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Using a code based on the lattice Boltzmann equation, we have performed numerical simulations of a
turbulent shear flow. We investigate the scaling behavior of the structure functions in presence ofanisotropic
homogeneous turbulence, and we show that although extended self-similarity does not hold when strong shear
effects are present, a more generalized scaling law can still be defined.@S1063-651X~96!50706-3#

PACS number~s!: 47.27.2i, 47.10.1g, 47.11.1j

In the last few years there has been a growing attention
on the scaling properties of fully developed turbulence and,
in particular, on the characterization of the probability dis-
tribution function of the velocity increments
d rv[vx(x1r )2vx(x), i.e. the velocity difference in thex
direction between two points at distancer .

To this aim, usually one considers the scaling properties
of the structure functions defined as

Fn~r !5^ud rvun&. ~1!

According to the Kolmogorov theory@1# a scaling law for
~1! is expected to hold in the so-called inertial range,
h!r!L (L being the integral scale of the flow andh the
Kolmogorov scale!:

Fn~r !5An~er !n/3 ~2!

whereAn are dimensionless constants ande is the mean rate
of energy dissipation.

There have been many experimental and numerical results
suggesting that, because of the intermittency of the velocity
gradients, the relation~2! is violated, giving an anomalous
scaling law with scaling exponentsznÞn/3. By taking into
account the fluctuations of the energy dissipation field, Eq.
~2! has been modified by Kolmogorov@2#, who introduced
the refined similarity hypothesis~RSH!:

Fn~r !5An8^e r
n/3&r n/3 ~3!

wheree r is the local rate of energy transfer,

e r[
1

r 3EB~r !
e~x!d3x.

At present, most of the efforts, both theoretical and experi-
mental, are devoted to the determination of the anomalous
scaling exponents and to the investigation of the role played
by the RSH.

The aim of this work is to investigate the scaling proper-
ties of the structure functions in the case of a homogeneous
shear flow, as a simple example of anisotropic homogeneous
turbulence. We are mainly interested in studying the scaling
laws of the structure functions and we want to establish if the
extended self-similarity~ESS!, recently introduced in the lit-

erature@3–5#, still holds for shear flows, i.e., in the presence
of a nonisotropic turbulent flow.

In this paper we first remind the reader of some concepts
about ESS and its relevance in order to estimate thezn . Next
we briefly describe the shear flows and some of their prop-
erties. Finally we discuss the numerical simulation and show
that ESS does not hold for shear flows, while a generalized
scaling law, involving both ESS and RSH, is valid.

In principle, we can determine the scaling exponentszn
by means of experimental and numerical measures, but in the
latter case some technical problems arise.

We define, as usual, the Reynolds number as Re
5UL/n, whereU is the typical velocity of the flow,L is a
typical macroscopic scale in the system, andn is the kine-
matic viscosity. The highest Reynolds numbers that can be
achieved by laboratory experiments are about 106, 107,
while numerical simulations performed with the most pow-
erful computers now available cannot reach these limits. As
the computational effort grows like Re3, it could seem very
hard to obtain good estimates, at least comparable to the
experimental results, of the scaling exponents by the numeri-
cal simulations. The concept of ESS can help us to fill this
gap.

The idea is to investigate the scaling behavior of one
structure function against the other, namely,

Fn~r !;Fm~r !b~n,m!. ~4!

In particular, it is expected that, at least in the inertial range,
b(n,3)5zn . Actually, there is strong evidence that ESS is a
powerful tool to investigate the scaling laws and that it has
many advantages in respect to the usual scaling againstr .
Namely, it holds both for the dissipative ranger;(4–5!h
and also for low Reynolds numbers. Finally, the two previ-
ous properties allow a very accurate determination of the
scaling exponents. Indeed, thezn can be estimated with an
error of just a few percent.

The above statements can be summarized as follows. We
can always write the structure functions in the following
way:

Fp~r !5CpU0
pF rL f pS rh D G zp

~5!
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with U0
35F3(r ), L5U0

3/e being the integral scale, andCp

dimensionless constants selected in such a way that
f p(r /h)51 for r@h. ESS implies that, for all the orders
p, the functionf p(r /h)[ f (r /h) is the same.

We want to understand the effects of the lack of isotropy
on the anomalous scaling law defined in~4!. To this effect,
we consider a simple shear flow.

Let us consider the usual Navier-Stokes equations de-
scribing a viscous, incompressible fluid of densityr, and
velocity field v~x,t):

] tv1~v•“ !v52
1

r
“p1nDv1f,

“–v50. ~6!

Let us indicate the stationary solution of the above equations
asU, and define the turbulent velocitiesw as v5U1w. In
order to simplify the following discussion we choose thex
direction as the direction of the main flow:Ux5U, Uy50,
Uz50.

