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Extended self-similarity in numerical simulations of three-dimensional anisotropic turbulence
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Using a code based on the lattice Boltzmann equation, we have performed numerical simulations of a
turbulent shear flow. We investigate the scaling behavior of the structure functions in presamisotbpic
homogeneous turbulence, and we show that although extended self-similarity does not hold when strong shear
effects are present, a more generalized scaling law can still be ddiEd63-651X96)50706-3

PACS numbg(s): 47.27—i, 47.10+9, 47.11+]j

In the last few years there has been a growing attentioerature[3—5], still holds for shear flows, i.e., in the presence
on the scaling properties of fully developed turbulence andof a nonisotropic turbulent flow.
in particular, on the characterization of the probability dis- In this paper we first remind the reader of some concepts
tribution  function of the velocity increments about ESS and its relevance in order to estimate theNext
Siv=v,(X+r1)—v,(X), i.e. the velocity difference in the  we briefly describe the shear flows and some of their prop-

direction between two points at distance erties. Finally we discuss the numerical simulation and show
To this aim, usually one considers the scaling propertieshat ESS does not hold for shear flows, while a generalized
of the structure functions defined as scaling law, involving both ESS and RSH, is valid.
In principle, we can determine the scaling exponefjts
Fa(r)=(|&v|". (1) by means of experimental and numerical measures, but in the

latter case some technical problems arise.

We define, as usual, the Reynolds number as Re
'=UL/v, whereU is the typical velocity of the flowl is a
typical macroscopic scale in the system, ané the kine-
matic viscosity. The highest Reynolds numbers that can be

F (D) =Ay(er)"™ ?) achieved by laboratory experiments are abouf, 1007,
while numerical simulations performed with the most pow-
whereA,, are dimensionless constants an the mean rate erful computers now available cannot reach these limits. As
of energy dissipation. the computat_ional effort grows like Reit could seem very

There have been many experimental and numerical resulfi@rd to obtain good estimates, at least comparable to the
suggesting that, because of the intermittency of the velocitgXPerimental results, of the scaling exponents by the numeri-
gradients, the relatiof2) is violated, giving an anomalous cal simulations. The concept of ESS can help us to fill this
scaling law with scaling exponents #n/3. By taking into  9@P- , _ _ _ _
account the fluctuations of the energy dissipation field, Eq. The idea IS to Investigate the scaling behavior of one
(2) has been modified by Kolmogord], who introduced ~Structure function against the other, namely,
the refined similarity hypothesi®RSH):

According to the Kolmogorov theorjl] a scaling law for
(1) is expected to hold in the so-called inertial range
n<r<L (L being the integral scale of the flow angthe
Kolmogorov scalg

Fo(r)~Fn(r)#mm. 4

Fa(r) =A™ (3
In particular, it is expected that, at least in the inertial range,
B(n,3)=¢,. Actually, there is strong evidence that ESS is a
1 powerful tool to investigate the scaling laws and that it has
€= f e(x)d3x. many advantages in respect to the usual scaling against

r~Jem Namely, it holds both for the dissipative range (4-57%
. .and also for low Reynolds numbers. Finally, the two previ-
At present, most of the efforts, bOt.h th_e oretical and EXPENHus properties allow a very accurate determination of the
mental, are devoted to the determination of the anomalous

scaling exponents and to the investigation of the role plrclyeécalmglc _expon(?nts. Indeed, tgg can be estimated with an
by the RSH. error of just a few percent.

. . . . . . The above statements can be summarized as follows. We
The aim of this work is to investigate the scaling proper-

ties of the structure functions in the case of a homogeneou%an always write the structure functions in the following

shear flow, as a simple example of anisotropic homogeneouV\s/ay:

turbulence. We are mainly interested in studying the scaling ¢

laws of the structure functions and we want to establish if the re(rye
Fp(r):cpughfp(—” 5

extended self-similarityES9, recently introduced in the lit-

wheree, is the local rate of energy transfer,
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with U3=F4(r), L=U}/ e being the integral scale, ar@

dimensionless constants selected in such a Wa;/) that P:Z Ni, J(X't)EPV(XJ):Z NiG; -

fo(r/in)=1 for r>7. ESS implies that, for all the orders

p, the functionf ,(r/7)=f(r/7) is the same. ) . o .
We want to understand the effects of the lack of isotropyThe time evolution of th&\;, and so of the velocity field, is

on the anomalous scaling law defined(#. To this effect, driven by a linearized expression of the Boltzmann collision

we consider a simple shear flow. operator:
Let us consider the usual Navier-Stokes equations de-
scribing a viscous, incompressible fluid of density and N (%, t+ 1) — Nj(x, £) = Ajj (N;— NE9) 7

velocity field v(x,t):

whereN{?is the equilibrium population and; is, as far as

the numerical simulation is concerned, a numerical param-
eter with the right propertiesymmetric and cyclicto simu-
V.v=0. (6) late the NS equations with the desired values of the transport
coefficients.

