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We present a proof that a system consisting of any finite number of particles that move under the action of
a scalar potential at constant kinetic energy exhibits conjugate pairing of Lyapunov exponents; that is, the
Lyapunov exponents come in pairs, which sum to the same constant. This result generalizes previous results,
because it is independent of the size of the system.@S1063-651X~96!51206-7#

PACS number~s!: 05.45.1b, 05.70.Ln

The conjugate pairing rule states that a trajectory which
has a given Lyapunov exponentl also has an exponent
C2l, whereC is a constant which depends on the trajec-
tory, but is the same for all pairs of exponents. Hamiltonian
systems obey this rule for all trajectories, withC50; that is,
the exponents come in6 pairs@1#. The other general class of
such systems are those with a constant damping factor@2#,
for whichC is proportional to this factor. There is numerical
evidence@3–5# for conjugate pairing in thermostated systems
~below!, as well as arguments for the case of a large number
of particles@6#.

Thermostated systems are important in the study of non-
equilibrium molecular dynamics~NEMD! simulations.
NEMD calculations evaluate transport coefficients by con-
sidering a large number of particles subject to both interpar-
ticle forces and an external field, which drives the system
into a nonequilibrium state. The use of an extra~‘‘thermo-
stating’’! term in the equations permits the system to be sta-
tionary in time and homogeneous in space by removing ex-
cess energy generated by the external field. The alternative is
to simulate nonequilibrium effects via boundary conditions,
at the expense of homogeneity. It can be shown that the
transport coefficients derived from thermostated NEMD cal-
culations are equivalent to those obtained from Green-Kubo
formulas using equilibrium simulations@7#.

The conjugate pairing rule permits the evaluation of the
sum of all the Lyapunov exponents from the largest and
smallest that are the easiest to calculate. The sum of the
exponents is significant because it is directly related to a
macroscopic transport coefficient~such as the conductivity!
in these systems@8#.

The main result to date has been an argument that a ther-
mostated Hamiltonian system obeys conjugate pairing ap-
proximately, with errors inversely proportional to the num-
ber of degrees of freedom of the system@6#. This result
ignores terms of order 1/N in the stability matrix and leaves
open, therefore, the influence of these terms on its eigenval-
ues and consequently on conjugate pairing. For further dis-
cussion refer to Ref.@9#. Recently we have shown numeri-
cally that a system with the minimum number of pairs~two!
exhibits conjugate pairing@10#, thus suggesting that the size
of the system may not be relevant. The present paper proves
the result exactly for a restricted case, that is, isokinetic ther-
mostats and forces derivable from a potentialf, for any
value ofN.

There is an important difference between the present re-
sult and past statements of the conjugate pairing rule in that
here we explicitly single out two trivial exponents~equal to
zero! which do not pair. These are due to the conservation of
kinetic energy and time translation symmetry. They sum to
zero, and so should not be included with the other pairs of
exponents, which sum to another constant. Thus, the stability
matrix @T, Eq. ~22! below# does not satisfy Eq.~23! in the
full 6N-dimensional space, explaining the fact that previous
calculations ofT contained corrections, which happened to
be of order 1/N. We circumvent this problem by defining
T for a reduced, (6N22)-dimensional space, which specifi-
cally excludes perturbations which alter the kinetic energy,
or are along the flow. In this space, pairing appears exactly.

Consider a system with equations of motion,

ẋ5p, ~1!

ṗ52“f2ap. ~2!

Here,x is a 3N-dimensional vector, containing the positions
of N particles multiplied by the square root of their masses,
p is a vector constructed from the momenta divided by the
square root of the masses, andf contains both interparticle
potentials and external potentials. The scalar product of vec-
tors generalizes in the natural way. This calculation is writ-
ten in three-dimensional language, but generalizes trivially to
other dimensions.

To keep the total kinetic energyp•p/2 constant, we have

a52
p•“f

p•p
; ~3!

hence the designation ‘‘isokinetic.’’ Another common type
of thermostat is called isoenergetic, where the kinetic plus
interparticle potential energy is kept constant. Thermostats
which constrain the energy instantaneously in this way are
discussed with regard to Lyapunov exponents in Refs.@9,11#.
There are also Nose´-Hoover thermostats@12–14#, which also
constrain the energy, but only in an average sense. The result
presented here applies only to the isokinetic thermostat.