We have a homogeneous shear flow@6# when the main
motion has a constant velocity in a given direction and a
constant lateral velocity gradient throughout the whole field,
e.g.,Ux5U(z) anddUx /dz5S, so there is an evident lack
of isotropy in the system. Moreover, we have a nonzero tur-
bulence shear stresses tensor, the component^wxwz& is dif-
ferent from zero and it makes a positive contribution only to
] t^wx

2&, resulting in nonisotropy.
A generalization of the ‘‘4/5’’ Kolmogorov equation for

anisotropic homogeneous shear flow@7# suggests that the
typical scale fixed by the shear intensity isr s;(e/S3)1/2.
With zero shear this scale is infinite, otherwise it has a finite
value: below this scale the shear effects are expected to be-
come negligible. The particular question to be answered is:
what happens to the scaling laws~4! when r s falls into the
inertial range?

In order to answer this question we perform a direct nu-
merical simulation of a turbulent shear flow, using a code
based on the lattice Boltzmann equation~LBE!. Let us
briefly recall some of the most important characteristics of
this kind of algorithm; but for computational details see, for
instance,@8–11#. The main idea underlying the application
of the LBE algorithm to hydrodynamic’s problems is that the
Navier-Stokes~NS! equations are independent of the details
of the microscopic dynamics that enters only in the determi-
nation of the transport coefficients. So we can model the
microscopic dynamic in a very simple way~e.g., lattice gas
automata or lattice Boltzmann equation! and recover the
right hydrodynamic behavior in the macroscopic limit, i.e.,
the one in which the ratio between the particle’s mean free
path and the scales over which the macroscopic fields fluc-
tuate, goes to zero. In order to reproduce the right behavior
of a three-dimensional~3D! fluid we consider a 4D face cen-
tered hypercube with periodic boundary conditions along the
fourth dimension. In each node there are 24 links to the
nearest neighbors, along which particles move with velocity
ci , ni(x,t)5$0,1% being the occupation number of thei th
link at the site x, at the time t. Let us indicate with
Ni(x,t)5^ni(x,t)& the average population; the macroscopic
fields will be

r5(
i
Ni , J~x,t ![rv~x,t !5(

i
Nici .

The time evolution of theNi , and so of the velocity field, is
driven by a linearized expression of the Boltzmann collision
operator:

Ni~x,t11!2Ni~x,t !5Ai j ~Nj2Nj
eq! ~7!

whereNj
eq is the equilibrium population andAi j is, as far as

the numerical simulation is concerned, a numerical param-
eter with the right properties~symmetric and cyclic! to simu-
late the NS equations with the desired values of the transport
coefficients.

We simulate a 3D fluid occupying a volume ofV5L3

sites withL5160, viscosityn50.014, and obeying to the
usual NS equations plus a forcing termf5„f x(z),0,0… cho-
sen such that the stationary solution of the NS equations is

Ux5A sin~kzz!, Uy50, Uz50. ~8!

kz58p/L is the wave vector corresponding to the integral
scales, andA50.3.

Thus the shear has a spatial dependenceS(z);cos(kzz).
We have access to both zones where the shear is maximum
and locally homogeneous, and zones where the shear is mini-
mum.

We evaluatedv rms as the mean value of (2/3E)1/2. The
simulations were done at Rel5lv rms/n;40, with l;15
lattice spacings, and the Kolmogorov scale is about 1 lattice
spacing wide.

The simulation has advanced 100 000 iterations corre-
sponding to about 25 macroscale eddy turnover times
t0;L/v rms: 40 velocity configurations have been saved ev-
ery 2500 time steps, in order to ensure the statistical inde-
pendence of the different configurations.

We have evaluated the structure functionsFn(r ) up to the
tenth order. The mean values ofud rvun have been evaluated
through time and spatial average at fixedz level:

^O~r ,t !&5
1

TE0
T

dt
1

L2E dx dy O~r ,t !.

In Fig. 1~a! we have a log-lot plot of the longitudinal
(x direction! structure functionF6(r ) againstF3(r ), ob-
tained from the velocity fields corresponding to the mini-
mum shear level. The statistical errors on the structure func-
tions are of the order of the data-points size. The dashed
curve is the best fit done in the range between the 20th
and 30th grid point, and corresponds to a slope of 1.79 in
good agreement with other measured values ofz6 . Every
point in the plot corresponds to a grid point and the lattice
spacing is;1h wide. As we can see the ESS holds as usual
until ~4–5!h.

Figure 1~b! shows the same plot but at the maximum
shear level. It is quite evident that ESS does not hold. In any
case, the slope corresponding to the best fit can be estimated
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at about 1.43, quite different from the previous value. Simi-
lar results have been obtained for all the others structure
functions. In Table I we show the scaling exponents obtained
for the even order structure functions.