Let us indicate the stationary solution of the above equations We simulate a 3D fluid occupying a volume oi=L°
asU, and define the turbulent velocities asv=U+w. In  sites withL=160, viscosity»=0.014, and obeying to the
order to simplify the following discussion we choose the Usual NS equations plus a forcing tefm (f(z),0,0) cho-
direction as the direction of the main flom,=U, U,=0,  S€n such that the stationary solution of the NS equations is
U,=0.

We have a homogeneous_shgar fIEI_W whep thg main U=Asinkz), U,=0, U,=0. ®)
motion has a constant velocity in a given direction and a
constant lateral velocity gradient throughout the whole field, ] ] )
e.g.,U,=U(2) anddU,/dz=S, so there is an evident lack k,=8m/L is the wave vector corresponding to the integral
of isotropy in the system. Moreover, we have a nonzero turScales, and=0.3.

1
v+ (v-V)v=— ; Vp+vAv+f,

bulence shear stresses tensor, the compaove,) is dif- Thus the shear has a spatial depende$(@~ cosk,z).
ferent from zero and it makes a positive contribution only to"We have access to both zones where the shear is maximum

2 o ; and locally homogeneous, and zones where the shear is mini-
dwy), resulting in nonisotropy.

mum.
We evaluated s as the mean value of (#3Y2 The

simulations were done at Re v/ v~40, with A~15

dattice spacings, and the Kolmogorov scale is about 1 lattice

A generalization of the “4/5” Kolmogorov equation for
anisotropic homogeneous shear flgW suggests that the
typical scale fixed by the shear intensity rig~ (e/S%)2.
With zero shear this scale is infinite, otherwise it has a finit ; )
value: below this scale the shear effects are expected to b&Pacing wide. o
come negligible. The particular question to be answered is: 1he Simulation has advanced 100 000 iterations corre-

what happens to the scaling la® whenr falls into the sponding to about 25 macroscale eddy turnover times
inertial range? 7o~ L/vms: 40 velocity configurations have been saved ev-

In order to answer this question we perform a direct nu-€"Y 2500 time steps, in order_to ensure the statistical inde-
merical simulation of a turbulent shear flow, using a codg’&ndence of the different configurations.
based on the lattice Boltzmann equatiGtBE). Let us We have evaluated the structurenfunctlmn up to the
briefly recall some of the most important characteristics ofl€nth order. The mean values |@v|" have been evaluated
this kind of algorithm; but for computational details see, for through time and spatial average at fixetevel:
instance[8-11]. The main idea underlying the application
of the LBE algorithm to hydrodynamic’s problems is that the 17T 1
Navier-StokegNS) equations are independent of the details (O(r,1))= ff dtpj dxdy Qr,t).
of the microscopic dynamics that enters only in the determi- 0
nation of the transport coefficients. So we can model the
microscopic dynamic in a very simple wag.g., lattice gas In Fig. 1(@) we have a log-lot plot of the longitudinal
automata or lattice Boltzmann equatioand recover the (x direction structure functionFg(r) againstFs(r), ob-
right hydrodynamic behavior in the macroscopic limit, i.e.,tained from the velocity fields corresponding to the mini-
the one in which the ratio between the particle’s mean freenum shear level. The statistical errors on the structure func-
path and the scales over which the macroscopic fields flugions are of the order of the data-points size. The dashed
tuate, goes to zero. In order to reproduce the right behavioturve is the best fit done in the range between the 20th
of a three-dimensiondBD) fluid we consider a 4D face cen- and 30th grid point, and corresponds to a slope of 1.79 in
tered hypercube with periodic boundary conditions along thejood agreement with other measured values pf Every
fourth dimension. In each node there are 24 links to thepoint in the plot corresponds to a grid point and the lattice
nearest neighbors, along which particles move with velocityspacing is~1% wide. As we can see the ESS holds as usual
¢, ni(x,t)={0,1} being the occupation number of thth  until (4-5 7.
link at the sitex, at the timet. Let us indicate with Figure 1b) shows the same plot but at the maximum
N;i(x,t)=(n;(x,t)) the average population; the macroscopicshear level. It is quite evident that ESS does not hold. In any
fields will be case, the slope corresponding to the best fit can be estimated
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FIG. 1. (a) Log-log plot of F¢4(r) againstF5(r) at the minimum
shear. The dashed line is the best fit with slope 1.79. Every point in
the plot corresponds to a grid point and the lattice spacinglig
wide. All quantities in the plot are expressed in terms of lattice
units.(b) The same as ifa) at the maximum shear. The dashed line

In F(r)

is the best fit with slope 1.43.

at about 1.43, quite different from the previous value. Simi
lar results have been obtained for all the others structur
functions. In Table | we show the scaling exponents obtaine

for the even order structure functions.