It is sometimes convenient to group togetherx andp to
form a phase-space pointX. There are two time-dependent
matrices used to describe the evolution of a linear perturba-
tion dX. They depend on the phase space pointX, but this
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dependence will be suppressed for clarity. They are the in-
finitesimal and finite evolution matrices,T and L, respec-
tively, defined by

dẊ~ t !5T~ t !dX~ t !, ~4!

dX~ t !5L~ t !dX~0!. ~5!

The matrixT is usually obtained by differentiating the equa-
tions of motion; however, we will evaluate it in a restricted
subspace of the tangent space, which is slightly more com-
plicated.L can be obtained fromT as the solution of

L̇~ t !5T~ t !L~ t !, ~6!

L~0!5I . ~7!

The Lyapunov exponents are defined as the logarithms of the
eigenvalues ofL, where

L5 lim
t→`

„LT~ t !L~ t !…1/~2t !. ~8!

Two of the Lyapunov exponents of the above thermostated
system are automatically zero, corresponding to perturba-
tions along the evolution of the flow, which effectively add a
constant to the time, and in the direction of increasing kinetic
energy, which effectively multiply the time by a constant.
We ignore these exponents for the purpose of the conjugate
pairing rule, by effectively considering only those perturba-
tions which are perpendicular to these directions. To be pre-
cise, we choose 6N22 perturbations, which are perpendicu-
lar to the direction of increasing kinetic energy, and none of
which are exactly along the flow.

The basis vectors which are used to obtain components of
dX rotate with the motion of the trajectory, so as to be al-
ways perpendicular to the direction of increasing kinetic en-
ergy. This means that the finite time eigenvalues may be
different to those obtained with fixed basis vectors, but in the
long time limit the results are the same. To see this, note that
the Lyapunov exponents do not depend on the initial time.
Choose an initial time such that the set of tangent vectors are
close to a point of accumulation to which they pass arbi-
trarily close an infinite number of times. Because the space
of unit tangent vectors is compact, this is always possible.
Then we have a situation in which the initial and final points
on the trajectory are measured with respect to the same basis.
This argument is also required in general relativity, in which
it is not possible in principle to compare bases at two differ-
ent points@15#.

It is clear that a perturbation which preserves the kinetic
energy at some initial time will continue to do so. This re-
duces the phase space to 6N21 dimensions. We introduce
6N22 orthonormal basis vectors, none of which are exactly
along the flow, and demand that a perturbationdX be in the
space spanned by these vectors. This effectively means that
we are taking a Poincare´ section, and considering the per-
turbed point to be the one at which the perturbed trajectory
intersects with the (6N22!-dimensional space spanned by
the vectors. This intersection is possible because the effec-
tive phase space has 6N21 dimensions due to the conserva-
tion of kinetic energy, so a line and a (6N22!-dimensional

space may be expected to intersect; it is guaranteed by the
stipulation that the perturbations not be along the flow. In
general, the time elapsed along the perturbed trajectoryt8
runs at an infinitesimally different rate tot. It is straightfor-
ward to show that the Lyapunov exponents obtained using
the reduced basis are the same as those in the full phase
space, with the exception of the two zeros.

Without further ado let us calculate the infinitesimal evo-
lution matrixT in the restricted (6N22!-dimensional space.
Let us scale the time so thatp•p51, and one unit vector in
3N space ise05p. At time t50, arbitrarily choose 3N21
unit vectorsei , which together withe0 form an orthonormal
set. These vectors are used separately in both position and
momentum space to form the required basis. This separation
of phase space into position and momentum space while re-
taining the canonically conjugate structure is what makes
this proof possible, and singles out the isokinetic thermostat
as being particularly tractable analytically. The perturbations
are taken from the (6N22!-dimensional subspace defined
by theei . This means that the two conditions required in the
preceding paragraph are met; that is, no perturbations are in
the direction of increasing kinetic energy~which corresponds
to e0 in momentum space!, and none are directly along the
flow ~which contains a component ofe0 in position space!.
Now, the equations of motion may be written in the full
(6N dimensional! space as

ẋ5p, ~9!

ṗ5ė05(
i
f•eiei , ~10!

where f52“f, and i sums from 1 to 3N21, as it will
throughout this paper. If we choose, for convenience, the
unit vectors to have equations of motion,

ėi52f•eie0 , ~11!

then the time derivatives ofem•en are automatically zero~m
andn run from 0 to 3N21), so that theem remain an ortho-
normal basis. In more geometrical terms, the basis vectors
are parallel transported along the trajectory~see Fig. 1!.

