 a finite strength is necessary to
do the work@5#. Analytical results are in general not avail-
able for such high-dimensional systems.

Our main results in this work are the following:~i! we
solve the phase transition problem inall dimensions and we
give an exact formula for the critical pinning strength neces-
sary to localize the polymer at the origin.~ii ! We surprisingly
show that a bound state can always arise even though, in
average, the potential layer is repulsive. This effect has been
recently studied in the one-dimensional case@6#. We also
prove that inall finite dimensions a finite strength on the
attractive sites is enough to pin the polymer even in the limit
of an infinite potential on the repulsive sites.~iii ! The ap-
proach introduced is also interesting on its own: we use a
dual space representation of the transfer matrix which en-
ables us to simply find the critical state of the system and the

partition ~wave! function. This approach leads to exact re-
sults for the error-catastrophe problem in biological evolu-
tion @7#.

The energy of a line of lengthL with extremes at
h(0)50W and h(L)5x, wandering in a (d11)-dimensional
spaceV5Zd3N and directed along a ‘‘time’’ axis, is given
by @1#

H~$h~ i !% !5J(
k51

L

uh~k!2h~k21!u2 (
k51

L

Ukdh~k!,0W , ~1!

whereh(k) is a vector identifying the position of the line in
V at each ‘‘time’’ k. The potential is localized at the origin
and it is alternatively attractive and repulsive, i.e.,
Uk5u.0 if k is even andUk52v,0 if k is odd. The
directed line has no overhangs and the RSOS condition is
imposed. A canonical partition function is introduced~the
sum is over all possible allowed realizations of the interface
‘‘height’’ h(k)):

ZL~x!5(
$h%

exp@2H~$h~k!% !/T#. ~2!

In the usual approach one defines a symmetrical transfer ma-
trix Tzz85Tz2z8 from Z as H52Tln(zT(z)Ŝz ; ~here Ŝz
stands for a shift operator@1#!. At finite temperaturesT.0
the fluctuations of the interface increase the configurational
entropy while large humps are unlikely since they give a
higher internal energy. The final state of the polymer is the
result of that competition and it is associated with the free
energy density~per unit length! f . In the thermodynamic
limit ( L→`) f is dominated by the largest eigenvalue of
Tzz8.

For our system we see that in one step the partition func-
tion ZL(x) obeys the following recursion relation:

ZL11~x!5@11~aL1121!dx,0W#FZL~x!1t(
i51

L

@ZL~x1e~ i !!

1ZL~x2e~ i !!#G ~3!

where the unitary vectorse( i )5(0,0, . . . ,i , . . . ,0) have a
‘‘1’’ bit as the i th element~so as to satisfy RSOS condi-
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tions!. In the above we have defined the parameters
t5exp(2J/T)P(0,1# aL5exp(u/T) ~for L even! and
aL5exp(2v/T) ~for L odd!. We now introduce a dual space
representation of our equation in order to simplify the calcu-
lation. For the present problem we use a standard Fourier
transform, but sometimes one needs different representations
@7#. As the partition functionZ(x) is expected to be symmet-
ric in the arguments we introduce a cosine transform

ZL~x!5E
0

1

ddk)
i51

d

cos~pkixi !ZL~k!, ~4!

and its inverse. In the Fourier space Eq.~3! takes a simple
form; a proper definition of the transfer matrix should any-
way take into account the periodicity of the problem. If we
introduce the normalized quantitiesGL(k)5ZL(k)/(1
12dt)L andj(k)5@112t( i51

d cos(pki)#/(112dt), after two
consecutive steps our equation reads

G2L12~k!5j2~k!G2L~k!1AE
0

1

ddqj2~q!G2L~q!

1Bj~k!E
0

1

ddqj~q!G2L~q!

1
AB

112dtE0
1

ddqj~q!G2L~q!, ~5!

with A5a2L21 andB5a2L1121.
In order to find the maximum eigenvalue« we should

consider the spectral equation obtained from~5! by identify-
ing GL12(k)5«2GL(k). We recall that the only significant
contribution in the thermodynamic limitL→` is the maxi-
mum eigenvalue associated with~5!. In fact one can show
that f'2 ln« is always different from 0 in the localized re-
gion («.1) while it vanishes in the unbound state for
«→1. The depinning phase transition is defined at«51 @8#.

The search for a general solution of the eigenvalue equa-
tion is a very hard task, nevertheless one can find the criti-
cality condition as a function of the free parameters
$d,t,u,v% of the theory with no enormous effort. The idea is
to introduce two auxiliary constantsK1,2 by integrating all
the terms containing the unknown functionGL(k):

Kn5E
0

1

ddkGL~k!jn~k! ~n51,2!. ~6!