We can suggest the following explanation for the different
scaling behavior in the presence of shear. In our simulations
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FIG. 2. (a) Log-log plot of Eq.(10) for n=2 at the minimum
shear(diamond$ and maximum shedcrosses Plotted data points
are at 2, 4, 5, 8, 10, 16, 20, 32, 40 grid points. The dashed lines are

the best fits done over these points, corresponding to the slope 0.99.

Data referring to the maximum shear has been shifted of one unity.
(b) The same as ifa) for n=3. The dashed lines are the best fit

with slope 0.99.

SS combined with RSH suggests

sv3

%’VQ. (9)

the scale ¢ is about 4 lattice spacings at the maximum shear

level, so the entire range over which the ESS ht® Fig.

If Eq. (9) is true, as already verified for experimental data

1(a)] is subjected to the shear effects. Our result clearlysets referring to homogeneous and isotropic turbulé¢bge
shows that the shear completely destroys the ESS.

We now turn our attention to Ed3) (RSH). Following

we expect that the locally averaged dissipation and the struc-
ture functions satisfy the following scaling law:

[5] we can consider the generalization of RSH by introduc-

ing an effective scaleS(r)=(s,v3)/(e)=rf(r/7). Then

(er)

<5rU3n>~T<5rU3>n (10)

TABLE I. Scaling exponents evaluated at the minimum shear

(first line), at the maximum shedsecond ling and from the She-

Leveque[12] model.

4 {a e {s {10
min sh 0.70 1.28 1.79 2.25 2.68
max sh 0.76 1.18 1.43 1.56 1.61
SL mod. 0.696 1.279 1.778 2.211 2.593

over a range wider than the inertial one.

Using the data from our simulation, we obtained the re-
sults shown in Fig. 2. As we can see the scaling of
(eM(|8,v|*)" against(s,v3") is well verified in both the
zones of maximum and minimum shear with a slope very
close to one, for the two values=2,3. This is an extremely
interesting result and let us briefly discuss its physical mean-
ing. First of all, one could argue that EG.0) is a trivial one
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because for<7,, € is constant andFz,=r3", thus the This means that moments of different order show a dif-
scalingF3,=F} is obviously satisfied. Furthermore forin ~ ferent dependence from the cutoff scale. This means that the
the inertial range Eq(10) is certainly verified because shear affects the functiofy,(r/#), defined in(5), which is
(Fs/€)=r. However, in principle the proportionality con- No longer the same for all the ordeps Nevertheless, the
stant of Eq.(10) in the inertial and in the dissipative range Scaling law(10) is valid even in the presence of shear and at
could be different; the fact that they have been found equal ithe smallest scales investigated, suggesting that the scaling
not trivial. Moreover, our data refer to a quite low Reynolds @V Of @ generic structure function is related to those of the
number simulation, where the scaling of the structure funcillird one and of the energy dissipation in a universal way,
tions F,(r) with respect tor is absent. Nevertheless, our forv?/ll ?rr]]'alli/ztﬁdtst(k:‘ales, a tr'emtquat}l)t/hnontrl;wal rlgesult.
generalization of the 1962 Kolmogorov refined similarity hy- tie € think that Ihe Investigation ot Ih€ Sef-scaiing proper-

. . e : : s of the energy dissipatiog, would deserve more atten-
pothesid Eq. (10)] is well verified, supporting the idgaom- o .
ing from ESS that the effective SCa|€5,v3>/(er) has a cru- tion, in order to understand how the structure functions of the

cial role in determining the scaling laws of the structureveloc"{y increments depend on the resolution scale and to

functions. Last but not least, EGL0) holds even when ESS explain the ESS violation in shear flows. A deeper analysis
o L ' : o of these arguments, together with other numerical and ex-
is violated, i.e., regardless of the isotropy conditions of the_ . . . : :
turbulent flow, showing its universal validity. perimental results, will be the subject for further investiga-

tion [14,18,

Let us summarize the results that have been obtained an
suggest a possible interpretation for them and what should be We thank L. Biferale for the interesting discussions we
their future developments. First of all, it has been shown thahave had. M.V.S. acknowledges also F. Massaioli, S. Succi,
ESS does not hold for anisotropic turbulent flows, accordingand A. Vicerefor their useful advice about the LBE code and
to similar results obtained from experimental data sets othe parallel computer APE that has been used to run it. This
turbulent boundary layerEl3], where strong shear effects work was partially supported by the EEC Contract No.

are expected to appear. CT93-EV5V-0259.
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