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Dark and bright vector spatial solitons in biased photorefractive media
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We show that the vector beam evolution equations in properly oriented biased photorefractive media can
exhibit bright-dark soliton pair solutions under steady-state conditions. These wave pairs are obtained pertur-
batively provided that the intensities of the two optical beams are approximately equal. Our analysis indicates
that these bright-dark vector solitons exist irrespective of the polarity of the external bias field. The stability of
these vector pairs has been investigated numerically and it has been found that they are stable only in the
regime of positive bias polarity.

PACS number(s): 42.65.Tg, 42.65.Hw

Since their first experimental observation [1],optical spa-
tial solitons in photorefractive (PR) media have been a topic
of considerable interest [2—11].To date, three different types
of PR solitons have been considered in the literature. The
first kind involves the so-called quasi-steady-state solitons,
or transient solitons, which are typically observed over a
time interval, i.e., during the screening process of the exter-
nal bias field [1—4]. The other two types, better known as
screening [8,9] and photovoltaic solitons [6], are possible
only under steady-state conditions and have been recently
observed experimentally [5,7,11].In particular, photovoltaic
steady-state planar solitons can exist in PR materials with
appreciable photogalvanic coefficients [6]. Screening soli-
tons, on the other hand, require the application of an external
bias field [8,9]. Very recently, vector solitons have also been
predicted in biased PR media by Segev et al. [12].Depend-
ing on the symmetry class of the appropriate crystal and its
orientation, these solitary beams were found to obey a self-
coupled or a cross-coupled system of nonlinear evolution
equations. Thus far, bright-bright and dark-dark, self- or
cross-coupled vector solitons have been predicted [12].

In this Rapid Communication we show that the self-
coupled vector beam evolution equations in biased PR media
can also exhibit bright-dark soliton pair solutions under
steady-state conditions. It is interesting to note that these
vector solitons are also reminiscent of those previously pre-
dicted in birefringent y( l media [13].These wave pairs are
obtained perturbatively provided that the intensities of the
two optical beams are approximately equal. Moreover, our
analysis indicates that these bright-dark vector solitons exist
irrespective of the polarity of the external bias field. The
stability of our solutions has been investigated numerically
and we have found that they are stable only in the regime of
positive bias polarity. Conversely, when the polarity is nega-
tive, the pair tends to disintegrate as a result of modulational
instability.
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where k=27r/k and )i. is the free-space wavelength of the
lightwave used, and Aa=Aa„=De . The wave numbers
k, and k, are defined as k, =kn, and k =kn, , where n, and
n are the refractive indices seen by the extraordinary and
ordinary components when 0= 11.9'. Here, n, is taken to be
2.286 and n, = 2.200 at k = 0.633 p, m [14].Using these val-
ues it can be readily shown that the effective refractive index
for the extraordinary wave is n, = 2.282 when 8= 11.9 . The
relative permittivity changes Ae„and Aa, can be ex-
pressed as Aa„= —r,&,n,Esc and Aa = —r,ff,n Esc,~4 4

where r,z, and r,ff are the effective electro-optic coeffi-
cients for the extraordinary and ordinary polarizations, re-
spectively. Esc represents the space-charge electric field. For
a wave propagating in LiNb03 at an angle 0 with respect to

To start, let us consider an optical beam that propagates in
a PR material along the z axis and is allowed to diffract only
along the x direction. Moreover, let us assume that the ex-
ternal bias electric field is also applied along X. For demon-
stration purposes, let the PR crystal be LiNb03 (3m class,
mJ xz). As previously pointed out by Segev et al. [12), this
crystal is a good candidate for the observation of such planar
self-coupled or cross-coupled vector solitons. More specifi-
cally, for the self-coupled case, the permittivity changes in
LiNb03 along the extraordinary and ordinary components of
the optical beam are equal, i.e., Ae„=As, , provided that
the optical c axis of this crystal makes an angle 8=11.9
with respect to the z axis. he„and Ae, represent the di-
agonal perturbations on the relative permittivity tensor.
Moreover, in this case the off-diagonal elements, i.e., Ae,
and Aa, , are zero. By associating slowly varying envelopes
with the extraordinary and ordinary polarizations, P,(x,z)
and P,(x,z), then one quickly finds the following set of
self-coupled nonlinear evolution equations [12]:
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the c axis, and provided that the space-charge electric field
is x directed [15], the effective electro-optic coefficients
are given by r,ft, = [r»cos (8)—(r,3+2rst)cos (8)sin(0)
—r33sin (e)] and r,rr, = —[r»cos(8)+r, 3sin(8)]. By
using typical values for the electro-optic coefficients of
LiNb03 [14] and for 8=11.9', Ae can be easily evaluated
and is given by Aa =235.85' 10 Esc, where Esc is mea-
sured in units of volts per meter. Moreover, under strong bias
conditions and for relatively broad beam configurations, the
steady-state space-charge electric field is approximately
given by [9]

( p(1+ p)=2 /+ 2 z~,1+rf + pg i
(4a)

P(1+p)g=2 p+
1+elf + pg )

(4b)

where f=d f/ds, etc. At this point, let us search for par-
ticular solutions which also satisfy the condition f +gz=1.
In this case, Eqs. (4) take the form