Therefore we get a homogeneous system of two algebraic
equations forKn which must be satisfied by any general set
of parameters$d,t,u,v%:

SAI2~«!1
AB

112dt
I1~«!21DK11BI1~«!K250,

SAI3~«!1
AB

112dt
I2~«! DK11~BI2~«!21!K250, ~7!

with

In~«!5E
0

1

ddk
jn~k!

«22j2~k!
~n51,2,3!. ~8!

The homogeneous system~7! admits nontrivial solutions if
and only if the determinant of its coefficients vanishes. This
is therefore the condition we must require in order to get the
spectrum of the transfer matrix. Performing the limit«→1
we arrive at the condition which must be satisfied by any set
$d,t,u,v% at the critical point@8#. After some calculations we
then get the criticality condition:

12~A1B!I281ABFI2822I18S I381
1

112dtD G50, ~9!

with In85In(«51) (n51,2,3). In the following we will
drop the ‘‘prime’’ from the formulas, anyway recalling that
all quantities are calculated at«51. Borrowing from the
thermodynamic language, Eq.~9! can be thought of as the
equation of stateat criticality: the ‘‘thermodynamic vari-
ables’’ are now those in the set$d,t,u,v%.

Despite the complexity of the high-dimensional integrals
In involved in the above formula one can finally express
them, after some analytical work, in the following form:

I15
a

2
~ f2g!, I25

a

2
~ f1g!21, I35I12

1

2ta
,

~10!

where we have defined a new constanta5(112dt)/2t and
the two integrals:

f5E
0

1

ddk
1

d2(8~k!
, g5E

0

1

ddk
t

11dt1t(8~k!
.

~11!

with (85( i51
d cos(pki). By means of the above definitions

our equation of state reads

A5
BI221

B~I222I12!2I2
. ~12!

The integralsf andg are well known in the theory of ran-
dom walks~RW’s! @9#; the former, in particular, has a well
defined physical meaning: it gives themean timespent on
the origin for a random walker in ad-dimensional hypercu-
bic lattice~times 1/d). In other words 12d/ f is the probabil-
ity of return of a random walker to his starting point. We use
an integral representation to write them in a simpler form:

f5E
0

`

due2duI 0~u!d, g5E
0

`

due2~d11/t !uI 0~u!d.

~13!

Here I 0(u) is the usual modified Bessel function of integer
order. The mathematical properties off andg are central to
our solution and then we will summarize them in more de-
tail. All results below hold in the ranges:dP@0,̀ ) and
tP(0,1# @8#.

Both f andg are positive strictly convex decreasing func-
tions of d, converging to 01 for d→`. Moreover we have
that f.g ;tP(0,1#. It is interesting to look at their behavior
in some extreme situations. If we perform an asymptotic de-
velopment of g for t close to 0 we get the result
g5t2dt21O(t3). Moreover we find that
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f5
1

d F11
1

2d
1

3

4d2
1

3

2d3
1OS 1d4D G , ~14!

g5
1

d11/t
1

d

2~d11/t !3
1

3d2

4~d11/t !5
1OS 1d4D , ~15!

from the asymptotic developments at larged. Perhaps the
most important property of the two above integrals is thatf
is a divergent integral ford51,2 while it is finite ford.2
~e.g., see@9#!. The second one,g, is finite, on the other hand,
;d. In the RW theory the divergence off for d,3 leads to
the well-known result that the total probability of return of a
random walker to his starting point is 1 only for dimensions
less than 3. Our solution shows directly how this pure topo-
logical effect plays a central role in the context of the depin-
ning transition for directed polymers.

For d51, g can be explicitly calculated and by taking the
dominant contribution of~12! at diverging f , the criticality
condition becomes

u

T
5 lnS 12

B

11B~22A112t !
D , ~16!

which confirms the result obtained by Nechaev and Zhang in
the same context@6#. Let us now turn back to Eq.~12! for the
general case. Att50, or equivalentlyJ→`, the polymer is
a rigid straight line and then it is in the pinned~or unpinned!
phase depending on the sign of the differenceu2v. This
result is indeed contained in our solution: by asymptotically
expandingg for small t ~see above! we finally find

A52
B

B11
1
414B2B2~d f21!

f ~B11!2
t1O~ t2!. ~17!

We see that, as expected, at vanishing hopping constantt
there is no more dependence on the dimensionality; and solv-
ing for the pinning strength one gets the result that
A(B11)52B or u5v. The ‘‘phase diagram’’ on the plane
u-v is then represented in this case by a single straight line
bisecting the whole space~see Fig. 1!. In the above semi-
space (u.v) the polymer is in a bound state, while in the
lower one (u,v) it is completely delocalized.