We write the perturbed trajectory as

x85x1(
i

dxiei , ~12!

p85p1(
i

dpiei , ~13!

with equations of motion,

d

dt8
x85p8 , ~14!

d

dt8
p85(

i
f8•ei8ei8. ~15!

Here, f8 is the value off at the new coordinates andei8 are
new ~arbitrary! unit vectors perpendicular top8. We have
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f85f1(
i

dxi¹ i f, ~16!

and we choose the orthonormal set (i51, . . . , 3N21):

e085p8 , ~17!

ei85ei2dpie0 . ~18!

Substituting Eqs.~12!, ~13!, ~16!, and~18! into Eqs.~14! and
~15!, ignoring quadratic perturbations, simplifying with the
help of Eqs.~9!–~11!, and taking components in the direc-
tions of theem , we obtain 6N equations. One of these is not
independent of the others, due to the conservation of the
kinetic energy. One equation gives the relation betweent8
and t, and the remaining 6N22 determine the evolution of
the perturbations:

dt

dt8
511(

i
f•eidxi , ~19!

d ẋi5dpi , ~20!

d ṗi5(
j

~2¹ i¹ jf2f•ei f•ej !dxj2f•e0dpi , ~21!

and note thatf•e0 is the a defined in Eq.~3!. From these
equations, the infinitesimal evolution matrix may be read off
as

T5S 0 I

M 2aI D , ~22!

where each of the elements are (3N21)3(3N21) subma-
trices.M is symmetric and 0 andI are the zero and unit
matrices, respectively. It is easy to check thatT satisfies the
equation

TTJ1JT52aJ, ~23!

whereJ is given by

J5S 0 I

2I 0D . ~24!

We call Eq.~23! the ‘‘infinitesimally a-symplectic’’ condi-
tion. See also Chap. 2 of Ref.@16#. In order to obtain the
corresponding equation forL we considerK5LTJL. Using
Eqs. ~6! and ~23! we find that K̇5L̇TJL1LTJL̇
5LTTTJL1LTJTL52aLTJL52aK. Also, by Eq. ~7!,
K(0)5J. Solving the equation forK, we find thatL satisfies
the ‘‘global m-symplectic condition,’’

mLTJL5J, ~25!

wherem5exp„*0
t a(s)ds…. To obtain the Lyapunov expo-

nents, one uses Eq.~8! and considers

m2LTLJLTL5J, ~26!

which follows from Eq.~25!.
Now consider the eigenvalues of a matrixM which satis-

fies the equationaMTJM5J for somea. If l is an eigen-
value, then (la)21 is also an eigenvalue. For

det~M2lI !50 , ~27!

⇒det@~la!21I2M #50 , ~28!

using the fact that the determinant of a product is the product
of determinants, and the determinant of a transpose is equal
to the original determinant. This last result is called the
m-symplectic eigenvalue theorem, and implies that the loga-
rithms of the eigenvalues ofM satisfy the conjugate pairing
rule.

Applying this result to the current situation, witha5m2

andM5LTL, we find that the sum of a pair of the logarithm
of the eigenvalues ofLTL is

lnl1 ln~m2l!21522E
0

t

a~s!ds, ~29!

which is clearly independent of which pair of eigenvalues we
chose. At this point we have a result which applies to any
trajectory segment, no matter how small, if the above co-
moving basis is used. Using the traditional~fixed! basis, we
can only make a statement about the infinite time limit.

Finally, we take thet→` limit, and use Eq.~8!. The
result is that any pair of Lyapunov exponents~except the
trivial zeros! sum to minus the time average ofa.

An important corollary is that if there is an invariance in
the equations of motion leading to a zero exponent, the con-
jugate exponent is not zero as in the Hamiltonian case, but
2^a& t . For example, consider the case of a single particle,
wheref is independent ofz. The system is invariant under a
translation in thez direction, giving it one zero Lyapunov
exponent. The equation forpz is

ṗz52apz , ~30!

which is clearly responsible for an exponent of2^a& t for
perturbations in this direction.

FIG. 1. The basis vectors for one particle in three dimensions
are parallel transported along the trajectory. Refer to Eq.~11!.
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This proof is valid for any number of particles moving in
a potential which may contain both external terms and inter-
actions between the particles. The natural generalization of
this result would be to other Hamiltonian systems and ther-
mostats, as argued in Ref.@6# and/or SLLOD dynamics, used

to simulate planar Couette flow, and in which conjugate pair-
ing has been observed numerically@3#. Work is now pro-
ceeding in this direction.
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