Id+I
Esc(x,z) =E (2)

f=2I P, + 1+Sf (Sa)

where I=I(x,z) is the power density of the optical
wave front and it is related to the slowly varying envelopes

and P, through Poynting's vector, i.e., I= (n, /

2r/o)IP, I +(n, /2r/o)IP, I
. In Eq. (2), Id is the so-called

dark irradiance which phenomenologically accounts for the
thermal generation of electrons in the conduction band, I
represents the constant power density the vector pair attains
away from the center of the PR crystal, i e.,
I =I(x—+ ~ ee,z), and Fo is the value of the space-
charge electric field also at x—+ ~(x. If the spatial extent of
the optical waves involved is much less than the x width
W of the PR crystal, then under a constant voltage bias V,
F.o is approximately given by ~ V/W [9]. Moreover, for
simplicity, let us adopt the following dimensionless vari-
ables and coordinates, i.e., let g =z/(k, xo), s =x/xo,

= (2 ripId /n, ) ' U and P, = (2 rioId /n, )
' V. xo is an ar-

bitrary spatial width, and the power densities of the optical
beams have been scaled with respect to the dark irradiance
Id. By employing these latter transformations and by substi-
tuting Eq. (2) in Eq. (1), the normalized planar envelopes U
and V are found to satisfy

1+8(1— )
(Sb)

10

0)
5

where the parameter 6 is defined as 8=(r —p)/(1+p).
From Eq. (5) and by the use of the f gbounda-ry conditions,
the values of the constants p, and v can be readily obtained
and are given by p, = —(P/8)ln(1+8) and v= —P [9].
Equations (5a) and (Sb) can now be solved perturbatively
provided that

I
BI((1, that is when the peak intensities of the

two vector components are approximately equal. In this case,

BU 10I U U' 8$ 2 Bs 1+IUI +Ivi
(3a)

0

BV 18V V
'ag 2 a~' 1+IUI'+IVI' (3b)

where p=I„/Id and under this orientation (8=11.9' in
L1NbO 3) P = (235.85 X 10 /2) (kxp) Eo . For simPlicity
any loss effects have been omitted in Eq. (3).

To find the bright-dark solitary pair solutions of Eq. (3)
let us express the normalized envelopes U and V in the
following way: U=r ~ f(s)exp[i(n, /n, )p, $] and
V=p g(s)exp(ivy), where the beam profiles f and g are
normalized real functions. Here we have assumed, without
any loss of generality, that the extraordinary envelope U is
bright, whereas the ordinary one, V, is darklike. Hence,

f(o) =1 f(o) =o» f(~ —")=o g(o) =o g(~ — )
= ~ 1, and moreover, all the derivatives of f and g are as-
sumed to vanish at infinity. The positive variable r represents
the ratio of the maximum power density of the bright wave
with respect to the dark irradiance Id . By substituting these
forms of U and V in Eqs. (3) we find

IVI

10

0)
5

0

FIG. 1. Stable propagation of the (a) bright and (b) dark com-
ponents of the vector soliton pair when P= —27.9, r=9.45, and
p= 10.
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has also been considered numerically. In particular, we have
found that these bright-dark waves are stable, against small
perturbations in amplitude and width, up to distances of sev-
eral centimeters. Conversely, a very different picture emerges
when the polarity of the bias field is reversed. In this case,
the evolution of the vector pair is illustrated in Fig. 2, when
P=27.9, p=10, r = 10.55, and 8=0.05. In this regime, the
plane-wave tails of the dark wave (and eventually the vector
pair as a whole) disintegrate as a result of modulational in-
stability [16].This happens at an approximate distance of
(=0.4. Note that modulational instability is possible only for
positive P s or negative polarities, i.e., when single-
component bright solitons can exist in this crystal system.
The evolution of the bright-dark pair was also investigated
when 8 deviates from 11.9 . Using computer simulations, we
have found that the dark-bright pair behavior still persists up
to distances of 4 cm when 8=11.9 ~5'. These results were
obtained for the same parameters used above and for nega-
tive P's so that modulational instability is absent.

It is also very interesting to study the evolution of a single
component of such a pair in the absence of the other, that is,
when either U or V is zero. This behavior may be essential if
one is to confirm their existence experimentally. Figure 3(a)
depicts the bright optical beam at the input and at z= 1 cm,
when the dark wave component is not present. In this case,
Eo = 15 kV/cm, P= —27.9, r = 8.9, and p= 10. The FWHM
of the optical beam at the input and at z= 1 cm is 42.2 pm
and 80.8 pm, respectively. Therefore, in the absence of the
dark component, the bright beam has undergone a 90%%uo ex-
pansion at z=l cm. Similarly, the evolution of the dark

tanh
V=E W1 —8 (8)

where Q=5.43X10 kW( —EoB) 't . Keeping in mind
that ~(8/Q) tanh(Q) ~(&1, then Eo= V/W, —which is in accord
with our previous statements.

In conclusion, we have shown that the self-coupled vector
beam evolution equations in properly oriented biased PR me-
dia can exhibit bright-dark soliton pair solutions under
steady-state conditions. These wave pairs were obtained per-
turbatively provided that the intensities of the two optical
beams are approximately equal. Our analysis indicates that
these bright-dark vector solitons exist irrespective of the po-
larity of the external bias field. The stability of our solutions
has been investigated numerically and we have found that
they are stable only in the regime of positive bias polarity.
Conversely, when the polarity is negative, the pair tends to
disintegrate due to modulational instability. Several other is-
sues concerning their possible experimental observation have
also been addressed.

This work was supported in part by JNICT of Portugal.

wave in the absence of the bright one, i.e., when U=O, is
shown in Fig. 3(b), when P= —27.9, r =8.9, and p=10. In
this case, the dark wave breaks up into multiple darklike
waves. Thus, the above results indicate that such vector soli-
ton behavior could be easily detected experimentally.

Finally, it can be shown that the value of the bias voltage
V can be readily obtained in terms of relevant parameters. By
employing V= fEsc dx and Eqs. (2) and (7), one finds
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