We can suggest the following explanation for the different
scaling behavior in the presence of shear. In our simulations
the scaler s is about 4 lattice spacings at the maximum shear
level, so the entire range over which the ESS holds@see Fig.
1~a!# is subjected to the shear effects. Our result clearly
shows that the shear completely destroys the ESS.

We now turn our attention to Eq.~3! ~RSH!. Following
@5# we can consider the generalization of RSH by introduc-
ing an effective scaleS(r )[^d rv

3&/^e r&5r f (r /h). Then

ESS combined with RSH suggests

d rv
3

S~r !
;e r . ~9!

If Eq. ~9! is true, as already verified for experimental data
sets referring to homogeneous and isotropic turbulence@5#,
we expect that the locally averaged dissipation and the struc-
ture functions satisfy the following scaling law:

^d rv
3n&;

^e r
n&

en
^d rv

3&n ~10!

over a range wider than the inertial one.
Using the data from our simulation, we obtained the re-

sults shown in Fig. 2. As we can see the scaling of
^e r

n&^ud rvu3&n against^d rv
3n& is well verified in both the

zones of maximum and minimum shear with a slope very
close to one, for the two valuesn52,3. This is an extremely
interesting result and let us briefly discuss its physical mean-
ing. First of all, one could argue that Eq.~10! is a trivial one

FIG. 1. ~a! Log-log plot ofF6(r ) againstF3(r ) at the minimum
shear. The dashed line is the best fit with slope 1.79. Every point in
the plot corresponds to a grid point and the lattice spacing is;1h
wide. All quantities in the plot are expressed in terms of lattice
units.~b! The same as in~a! at the maximum shear. The dashed line
is the best fit with slope 1.43.

TABLE I. Scaling exponents evaluated at the minimum shear
~first line!, at the maximum shear~second line!, and from the She-
Leveque@12# model.

z2 z4 z6 z8 z10

min sh 0.70 1.28 1.79 2.25 2.68
max sh 0.76 1.18 1.43 1.56 1.61
SL mod. 0.696 1.279 1.778 2.211 2.593

FIG. 2. ~a! Log-log plot of Eq.~10! for n52 at the minimum
shear~diamonds! and maximum shear~crosses!. Plotted data points
are at 2, 4, 5, 8, 10, 16, 20, 32, 40 grid points. The dashed lines are
the best fits done over these points, corresponding to the slope 0.99.
Data referring to the maximum shear has been shifted of one unity.
~b! The same as in~a! for n53. The dashed lines are the best fit
with slope 0.99.
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because forr,hk , e r is constant andF3n}r
3n, thus the

scalingF3n}F3
n is obviously satisfied. Furthermore forr in

the inertial range Eq.~10! is certainly verified because
(F3 /e)}r . However, in principle the proportionality con-
stant of Eq.~10! in the inertial and in the dissipative range
could be different; the fact that they have been found equal is
not trivial. Moreover, our data refer to a quite low Reynolds
number simulation, where the scaling of the structure func-
tions Fn(r ) with respect tor is absent. Nevertheless, our
generalization of the 1962 Kolmogorov refined similarity hy-
pothesis@Eq. ~10!# is well verified, supporting the idea~com-
ing from ESS! that the effective scalêd rv

3&/^e r& has a cru-
cial role in determining the scaling laws of the structure
functions. Last but not least, Eq.~10! holds even when ESS
is violated, i.e., regardless of the isotropy conditions of the
turbulent flow, showing its universal validity.

Let us summarize the results that have been obtained and
suggest a possible interpretation for them and what should be
their future developments. First of all, it has been shown that
ESS does not hold for anisotropic turbulent flows, according
to similar results obtained from experimental data sets of
turbulent boundary layers@13#, where strong shear effects
are expected to appear.

This means that moments of different order show a dif-
ferent dependence from the cutoff scale. This means that the
shear affects the functionf p(r /h), defined in~5!, which is
no longer the same for all the ordersp. Nevertheless, the
scaling law~10! is valid even in the presence of shear and at
the smallest scales investigated, suggesting that the scaling
law of a generic structure function is related to those of the
third one and of the energy dissipation in a universal way,
for all analyzed scales, a remarkably nontrivial result.

We think that the investigation of the self-scaling proper-
ties of the energy dissipatione r would deserve more atten-
tion, in order to understand how the structure functions of the
velocity increments depend on the resolution scale and to
explain the ESS violation in shear flows. A deeper analysis
of these arguments, together with other numerical and ex-
perimental results, will be the subject for further investiga-
tion @14,15#.
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