What does happen if the hopping constantt is different
from 0? In, by now, standard notation we defineuc as the
value of the force on the attractive sites which satisfies~12!
for a given set$d,t,v%. ForB50, or equivalentlyv50, the
potential layer is made of alternating attractive and neutral
sites and the criticality condition readsuc5Tln(111/I2).
This is an exact formula valid in all dimensions. Sincef ~and
thenI2) diverges ford,3, an arbitrarily smallu5d.0 is
enough to localize the polymer, according to well-known
general results, while ford>3 we need a finite value

euc /T52d1
2112t22t2

t2
1
122t1t323t4

2t4
1

d
1OS 1

t6d2D ,
~18!

to do the job~this phenomenon has also a quantum mechani-
cal counterpart@10#!. Moreover that critical attractive force
diverges logarithmically at larged. The same result we get

in the more familiar casev52u representing an extended
linear attractive defect. In this case one finds

uc
T

5 lnF11
1

I11I2G , ~19!

which gives, atd51, a known result, i.e.,uc50. Figure 2
shows the shape ofuc /T as a function of the dimensiond in
that case.

An interesting aspect of our solution is that a bound state
can take place atall finite dimensionsd even if the potential

FIG. 1. Critical curvesuc /T vs v/T for different values oft and
d calculated by numerically integratingf andg ~see text!. Above
~below! them the system is in a bound~unbound! state for the
partition function. At vanishing hopping constant (t50! the depin-
ning line is the diagonal of the phase spaceu-v. For t.0 and
d.2 we need a finite value of the potentialu to pin the polymer.

FIG. 2. The critical pinning~divided byT) necessary to localize
the polymer as a function ofd in the case of a uniform attractive
potential~i.e., v52u). The divergence ofuc /T with d is logarith-
mic ~see text!.
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layer is, in average, repulsive (v.u). This is evident from
Fig. 1 in which we have drawn the critical curves separating
bound and unbound regions for different values ofd as a
function of the ‘‘reduced parameter’’v/T. Above ~below!
the straight lineu5v the potential is, in average, attractive
~repulsive!. Then we see that for every fixedv and;d ~fi-
nite!, one can find a finite value ofuc which localizes the
polymer giving a bound state for the partition function. The
more astonishing point is that one can simply prove from
~12! that the critical curves asymptotically converge toward a
finite uc also in the extreme limitv→1`:

uc
~`!

T
5 lnF11

11I2
~I222I12!1I2G . ~20!

Again, for d51, we recover the known result@6#
exp(uc

(`)/T)5A112t/(A112t21). The intuitive explication
of this apparent paradox is that the polymer wanders in the
space avoiding repulsive sites and passing through the poten-
tial layer on the attractive ones~preferentially!. Some critical
curves are shown in Fig. 1 for bothd,2 andd.2 as func-
tions of the reduced parameterv/T.

We recall that, as is obvious, instead of choosingu and
v as ‘‘free parameters’’ in the above considerations, we
could, in principle, directly look at the behavior of the sys-
tem as a function of the temperatureT @from Eq. ~12!# with
u andv fixed.

A potential layer breaks the translational symmetry ofV
and Goldstone modes are created, whose massm is finite for
T,Tc ~i.e., in the pinned phase!. The bound state can be
expressed asZ(x).exp(2muxu) and the maximum eigen-
value as«.11m2. Moreover we have that near the transi-
tion u f2 f cu. ln«.«21. At d51 one can show, by solving

the partition sum@8#, that the mass gap vanishes linearly
with (u2uc), that is the phase transition is of second order
and the transversal correlation lengthj' diverges as
(u2uc)

21 at the critical point. Atd.1 the situation is less
clear since integrations cannot be performed explicitly and
one has to be careful in order to get the correct answers.
Following Newman and Kallabis@11#, we believe that one
should find a very rich scenario in function of the dimension-
ality. In a recent work they study a deterministic KPZ equa-
tion @12# with a d-shaped potential at the origin. The link
between our model and this simplified version of the KPZ
problem was already established some time ago@13#. In fact
the binding-unbinding transition for a directed polymer can
be mapped into the strong-weak coupling transition for the
KPZ equation. We also believe that our exact solution could
be useful to confirm the results of Ref.@11# in connection
with the search for an upper critical dimension of the KPZ
equation.

Conclusion: we have studied the problem of a polymer in
a d-dimensional space in the presence of a linear extended
defect with periodically arranged pinning sites and we have
found the exact condition for the occurrence of the depinning
transition. Exact formulas for the critical pinning are found
in all dimensions. Perhaps the most interesting aspect of our
system is that a bound state of the partition function can arise
for all d even if the potential on the extended defect is more
repulsive than attractive. As a final remark we point out that
our method can also be used to get the complete form of the
normalized partition sum in all dimensions; the complete cal-
culation will appear in a forthcoming paper@8#.
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